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Normal Forms, Hermitian Operators, and
CR Maps of Spheres and Hyperquadrics

J i ř í Lebl

1. Introduction

The purpose of this paper is to use normal forms of Hermitian operators in the
study of CR maps. We strengthen a useful link between linear algebra and several
complex variables and apply the techniques discussed to the theory of rational CR
maps of spheres and hyperquadrics. After discussing the classification of such CR
maps in terms of their Hermitian forms, we turn to the classification of Hermitian
forms arising from degree-2 rational CR maps of spheres and hyperquadrics. For
degree-2 maps, the classification is the same as that of a pair of Hermitian forms up
to simultaneous ∗-congruence (matrices A and B are ∗-congruent if there exists
a nonsingular matrix X such that X∗AX = B, where X∗ is the conjugate trans-
pose), which is a classical problem in linear algebra whose solution dates to the
1930s (see the survey [18]).

We will apply the theory developed in this paper to two problems. First, ex-
tending a result of Faran [12], in Theorem 1.2 we finish the classification of all
CR maps of hyperquadrics in dimensions 2 and 3. Second, Ji and Zhang [17]
classified degree-2 rational CR maps of spheres from source dimension 2. In The-
orem 1.5 we extend this result to arbitrary source dimension and give an elegant
version of the theorem by proving that all degree-2 rational CR maps of spheres in
any dimension are spherically equivalent to a monomial map. We also study the
real-algebraic version of the CR maps of hyperquadrics problem in dimensions 2
and 3, which arises in the case of diagonal Hermitian forms.

In CR geometry we often think of a real-valued polynomial p(z, z̄) on com-
plex space as the composition of the Veronese map Z with a Hermitian form B.

That is, p(z, z̄) = 〈BZ , Z 〉. See Section 2 for more on this setup. Writing B as a
sum of rank-1 matrices, we find that p can also be viewed as the composition of
a holomorphic map composed with a diagonal Hermitian form. When we divide
the form 〈BZ , Z 〉 by the defining equation of the source hyperquadric, the result
is a pair of Hermitian forms. When this pair is put into canonical form, we obtain
a canonical form of the map up to a natural equivalence relation. A crucial point
is that, for degree-2 maps, the two forms are linear in z.

We thus make a connection between real polynomials and holomorphic maps
to hyperquadrics. A hyperquadric is the zero set of a diagonal Hermitian form and
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is a basic example of a real hypersurface in complex space. Usually given in non-
homogeneous coordinates, the hyperquadric Q(a, b) is defined as

Q(a, b) := {z∈ C
a+b | |z1|2 + · · · + |za|2 − |za+1|2 − · · · − |za+b|2 = 1}. (1)

Note that Q(a, b) is a hypersurface only when a ≥ 1. Also, Q(n, 0) is the sphere
S 2n−1.

We introduce the natural notion of equivalence for CR maps of hyperquadrics,
which we will call Q-equivalence. A map f : Q(a, b) → Q(c, d) is CR if it is con-
tinuously differentiable and satisfies the tangential Cauchy–Riemann equations.
A real-analytic CR map is a restriction of a holomorphic map. See [2; 6] for more
information. Let U(a, b) be the set of automorphisms of the complex projective
space P

a+b that preserve Q(a, b). In homogeneous coordinates these automor-
phisms are invertible matrices, or linear fractional when working in C

a+b. We will
say that two CR maps f and g taking Q(a, b) to Q(c, d) are Q-equivalent if there
exist τ ∈U(c, d) and χ ∈U(a, b) such that f � χ = τ � g. In the case of spheres,
Q-equivalence is commonly called spherical equivalence.

The problem of classifying CR maps of hyperquadrics has a long history. For
the sphere case, see for example [4; 5; 6; 8; 9; 10; 11; 16] and the references therein.
For the general hyperquadric case, see [1; 3; 16] and the references therein.

Again, let f : Q(a, b) → Q(c, d) be a CR map. We will first study the case
a+b = 2 and 2 ≤ c+d ≤ 3. We note that Q(2, 0) is equivalent to Q(1, 1) by the
map (z,w) �→ (1/z,w/z). Hence we need only consider Q(2, 0) as our source.
Similarly, Q(1, 2) is equivalent to Q(3, 0). If c + d = 2 then we need only con-
sider maps from ball to ball, which are Q-equivalent to the identity by a theorem
of Pinčuk [19]. Faran classified all planar maps in [12] and used this result to clas-
sify all ball maps in dimensions 2 and 3.

Theorem 1.1 (Faran [12]). Let U ⊂ Q(2, 0) be connected and open. Let
f : U → Q(3, 0) be a nonconstant C 3 CR map. Then f is Q-equivalent to
exactly one of the following maps:

(i) (z,w) �→ (z,w, 0);
(ii) (z,w) �→ (z, zw,w2);

(iii) (z,w) �→ (
z2,

√
2zw,w2 ); or

(iv) (z,w) �→ (
z3,

√
3zw,w3 )

.

Although Faran stated this theorem while assuming that the map is defined on all
of Q(2, 0), the slight generalization that we give follows from the same proof (or
by appealing to the theorem of Forstnerič [14]). To completely classify all CR
maps of hyperquadrics in dimensions 2 and 3, it remains to classify maps from
Q(2, 0) to Q(2, 1).

Theorem 1.2. Let U ⊂ Q(2, 0) be connected and open. Let f : U → Q(2, 1)
be a nonconstant real-analytic CR map. Then f is Q-equivalent to exactly one of
the following maps:
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(i) (z,w) �→ (z,w, 0);
(ii) (z,w) �→ (

z2,
√

2w,w2 );
(iii) (z,w) �→ (

1
z
, w2

z2 , w

z2

);
(iv) (z,w) �→ ( z2+√

3zw+w2−z

w2+z+√
3w−1

, w2+z−√
3w−1

w2+z+√
3w−1

, z2−√
3zw+w2−z

w2+z+√
3w−1

);
(v) (z,w) �→ ( 4√2(zw−iz)

w2+√
2 iw+1

, w2−√
2 iw+1

w2+√
2 iw+1

,
4√2(zw+iz)

w2+√
2 iw+1

);
(vi) (z,w) �→ ( 2w3

3z2+1
, z3+3z

3z2+1
,
√

3wz2−w

3z2+1

); or

(vii) (z,w) �→ (1, g(z,w), g(z,w)) for an arbitrary CR function g.

Maps (i), (ii), and (iii) originate in monomial maps (where each component is a
monomial) from Q(2, 0) or Q(1, 1). Classifying monomial maps leads to a prob-
lem in real-algebraic geometry, which we discuss in Section 5.

Remark 1.3. It is interesting that maps (iii) and (iv) of Theorem 1.1 and (ii) of
Theorem 1.2 are group invariant, but this fact is not used in the paper. Map (ii) of
Theorem 1.2 is one of the family of CR maps of hyperquadrics invariant under a
cyclic group obtained by D’Angelo [7].

Remark 1.4. Faran proved his theorem with C 3 regularity. In order to apply
Faran’s result on classification of planar maps, we shall need real-analytic CR
maps. For maps from the sphere to the Q(2, 1) hyperquadric we get the map
(1, g, g) for an arbitrary CR function g. Obviously, this map can have arbitrarily
bad regularity.

We will also prove the following generalization of a theorem by Ji and Zhang [17].
The form of their maps was found by D’Angelo [4] and Huang, Ji, and Xu [16].
The statement and proof of the theorem by Ji and Zhang was more involved, and
it covered only the case of source dimension 2. A monomial map is a map whose
every component is a monomial. We do not allow any monomial to have negative
exponents. The degree of a rational map is the maximum degree of the numerator
and the denominator when the map is written in lowest terms.

The notion of spherical equivalence can be naturally extended to maps with
different target dimensions. We will say two maps f and g with different target
dimensions (e.g., the target dimension of f is smaller) are spherically equivalent
if f ⊕ 0 is spherically equivalent to g in the usual sense.

Theorem 1.5. Let f : S 2n−1 → S 2N−1, n ≥ 2, be a rational CR map of degree
2. Then f is spherically equivalent to a monomial map.

In particular, f is equivalent to a map taking (z1, . . . , zn) to(√
t1z1,

√
t2 z2, . . . ,

√
tn zn,

√
1 − t1z

2
1,

√
1 − t2 z

2
2 , . . . ,

√
1 − tn z

2
n,√

2 − t1 − t2 z1z2,
√

2 − t1 − t3 z1z3, . . . ,
√

2 − tn−1 − tn zn−1zn
)
,

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1, (t1, t2, . . . , tn) �= (1,1, . . . , 1). (2)

Furthermore, all maps of the form (2) are mutually spherically inequivalent for
different parameters (t1, . . . , tn).
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It is worthwhile and generally more convenient to see what the maps (2) look like
in more abstract language. D’Angelo [6] has shown that any degree-2 polynomial
map taking the origin to the origin can be abstractly written as

Lz ⊕ (√
I − L∗Lz

) ⊗ z, (3)

where L is any linear map such that I −L∗L is positive semidefinite and where z
is the identity map in nonhomogeneous coordinates. A monomial map then cor-
responds to taking a diagonal L. We can make L have nonnegative entries, and
by permuting the variables we can sort the diagonal entries of L. Hence our re-
sult could be stated as follows. Every nonconstant degree-2 rational CR map of
spheres is spherically equivalent to exactly one map of the form (3), where L is di-
agonal with nonnegative diagonal entries sorted by size, such that I − L∗L also
has nonnegative entries. With the result of D’Angelo it is obvious that (3) and
hence (2) is exhaustive; in other words, each gives all the monomial maps. We
will give another proof.

The main point is that all degree-2 CR maps of spheres are spherically equiv-
alent to monomial maps. Faran, Huang, Ji, and Zhang [13] have shown that, for
n = 2, all degree-2 rational CR maps of spheres are equivalent to polynomial
maps; hence we improve on their result by allowing the source dimension to be
arbitrary and showing that the maps are actually monomial, not just polynomial.
An explicit example is also given in [13] of a rational degree-3 CR map of S3 to S7

that is not spherically equivalent to any polynomial map. Therefore, our result is
optimal in some sense. See also Proposition 4.7 for a slightly weaker statement.

The family of maps (2) in the simplest case n = 2 consists of the following
maps that take S3 to S 9:

(z,w) �→ (√
s z,

√
t w,

√
1 − s z2,

√
2 − s − t zw,

√
1 − t w2

)
,

0 ≤ s ≤ t ≤ 1, (s, t) �= (1, 1). (4)

This family has appeared in the work of Wono [20], who classified all monomial
maps from S3 to S 9. Note that s = 0 corresponds to maps of type (I) in [17]; t = 1
corresponds to type (IIA), and the other cases correspond to type (IIC). Since
there is only one 2-dimensional family, it is not hard to see that this family cor-
responds to the maps (IIC) with the maps of type (I) and (IIA) located on the
“boundary” of the family.

Acknowledgments. The author would like to thank James Faran for explain-
ing and discussing the proof of his theorem as well as John D’Angelo for many
discussions on the topic and for suggestions that greatly improved this manuscript.
The author also thanks the referee for many suggestions and improvements. The
author would like to acknowledge AIM for holding a workshop on the topic of
complexity in CR geometry in the summer of 2006 as well as MSRI for holding a
workshop in 2005, where the author was first exposed to the topic of proper maps
of balls. Finally, the author would like to acknowledge the Espresso Royale Cafe,
without whose coffee this work would not have been possible.
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2. Hermitian Forms

Let 〈·, ·〉 denote the standard pairing 〈z,w〉 = z0w̄0 + z1w̄1 + · · · + znw̄n, and let
A be a Hermitian matrix. Then a Hermitian form is simply

〈Az, z〉, (5)

where z ∈ C
n+1. We will often talk of the zero sets of Hermitian forms, so let us

define
VA := {z∈ C

n+1 | 〈Az, z〉 = 0}. (6)

In CR geometry we often think of a real polynomial as a Veronese map com-
posed with a Hermitian form. Let p be a polynomial in (z,w)∈ C

n+1 × C
n+1:

p(z,w) =
∑
αβ

aαβz
αwβ. (7)

Suppose that p is bihomogeneous of bidegree (d, d): let p(tz,w) = p(z, tw) =
t dp(z,w). The polynomial is said to be Hermitian symmetric ifp(z, w̄) = p(w, z̄).
In other words, aαβ = aβα; that is, the matrix with the entries aαβ is Hermitian.
It is not hard to see that p is Hermitian symmetric if and only if p(z, z̄) is real
valued.

Let Z = Zd be the degree-d Veronese map

(z0, . . . , zn)
Z�→ (zd0 , zd−1

0 z1, . . . , zdn), (8)

or the map whose components are all the degree-d monomials. We can think of
p as

p(z, z̄) = 〈AZ , Z 〉, (9)

where A = [aαβ]αβ is the matrix of coefficients from (7). By the signature of p
we mean the signature of A. Writing A as a sum of rank-1 matrices, we show that
p is the composition of a diagonal Hermitian form with the same signature as A
and a homogeneous holomorphic map of C

n+1 to some C
N+1. That is, we obtain

a map taking the zero set of p to a hyperquadric.
Let f be a rational map taking P

n to P
N. In homogeneous coordinates, f is

given by N +1 homogeneous polynomials f = f0, f1, . . . , fN. We wish to formu-
late what it means for f to take VJ ⊂ P

n to VV ⊂ P
N for two Hermitian matrices

J and V. We can simply plug f into the equation for VV and obtain

〈Vf(z), f(z)〉 = 0. (10)

Then f takes VJ to VV if and only if there exists a bihomogeneous real polynomial
q such that

〈Vf(z), f(z)〉 = q(z, z̄)〈Jz, z〉. (11)

To classify the f that take VJ to VV , we first need to identify those f that differ
by an automorphism preserving VV .
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It will be useful to represent 〈Vf(z), f(z)〉 slightly differently. Suppose that f
is of degree d, and let Z be the degree-d Veronese map. Then we can write f(z) =
FZ for some complex matrix F. We put

〈Vf(z), f(z)〉 = 〈VFZ ,FZ 〉 = 〈F ∗VFZ , Z 〉. (12)

Lemma 2.1. Let V be a nonsingular Hermitian matrix. Let f and g be homoge-
neous polynomial maps taking C

n+1 to C
N+1 such that

〈Vf(z), f(z)〉 = 〈Vg(z), g(z)〉. (13)

Suppose that f has linearly independent components. Then

g(z) = Cf(z) (14)

for some invertible matrix C such that C∗VC = V.

Proof. As explained previously, we write f(z) = FZ for some complex matrix F
with linearly independent rows. Similarly, g(z) = GZ. Thus 〈Vf(z), f(z)〉 =
〈Vg(z), g(z)〉 implies that

〈(F ∗VF − G∗VG)Z , Z 〉 = 0. (15)

We have a real polynomial that is identically zero and so its coefficients are zero.
Thus F ∗VF = G∗VG. By permuting the monomials, we could suppose that F =
[F1 F2 ], where F1 is an invertible matrix. We write G = [G1 G2 ], where G1

is square. Now F ∗VF = G∗VG implies F ∗
1 VF1 = G∗

1VG1. Let C = G1F
−1

1 .

Clearly C∗VC = V and G1 = CF1. So if G2 = CF2, then we are finished. Now
F ∗VF = G∗VG also implies that F ∗

1 VF2 = G∗
1VG2. Replacing G1 with CF1

yields F ∗
1 VF2 = F ∗

1 VC
−1G2. Since F1 and V are invertible, it follows that G2 =

CF2 and thus g(z) = Cf(z).

Lemma 2.1 says that if 〈Vf(z), f(z)〉 = 〈Vg(z), g(z)〉, then f and g are equal up
to a linear map of the target space preserving the form defined by V. Note that
these linear maps (up to a scalar multiple) correspond exactly to linear fractional
transformations that take VV to itself and preserve the sides of VV . Because we are
working with homogeneous coordinates, we must also always consider the possi-
bility 〈Vf(z), f(z)〉 = λ〈Vg(z), g(z)〉 for λ > 0. We can then rescale f or g and
use the proposition. Furthermore, if there are equal numbers of positive and nega-
tive eigenvalues, then there exists a linear map that takes the form corresponding to
V to the form corresponding to −V. In this case, it could be that 〈Vf(z), f(z)〉 =
−〈Vg(z), g(z)〉 and still f and g differ by an automorphism of the target and take
the same set to VV , with one swapping sides and the other not.

For the source and target we are mostly interested in hyperquadrics and spheres.
When V is Hermitian, the set VV is equivalent to a hyperquadric by an automor-
phism of P

N. For the hyperquadric Q(a, b) we let V be the matrix with a ones
and b + 1 negative ones on the diagonal. We have the following corollary.

Corollary 2.2. Let f and g be rational CR maps of Q(a, b) to Q(c, d), and
let V be a Hermitian form defining Q(c, d). Let f̂ and ĝ be the corresponding
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homogeneous polynomial maps. Suppose that the components of f̂ are linearly
independent. Then f and g are Q-equivalent if and only if there exist χ and λ,
with χ ∈ U(a, b) and with either λ > 0 if c �= d + 1 or λ ∈ R \ {0} if c = d + 1,
such that

〈Vf̂(χz), f̂ (χz)〉 = λ〈Vĝ(z), ĝ(z)〉 for all z. (16)

Consequently, by working in projective space and with Hermitian forms rather
than with the maps themselves, we reduce the Q-equivalence problem to an equiv-
alence problem using only the group of automorphisms of the source.

Now suppose we start with any real polynomial 〈BZd , Zd〉 for some Hermitian
matrix B. We write B as a sum of rank-1 matrices. Since B is Hermitian, this can
be done in the following way. We take the positive eigenvalues λ1, . . . , λk and the
negative eigenvalues −λk+1, . . . , −λr; we ignore zero eigenvalues if present. We
let v1, . . . , vr be an orthonormal set of corresponding eigenvectors:

B =
k∑

j=1

λjvjv
∗
j −

r∑
j=k+1

λjvjv
∗
j . (17)

Now we define fj(z) = √
λj v

∗
j Z. We see that

〈Vf(z), f(z)〉 = 〈BZ , Z 〉, (18)

where V is the form with k ones and r − k negative ones on the diagonal.
Hence any real polynomial corresponds to a holomorphic map f : P

n → P
N

taking the zero set of the polynomial to a hyperquadric with the same signature
as the coefficient matrix B. Thus, in order to classify all maps taking one hyper-
quadric to another hyperquadric up to Q-equivalence, we need only classify real
polynomials that vanish on the source hyperquadric and have the correct signature.

Note that we will generally scale all the vj by the same number to make the
expressions easier to work with. Other methods can be employed to construct
Q-equivalent f by writing B differently as a sum of rank-1 matrices, but the pro-
cedure just outlined is the one we will use. Any other method will produce the
same number of positive and of negative terms—assuming the components are
linearly independent.

If we have a Hermitian matrix B such that 〈BZd , Zd〉 is zero on VJ , then

〈BZd , Zd〉 = 〈AZd−1, Zd−1〉〈Jz, z〉 (19)

for some Hermitian matrix A. We take an automorphism preserving the set de-
fined by J—in other words, a matrix X such that X∗JX = J. To find all maps
equivalent by an automorphism of the source, we compute the canonical form of

〈AZd−1(Xz), Zd−1(Xz)〉〈Jz, z〉 = 〈X̂∗AX̂Zd−1, Zd−1〉〈Jz, z〉, (20)

where X̂ is the matrix defined by Zd−1(Xz) = X̂Zd−1(z). Hence, we will look
for a canonical form of the pair (J,A) under ∗-conjugation by X̂ and X. If J has
the same number of positive and negative eigenvalues, we would also have to con-
sider linear maps such that X∗JX = −J. If d = 2, then X̂ = X and so matters
become simpler; we shall next describe the method in more detail.
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In general, we could start with any algebraic source manifold—for example,
one defined by the zero set of the real polynomial 〈CZk , Zk〉. Then the existence
of a map f taking the manifold to a hyperquadric implies the existence of a Her-
mitian matrix A such that

〈BZd , Zd〉 = 〈AZd−k , Zd−k〉〈CZk , Zk〉, (21)

where B is the form resulting from composing the map f with the defining equa-
tion of the target hyperquadric. Classifying such maps is then equivalent to finding
normal forms for the pair (C,A) under the automorphism group fixing C. In this
paper we study the case of a hyperquadric source manifold.

3. Degree-2 Maps

In this section we consider degree-2 maps. Let f be a degree-2 map taking a hyper-
quadric to a hyperquadric. Then, for the properV and J, we have 〈Vf(z), f(z)〉 =
q(z, z̄)〈Jz, z〉. The polynomial q is real valued of bidegree (1, 1), so it can also be
written as a Hermitian form. We write f(z) = FZ as before. We obtain

〈F ∗VFZ , Z 〉 = 〈Az, z〉〈Jz, z〉 (22)

for some Hermitian matrix A.

On the other hand, if we start with 〈Az, z〉〈Jz, z〉 and then multiply, the result
will be a Hermitian matrix B such that 〈BZ , Z 〉 = 〈Az, z〉〈Jz, z〉. If B andV have
the same signature, then we can use linear algebra (as explained in Section 2) to
find a matrix F such that B = F ∗VF.

Therefore, examining all the possible Hermitian matricesA yields all the degree-
2 maps of VJ to all hyperquadrics. We restrict our attention to those matrices A
for which the resulting matrix B has the correct signature.

We assume that the components of f are linearly independent. This limitation
turns out not to be a problem for CR maps of spheres, but it is a problem for CR
maps of hyperquadrics. Namely, we miss maps such as (1, g, g)—but that is es-
sentially all we miss.

If Q(a, b) is the source hyperquadric (corresponding to J ) and if we take an
automorphismχ ofQ(a, b), thenχ is represented by a matrixX such thatX∗JX =
J. Therefore,

〈AXz,Xz〉〈JXz,Xz〉 = 〈X∗AXz, z〉〈Jz, z〉. (23)

Thus we first find all the canonical forms for a pair of Hermitian matrices under
the equivalence (A,B) ∼ (C,D) whenever there exists a nonsingular matrix X

such that X∗AX = C and X∗BX = D (simultaneous ∗-congruence). Next we
collect those canonical pairs for which one of the matrices is ∗-congruent to J ;
such pairs therefore give canonical forms of degree-2 CR maps of hyperquadrics
from the J hyperquadric up to Q-equivalence. In the special case when the num-
ber of positive and negative eigenvalues of J is the same (i.e., a = b+1), we must
also consider those X for which X∗JX = −J. However, we will usually assume
that J defines the sphere and that a + b ≥ 2.
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The problem of classifying a pair of matrices has a long history that goes back
to Kronecker. The first results for Hermitian matrices and ∗-congruence were
proved in the 1930s by several authors independently (see the survey by Lancas-
ter and Rodman [18]). We could use these older results, but for convenience we
use a more recent paper by Horn and Sergeichuk [15], whose canonical form is
easy to work with. Thse authors also demonstrate an algorithm for computing the
canonical form, so we likewise have an algorithm for producing a normal form for
maps of hyperquadrics. That is, when deciding whether two degree-2 CR maps
of hyperquadrics are Q-equivalent, we first find their corresponding Hermitian
forms. Then we follow the procedure of Horn and Sergeichuk to generate a nor-
mal form of the matrices, after which we simply check and see whether the normal
forms are the same (up to a multiple, of course). This method works only if the
components of the maps are linearly independent. However, reducing to this case
is not hard in general.

Before giving the result of Horn and Sergeichuk, we must first define the
“building block” matrices used for their canonical form. Let us define Mn as
the n × n matrix with ones on the superdiagonal and the subdiagonal and simi-
larly define Nn as the n × n matrix with ones on the superdiagonal but negative
ones on the subdiagonal:

Mn :=




0 1 0

1 0
. . .

. . .
. . . 1

0 1 0


; Nn :=




0 1 0

−1 0
. . .

. . .
. . . 1

0 −1 0


. (24)

Let Jn(λ) be the n×n Jordan block with eigenvalue λ (i.e., with λ on the diagonal
and ones on the superdiagonal). Finally, define

-n(α,β) :=




0 α

α β

. .
.

. .
.

α β

α β 0



. (25)

We can now give the classification theorem, or at least that part of the theorem that
is useful for us. Let In be the n × n identity matrix.

Theorem 3.1 (Horn and Sergeichuk [15]). Let A,B be a pair of Hermitian ma-
trices. These matrices are simultaneously ∗-congruent to a direct sum of blocks
of the following four types, determined uniquely up to permutation:

(i) (Mn, iNn);
(ii) ±(-n(1, 0),-n(α, 1)), α ∈ R;

(iii) ±(-n(0, 1),-n(1, 0)); and
(iv)

([ 0 In
In 0

]
,
[ 0 Jn(α+iβ)∗
Jn(α+iβ) 0

])
, α,β ∈ R, α + βi �= i, β > 0.
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We use ±(-n(1, 0),-n(α, 1)) to denote the pair (-n(1, 0),-n(α, 1)) or the pair
(-n(−1, 0),-n(−α, −1)), and similarly for ±(-n(0, 1),-n(1, 0)).

Let us use this classification theorem to study the case when the source hyper-
quadric is a sphere. Use a degree-2 rational CR map f : S 2n−1 → Q(c, d) to
obtain the pair of Hermitian matrices (J,A). We will now put the pair (J,A) into
canonical form. If we can diagonalize J and A simultaneously by ∗-congruence,
then the map is equivalent to a monomial map. That is, the map in homogeneous
coordinates is monomial. It remains to be seen whether the map is monomial (not
allowing for negative exponents) in nonhomogeneous coordinates. Suppose that,
for k = 0, . . . ,N, the kth component of the homogenized map f̂ is ck zαk for some
degree-2 multi-index αk. Write 〈Vf̂(z), f̂ (z)〉 = 〈Az, z〉〈Jz, z〉. Since A is not
identically zero, there exists a j = 0, . . . , n such that 〈Az, z〉 �= 0 when zj = 1 and
zm = 0 for all m �= j. Since J is invertible, it follows that 〈Jz, z〉 �= 0 and thus
〈Vf̂(z), f̂ (z)〉 �= 0. Because

〈Vf̂(z), f̂ (z)〉 =
N∑
k=0

±|ck|2|zαk |2, (26)

we see that zαk = z2
j for at least one k; that is, f̂ contains a pure monomial

term. Therefore, in the nonhomogeneous coordinates obtained by zj = 1, we ob-
tain a monomial (no negative exponents) CR map from Q(a, b) to Q(c, d), where
Q(a, b) is equivalent to S 2n−1. We will deal with the classification of monomial
maps for each problem separately in later sections.

So let us see what happens in the case when we cannot simultaneously diago-
nalize J and A. From now on, assume that at least one block in the canonical form
is larger than 1 × 1.

We remark that, since J defines the sphere, all blocks except one in the canon-
ical form for J must be 1 × 1 blocks. Indeed, all the possible blocks of larger
size have at least one negative eigenvalue and hence there can be only one of
these. Furthermore, J has no zero eigenvalues. The only blocks that have no zero
eigenvalues and at most one negative eigenvalue are M2, ±-2(1, 0), -3(1, 0),
and

[ 0 I1
I1 0

]
. All these blocks are 2 × 2 or 3 × 3. It will be sufficient to consider

only source dimension n = 2 in all that follows. So let us suppose that J and A

are both 3 × 3 as we compute all the normal forms for the Hermitian forms that
arise from degree-2 maps.

Note that
[ 0 I1
I1 0

] = M2 and that iN2 can be obtained by swapping variables and
letting α + iβ = i in the block

[ 0 α−iβ
α+iβ 0

]
. Thus we need not consider the block

M2 and can simply allow α + iβ = i.

We are now ready to compute. First let us take the situation corresponding to
the block -2 in J. That is, we have the following canonical form for (J,A):



 1 0 0

0 0 1
0 1 0


,


α 0 0

0 0 β

0 β 1





 (27)

for α,β ∈ R. Take Z = (z2
0, z0 z1, z0 z2, z2

1, z1z2, z2
2). The form corresponding to

the product 〈Az, z〉〈Jz, z〉 = 〈BZ , Z 〉 is
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B =




α 0 0 0 0 0

0 0 α + β 0 0 0

0 α + β 1 0 0 0

0 0 0 0 0 β

0 0 0 0 2β 1

0 0 0 β 1 0



. (28)

The forms for the related canonical pair
([ 1 0 0

0 0 −1
0 −1 0

]
,
[ α 0 0

0 0 β
0 β −1

])
are similar.

The next pair to consider is



 0 0 1

0 1 0
1 0 0


,


 0 0 α

0 α 1
α 1 0





 (29)

for α ∈ R. Multiplying the forms yields

B =




0 0 0 0 0 α

0 0 0 0 2α 1

0 0 2α 0 1 0

0 0 0 α 1 0

0 2α 1 1 0 0

α 1 0 0 0 0



. (30)

We finally arrive at the canonical pair



 1 0 0

0 0 1
0 1 0


,


α 0 0

0 0 β − iγ

0 β + iγ 0





 (31)

for α,β ∈ R and γ > 0. Observe that we can simply rescale if we need γ = 1.
After multiplying the forms, we have

B =




α 0 0 0 0 0

0 0 α + β − iγ 0 0 0

0 α + β + iγ 0 0 0 0

0 0 0 0 0 β − iγ

0 0 0 0 2β 0

0 0 0 β + iγ 0 0



. (32)

Given this matrix B, we can write it as a sum of rank-1 matrices to obtain a rep-
resentative of the class of maps given by B. In addition, we must change variables

so that J is in the form
[ 1 0 0

0 1 0
0 0 −1

]
; thus we will always have the same ball as our

source. (We could also change variables first and then write B as a sum of rank-1
matrices.)

4. Degree-2 Maps of S 2n−1 to S 2N−1

In this section we prove that all degree-2 maps of spheres are Q-equivalent (i.e.,
spherically equivalent) to a monomial map and then give the classification of those
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monomial maps. First let us prove that all degree-2 maps are equivalent to mono-
mial maps.

Lemma 4.1. Let f : S 2n−1 → S 2N−1, n ≥ 2, be a rational CR map of degree 2.
Then f is spherically equivalent to a monomial map.

Proof. Suppose we have a degree-2 map of spheres. In other words, we have a
Hermitian matrix A such that

〈Az, z〉〈Jz, z〉 (33)

has only one negative eigenvalue. Here J = diag(1,1, . . . ,1, −1) is the matrix that
gives us a sphere; that is, J has ones along the diagonal except for the last diago-
nal element, which is negative one. Unlike before, in this case we start in arbitrary
source dimension; however, we will see that considering n = 2 is sufficient.

IfA and J can be simultaneously diagonalized by ∗-congruence, then we are es-
sentially done. The map will be equivalent to a monomial map if we momentarily
allow some exponents to be negative in nonhomogeneous coordinates. We have
already remarked that the map has no negative exponents in some set of nonhomo-
geneous coordinates, but we wish it to be so in the nonhomogeneous coordinates
where VJ is S 2n−1.

Negative exponents in nonhomogeneous coordinates mean that the monomial
corresponding to the negative eigenvalue in the form for f is divisible by one of
the variables corresponding to a positive eigenvalue for J. That is, take the homo-
geneous coordinates z = (z0, z ′, zn)∈ C × C

n−1 × C = C
n+1 and write

‖f ′(z)‖2 − |zα|2 = q(z, z̄)(|z0|2 + ‖z ′‖2 − |zn|2) (34)

for some bihomogeneous real polynomial q. We denote by f ′ that part of the
monomial map corresponding to positive eigenvalues. We can assume that the
components of f ′ have no factor in common with the monomial zα. If zα = zdn
then we are done.

Therefore, assume (after, perhaps, renaming of variables) that zα is divisible by
z0. We set z0 = 0 to obtain ‖f ′(0, z ′, zn)‖2 = q(0, z ′, zn, 0, z̄ ′, zn)(‖z ′‖2 − |zn|2).
Note that f ′(0, z ′, zn) vanishes on a real hypersurface and hence is identically
zero. This means that f ′ is divisible by z0; that is, the map is not given in lowest
terms—a contradiction. So if we can diagonalize, the map is monomial (with the
usual understanding that in nonhomogeneous coordinates, where the source is the
sphere, no exponent is negative).

We focus on the case when one cannot diagonalize. Note that we are seeking
a contradiction. As before, we find the canonical form for the pair (J,A) and as-
sume that there is some block larger than 1×1 in the canonical form for J. Again
we note that all such blocks for J that have at most one negative eigenvalue are
either 2 × 2 or 3 × 3. Therefore, if we prove the result for source dimension 2
then we are done: if there were a map not equivalent to a monomial map for higher
source dimension, then we could set to zero all but the three variables correspond-
ing to 1 × 1 blocks. We obtain a CR map of spheres with source dimension 2 that
is not equivalent to a monomial map, since the surviving 2 × 2 or 3 × 3 block is
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canonical and so the corresponding block in A is not simultaneously diagonaliz-
able. Absent the existence of such a map, all blocks in the canonical form of the
pair (J,A) must have been 1 × 1 and so the matrices must have been simultane-
ously diagonalizable. Hence we assume that J and A are 3 × 3 just as before.

We have already computed the matrices B resulting from 〈Az, z〉〈Jz, z〉 =
〈BZ , Z 〉. Let us consider these matrices one by one.

First we take the situation corresponding to the block -2 in J. That is, for (J,A)

consider the canonical form
([ 1 0 0

0 0 1
0 1 0

]
,
[ α 0 0

0 0 β
0 β 1

])
. The correspondingB is computed

in (28). If α + β �= 0, then this form clearly has at least two negative eigenval-
ues (notice the block structure). If β = −α �= 0, then it is also not hard to see
that there must still be at least two negative eigenvalues. If β = α = 0, then A

has rank 1 and so we have a first-degree map. Similar calculations yield the same

result for the related canonical form
([ 1 0 0

0 0 −1
0 −1 0

]
,
[ α 0 0

0 0 β
0 β −1

])
.

Next let us consider the pair
([ 0 0 1

0 1 0
1 0 0

]
,
[ 0 0 α

0 α 1
α 1 0

])
. The corresponding B is com-

puted in (30). This form, too, always has at least two negative eigenvalues. To
see this, note that the form has a zero eigenvalue only when α = 0. It is therefore
enough to check the signature of the matrix for α = 0.

Finally we get to the canonical pair
([ 1 0 0

0 0 1
0 1 0

]
,
[ α 0 0

0 0 β−iγ
0 β+iγ 0

])
for γ > 0. The

corresponding B is computed in (32). Once again, given the block structure and
γ �= 0, we easily see that this form must have at least two negative eigenvalues.

We are done. We have dealt with all the canonical forms and have shown that
the canonical form for (J,A) must contain only 1 × 1 blocks. Hence it must be
monomial, so the lemma is proved.

Remark 4.2. Lemma 4.1 does not hold when n = 1, and it is easy to create
counterexamples using the techniques just described. Take the canonical pair([

0 1
1 0

]
,
[

0 i
−i 0

])
. With Z = (z2

0, z0 z1, z2
1 ), the form B becomes


 0 0 i

0 0 0
−i 0 0


. (35)

We find the eigenvalues 1 and −1 and the corresponding orthonormal eigenvec-
tors [1 0 −i]T/

√
2 and [1 0 i]T/

√
2. When constructing the map, we scale both

eigenvectors by the same number to get rid of the
√

2. In homogeneous coordi-
nates, the map is (z2

0 − iz2
1, z2

0 + iz2
1 ). Yet we are not finished until we change to

the standard coordinates for the sphere. Hence we must precompose with a linear
map that takes J to

[
1 0
0 −1

]
. We also multiply the first component by i for simplic-

ity. In nonhomogeneous coordinates, the map is

z �→ z2 + 2iz + 1

z2 − 2iz + 1
. (36)
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We know this map cannot be equivalent to a monomial map because we used the
canonical blocks that were not diagonalizable. It is not hard to see that any poly-
nomial degree-2 map of the disc to the disc must be eiθz2 for some θ ∈ R, so the
map is not equivalent to any polynomial map, either. Other examples can be con-
structed in a similar way.

Next let us classify the degree-2 monomial maps. The classification in general
follows from the work of D’Angelo [4; 5]; see also [9; 10; 11]. First, we have the
following lemma.

Lemma 4.3. Let f and g be monomial CR maps of spheres that take 0 to 0,

f(z) =
⊕
α

aαz
α, g(z) =

⊕
α

bαz
α, (37)

where each monomial is distinct. Then f and g are spherically equivalent if
and only if there exists a permutation σ of the variables taking α to σ(α) and
|aα| = |bσ(α)|.
The proof follows by results of [4]; polynomial proper maps of balls taking ori-
gin to origin are spherically equivalent if and only if they are unitarily equivalent.
In other words, f and g are spherically equivalent if and only if f = g � U for
a unitary matrix U. By setting all but one of the variables to zero—that is, z =
(0, . . . , 0,1, 0, . . . , 0) with zk = 1—we find that z is in the sphere and therefore
f(z) is in the sphere. Hence at least one component of f(z) must be nonzero;
that is, at least one of the monomials must depend only on zk. This was true for
all k and so there must be at least one pure monomial for each variable. The re-
sult follows by application of the multinomial theorem. We give the following,
slightly different proof addressing degree-2 maps for convenience and to illustrate
the methods of this paper.

Proof for degree-2 maps. One direction is simple: if there is a permutation of
the variables such that |aα| = |bσ(α)|, then obviously f and g are spherically
equivalent.

For the other direction, suppose that f and g are monomial, degree-2, and
spherically equivalent. We write down the forms corresponding to ‖f(z)‖2 − 1
and ‖g(z)‖2 −1 in homogeneous coordinates and find the matrix Af for f and Ag

for g. Note that these matrices must be diagonal. They are in canonical form, and
the canonical form is canonical up to permutation of the blocks (and hence up to
permutation of the variables). A permutation of variables then shows that the di-
agonal entries of Af and Ag are equal and hence |aα|2 = |bσ(α)|2.
Therefore, the maps in (2) are all spherically inequivalent. We will give a sim-
ple proof that the list is exhaustive, but we also note that this follows easily from
the general theory of polynomial proper maps developed by D’Angelo. In [6] it
is shown that all degree-2 polynomial maps preserving the origin are given in the
form Lz⊕ (√

I − L∗Lz
) ⊗ z. By Lemma 4.1, we need only consider diagonal L.
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See also [8; 11] for more details on the classification of monomial maps. In gen-
eral, all polynomial (and hence monomial) maps are obtained by a finite series of
partial “tensorings” and “untensorings”. It is not hard to see that, in this terminol-
ogy also, the list (2) is exhaustive. For simplicity, we will not use those terms here.

We will give an elementary argument in the real-algebraic language. In the form
‖f(z)‖2, replace |z1|2 with x1, |z2|2 with x2, . . . . Thus, for a monomial map f ,
the form ‖f(z)‖2 will become a real polynomial in x1, . . . , xn with nonnegative
coefficients. This polynomial gives the equivalence class of all monomial maps
up to postcomposing (with a diagonal unitary matrix, of course). So we must clas-
sify all real polynomials p(x) of degree 2 with nonnegative coefficients such that
p(x) = 1 when x1 + · · · + xn = 1.

Without loss of generality, we allow adding zero components to the map. We
have defined spherical equivalence of maps with different target dimensions. The
following lemmas (and the theorem) could be given without this convenience, but
they would then be more complicated to state.

Lemma 4.4. Any monomial map of spheres is spherically equivalent to a mono-
mial map taking the origin to the origin by postcomposing with a diagonal matrix.

Proof. Suppose that p(x) is a polynomial with nonnegative coefficients such that
p(x) = 1 whenever x1 + · · · + xn = 1 and p(0) �= 0. (Note that p(0) < 1 unless
p is trivial.) Then

p(x)−p(0)
1−p(0) is a polynomial with nonnegative coefficients with no

constant term that is one on x1 + · · · + xn = 1. The equivalence of the induced
maps is by a diagonal matrix.

Lemma 4.5. All degree-2 monomial maps of spheres taking the origin to the ori-
gin are spherically equivalent to a map of the form (2) by composing with permu-
tation matrices and a unitary matrix.

Proof. Let us show how to construct all the degree-2 monomial examples in (2).
Suppose that we have a polynomial p(x) in (x1, . . . , xn) of degree 2 such that p−1
is divisible by (x1 + · · · + xn − 1), p(0) = 0, and all coefficients of p are non-
negative. Write p = p1 + p2, where p1 is of degree 1 and p2 is of degree 2. We
claim that p2 must be divisible by (x1 + · · · + xn). This fact is easy to see by ho-
mogenizing to p1(x)t + p2(x) − t 2, noting that this polynomial is divisible by
(x1 + · · · + xn − t), and then setting t = 0. We find q = p1 +p2/(x1 + · · · + xn).

The polynomial q − 1 is also divisible by (x1 + · · · + xn − 1). Since q is of de-
gree 1, it follows that q − 1 is a constant multiple of (x1 + · · · + xn − 1). Since
q(0) = 0, we must have q = x1 +· · ·+xn. So p was constructed from q by a par-
tial tensoring operation, which in this language is simply multiplication of certain
terms of q by (x1 + · · · + xn).

Therefore, the list in (2) is exhaustive because all the listed monomial maps are
obtained in the fashion just described.

Remark 4.6. We mentioned that there exists a third-degree rational CR map of
spheres that is not spherically equivalent to a polynomial one [13]. Let us give an
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alternative simple argument that uses our previous reasoning to generate a slightly
weaker statement.

Proposition 4.7. There exists a third-degree CR rational map f : S 2n−1 →
S 2N−1, n ≥ 2, that is not spherically equivalent to a polynomial map taking ori-
gin to origin. In fact, when n = 2, there exists a real 2-dimensional family of
such maps.

Proof. First we describe the Hermitian form for a polynomial map taking origin
to origin—that is, the matrix B in 〈BZ3, Z3〉 for Z3 the degree-3 Veronese map.
It is not hard to see that B = B1⊕1 for some matrix B1 (with one less row and one
less column than B) and the 1 × 1 matrix 1. We therefore let Z2 be the degree-2
Veronese map and A the matrix such that 〈BZ3, Z3〉 = 〈AZ2, Z2〉〈Jz, z〉. Then
A = A1 ⊕ 1 (as for B). Suppose, for simplicity, that n = 2; then A is 6 × 6.

By results of D’Angelo (see e.g. [9, Prop. 3] for an explicit statement), a poly-
nomial map of spheres of degree d is determined by its d − 1 jet (the coefficients
of all monomials of degree d − 1 or less). That is, no two distinct polynomial CR
maps of spheres have the same d −1 jet. Furthermore, there exists an open neigh-
borhood of the origin in the d −1 jet space such that each such jet gives a CR map
of spheres. Hence there exists an open set of A in the space of 6 × 6 Hermitian
matrices that correspond to degree-3 rational maps of spheres. For the map to be
equivalent to a polynomial map taking the origin to the origin, we must set five
complex parameters in A to zero. That is, in order for A to correspond to a polyno-
mial map preserving the origin, it must be of the form A1 ⊕ 1 (where A1 is a 5 × 5
Hermitian matrix). The set of linear maps of the source preserving J has complex
dimension 3. Therefore, since an open set of the d −1 jets is possible, we will not
always be able to set all five parameters to zero. In fact, there will be a whole fam-
ily of such examples. In nonhomogeneous coordinates, we see that there must be
a real 2-dimensional family of examples of maps not spherically equivalent to a
polynomial map taking origin to origin.

5. Monomial Maps of Hyperquadrics

We shall study the monomial version of the problem of classifying monomial maps
between hyperquadrics in dimensions 2 and 3. The proofs in this simplified case
illustrate the combinatorics of the more general problem. Furthermore, we also
use the monomial classification for the general case. It appears that the combina-
torics governing the monomial situation govern the general situation of CR maps
of hyperquadrics in some sense. For example, even allowing for higher source
and target dimension, there is no CR map of spheres known to the author that is
not homotopic to a monomial example. We have also shown in this paper that all
degree-2 maps of spheres are equivalent to monomial maps.

The setup translates into a simpler problem in real-algebraic geometry, much as
it did for monomial CR map of spheres. That being said, the different equivalence
relation results in a somewhat more complicated statement. In this case Q(1, 1)
is no longer equivalent to Q(2, 0) and, moreover, we have a perfectly valid inter-
pretation of Q(0, 2).
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See [8; 11] for more on the following setup. Let f : Q(a, b) → Q(c, d) be a
monomial CR map. We have |f1|2 +· · ·+|fc|2 −|fc+1|2 −· · ·−|fc+d |2 = 1 when
|z|2 + ε|w|2 = 1, where ε = 1 if the source is Q(2, 0) and ε = −1 if the source is
Q(1, 1). Since every fj is a monomial, we can replace x = |z|2 and y = |w|2.

We can now formulate the following real-algebraic problem. Let p(x, y) be a
real polynomial that has N = N(p) = N+(p) + N−(p) distinct monomials, N+
monomials with a positive coefficient, and N− monomials with a negative coeffi-
cient. We call the tuple (N+(p),N−(p)) the signature of p, and we consider two
polynomials p and q to be equivalent if either p(x, y) = q(x, y) or p(x, y) =
q(y, x). Then we have the following classification. Note that the signature (0, k)
makes sense in the real-algebraic problem.

We will state the general version in homogeneous coordinates. First, however,
we give the specific result for spheres in nonhomogeneous coordinates.

Proposition 5.1. Let p(x, y) be a real polynomial such that p(x, y) = 1 when-
ever x + y = 1. Then the possible polynomials (up to swapping of variables) with
signature (3, 0) are

(i) x3 + 3xy + y3,
(ii) x 2 + 2xy + y2,

(iii) x + xy + y2, and
(iv) αx + αy + (1 − α) for some α ∈ (0, 1).

For signature (2, 1), we have

(i) x 2 + 2y − y2 and
(ii) αx + αy − (α − 1) for some α > 1.

For signature (1, 2) we have

(i) (1 + α) − αx − αy for some α > 0.

There exists no such polynomial with signature (0, 3).

Instead of directly proving this particular case, we give a more general statement.
Suppose we have a real homogeneous polynomial p(x, y, t) such that p = 0 on
x + y + t = 0. If we can classify all such polynomials with four (or fewer) terms,
then we will also have proved the proposition. We take p(x, y, −t), set t = 1, and
consider only those polynomials with a constant term equal to one.

In this way we also easily obtain all monomial maps from Q(1, 1) to other
hyperquadrics. Therefore, we have only to prove the following lemma.

Lemma 5.2. Let p(x, y, t) be a nonzero homogeneous polynomial with four or
fewer distinct monomials such that p(x, y, t) = 0 on x + y + t = 0. Then, up to
permutation of variables, we have p = qm, where m is an arbitrary monomial
and q is one of the following polynomials:

(i) x3 + y3 + t 3 − 3xyt;
(ii) x 2 + y2 + 2xy − t 2;

(iii) x 2 + xy − yt − t 2;
(iv) x + y + t.
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Before proving this lemma we first establish the following proposition, which is a
modification of the classification of homogeneous monomial CR map of spheres.
See [8; 11] for the sphere version and a slightly different proof.

Proposition 5.3. For some real number α, let p(x, y, t) = ϕ(x, y) − αt d

be a homogeneous polynomial such that p = 0 when x + y + t = 0. Then
ϕ(x, y) = α(−1)d(x + y)d.

Proof. Note that −(x + y) = t on x + y + t = 0. Hence we can write

ϕ(x, y) − α(−1)d(x + y)d. (38)

This is a polynomial that is zero on x + y + t = 0, but it does not depend on t and
so must be identically zero.

Proof of Lemma 5.2. After dividing through by m we can assume that the mono-
mials in p have no common factor. Next we observe that p(x, y, t) is divisible
by x + y + t. First suppose that p(x, y, t) has three or fewer monomials. For
each variable, there must (by our assumption) be a monomial containing it. Thus,
for example, p(x, y, 0) has at most two monomials but also cannot be identi-
cally zero by assumption. Since it is divisible by x + y, we see that p(x, y, 0) =
m(x, y)(x k ± y k) for some monomial m(x, y) depending only on x and y. This
fact is easy to see, and it can be proved in similar fashion as Proposition 5.3. The
same reasoning applies to the other variables. Since there can be at most three
monomials, it follows that p must be a constant multiple of xk + y k + t k. Now,
by application of Proposition 5.3, k = 1.

Hence we can assume that there are exactly four distinct monomials. It is ele-
mentary to see that at least two variables divide two or more terms in p. Without
loss of generality, suppose these are the variables x and y. By the same logic as
before, we have p(x, 0, t) = m1(x, t)(x k ± t k ) and p(0, y, t) = m2(y, t)(y9 ± t 9)

for some monomials m1 and m2. Since t cannot divide all terms and since we have
exactly four terms, we conclude (without loss of generality) that m1 = µxd−k. We
can scale p so that µ = 1. We have two possibilities: the polynomial p is either

xd ± xd−kt k + αya+9t b ± αyat b+9 or xd ± t d ± y9t d−9 + αxay bt c. (39)

To discount the first possibility, note that k ≥ 1 and 9 ≥ 1. If t = 0 then we must
have at least two terms as before, so b = 0. Note also that this must mean α =
±1 (again after setting t = 0). We are left with essentially a special case of the
second possibility, so let us focus on that.

First suppose that 9 = d; then xd ± t d ±y d +αxay bt c. If c = 0, then we apply
Proposition 5.3 to conclude that d = 2 and the polynomial is x 2 − t 2 + y2 + 2xy.
We proceed similarly for a and b.

Next we replace t in the last term with (−x − y), which yields xd ± t d ± y d +
αxay b(−x − y)c. This polynomial fulfills the hypothesis of Proposition 5.3, so
xd ± y d +αxay b(−x − y)c must have the same number of terms as (x + y)d. We
conclude that c = d − 2. Similarly, we repeat the argument for x and y and con-
clude that a = d − 2 and b = d − 2. Hence d = 3. Dividing by x + y + t, we see
that the polynomial must be x3 + t 3 + y3 − 3xyt.
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So suppose that 9 < d. Then, after setting t = 0, we must have two terms and
so c = 0. By setting t = 0 we also see that α = ±1. Therefore, xd ± t d ±y9t d−9±
xay b. We replace x with (−y−t) and apply Proposition 5.3. After counting mono-
mials we find that a = d − 2 or a = d −1. Letting t = (−x − y) and proceeding
as before, we find that d − 9 = d − 2 or d − 9 = d −1. Hence y appears to be of
at most second power. If we substitute y = −x − t then we must obtain an iden-
tically zero polynomial. Counting monomials yields a finite list of possibilities,
and the only one divisible by x + y + t is x 2 − t 2 + yt − xy.

We can now obtain monomial CR maps of hyperquadrics by (possibly permuting
variables and) substituting ±|z|2 for x, ±|w|2 for y, and ±1 for t. We can also
obtain CR maps of hyperquadrics by substituting ±zw̄ for x, ±wz̄ for y, and ±1
for t before changing variables so that the source hyperquadric is in the standard
form. We can follow this procedure to find the degree-3 CR map of Q(2, 0) to
Q(2, 1). Note, however, that we will never get a CR map of spheres by using this
nonstandard substitution.

6. Degree-2 Maps from S 3 to Q(2, 1)

Let f : S3 = Q(2, 0) → Q(2, 1) be a degree-2 rational map. That is, let J =[ 1 0 0
0 1 0
0 0 −1

]
= diag(1,1, −1) and let A be a Hermitian 3 × 3 matrix such that, in

homogeneous coordinates (using our previous notation), we have

〈Vf(z), f(z)〉 = 〈F ∗VFZ , Z 〉 = 〈Az, z〉〈Jz, z〉 (40)

forV = diag(1,1, −1, −1). In other words, the 6 × 6 matrix B = F ∗VF is rank 4
or less. Because the sphere contains no complex varieties, it is easy to see that the
rank cannot be less than 3. If B is rank 3, then the map would be a CR map of
spheres in the same dimension and hence Q-equivalent to the identity map, which
is not degree 2. So assume that B is of rank 4 with two positive and two negative
eigenvalues.

As explained previously, we use the automorphism group of the ball to put A
into a canonical form. We have already computed a list of all possible canonical
forms and the resulting matrices B. All we have to do is find those canonical forms
for which B is rank 4 and has two positive and two negative eigenvalues.

If we can diagonalize the pair (J,A) simultaneously by ∗-congruence, then the
map is equivalent to a monomial map—that is, monomial in homogeneous co-
ordinates. As mentioned before, we know there is a monomial map from some
hyperquadric equivalent to the ball. So by the classification of monomial CR maps
of hyperquadrics, we are essentially done. Applying Lemma 5.2, we find the fol-
lowing list of monomial CR maps of hyperquadrics in homogeneous coordinates
(z,w, t):

(z,w, t) �→ (
z2,

√
2wt,w2, t 2); (41)

(z,w, t) �→ (tz,w2,wt, z2). (42)



622 J i ř í Lebl

The matrix A for these two maps is different even after permutation or negation
(we need to handle negation, since V has two positive and two negative eigenval-
ues). Consequently, the two maps (41) and (42) are not Q-equivalent.

We focus on the case where we cannot diagonalize. Let us again assume that
there is some block in the canonical form greater than 1 × 1. We will consider all
the computed canonical forms for B for all the matrix pairs (J,A) from Section 3.

Let us take the situation corresponding to the block -2 in J. The canonical pair

for (J,A) is then
([ 1 0 0

0 0 1
0 1 0

]
,
[ α 0 0

0 0 β
0 β 1

])
. The corresponding B is computed in (28).

This matrix can have rank 3, 5, or 6, but it can never have rank 4. Therefore, we
need not consider this case. Similar calculations give the same result for the re-

lated canonical form
([ 1 0 0

0 0 −1
0 −1 0

]
,
[ α 0 0

0 0 β
0 β −1

])
.

Next consider the pair
([ 0 0 1

0 1 0
1 0 0

]
,
[ 0 0 α

0 α 1
α 1 0

])
, for which the corresponding B is

computed in (30). This matrix is rank 4 if and only if α = 0. The matrix has
two positive and two negative eigenvalues, so we do get a map to the Q(2, 1)
hyperquadric.

We use the following procedure to obtain a map. First change variables to put

J into the form
[ 1 0 0

0 1 0
0 0 −1

]
. Next, find a set of orthonormal eigenvectors and then

follow the procedure outlined before to get the map in homogeneous coordinates:

(z,w, t) �→ (
z2 + √

3zw + w2 − zt,w2 + zt − √
3wt − t 2,

z2 − √
3zw + w2 − zt,w2 + zt + √

3wt − t 2)
. (43)

Note that we have scaled the eigenvectors to avoid ugly expressions.

Finally, we get to the canonical pair
([ 1 0 0

0 0 1
0 1 0

]
,
[ α 0 0

0 0 β−iγ
0 β+iγ 0

])
for γ > 0. The

corresponding B is computed in (32). The matrix B can have rank 4 only if α =
β = 0. We can rescale so that γ = 1. Following the same procedure as before, we
change variables and find a set of orthonormal eigenvectors to obtain the map

(z,w, t) �→ ( 4
√

2(zw − izt),w2 − √
2 iwt + t 2,

4
√

2(zw + izt),w2 + √
2 iwt + t 2

)
. (44)

We are done. We have proved the following lemma.

Lemma 6.1. Let f : Q(2, 0) �→ Q(2, 1) be a rational degree-2 CR map. Then f

is Q-equivalent to exactly one of the following maps:

(i) (z,w) �→ (
z2,

√
2w,w2 );

(ii) (z,w) �→ (
1
z
, w2

z2 , w

z2

);
(iii) (z,w) �→ ( z2+√

3zw+w2−z

w2+z+√
3w−1

, w2+z−√
3w−1

w2+z+√
3w−1

, z2−√
3zw+w2−z

w2+z+√
3w−1

); or

(iv) (z,w) �→ ( 4√2(zw−iz)

w2+√
2 iw+1

, w2−√
2 iw+1

w2+√
2 iw+1

,
4√2(zw+iz)

w2+√
2 iw+1

)
.

7. Proof of Theorem 1.2

Before proving the classification of CR maps of hyperquadrics, we revisit some
of Faran’s [12] setup.
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Suppose that a holomorphic function f : U ⊂ C
2 → C

3 is such that an image
of any complex line is contained in some plane. We then call f a planar map. If
f is a planar map defined on a domain U ⊂ P

2, we can define the dual map. For
a domain U define the dual domain U ∗, where U ∗ is composed of lines L ⊂ P

2

such that f(L ∩ U) is contained in a unique plane in P
3. Let P

2∗ and P
3∗ be the

dual spaces—that is, the spaces of hyperplanes in P
2 and P

3, respectively. We can
then define f ∗ : U ∗ ⊂ P

2∗ → P
3∗ such that, if f takes a line L into the unique

plane P, then f ∗(L) = P. See [12] for basic properties of duals. For example, the
dual of a dual is the map itself. Let f and g be two maps of P

2 to P
3. If there exist

conjugate-linear isomorphisms ψ and ϕ such that ψf = gϕ, then f and g are said
to be conjugate isomorphic. If f and f ∗ are conjugate isomorphic, then f is said
to be self-dual.

The following lemma gives a useful property of CR maps of hyperquadrics.
Faran proved this lemma for CR maps of sphere. The proof for hyperquadrics is
almost exactly the same, but we restate it here for convenience.

Lemma 7.1. If f : U ⊂ Q(2, 0) → Q(2, 1) is a nonconstant real-analytic CR
map, then f is planar and self-dual.

Proof. Let f : U ⊂ Q(2, 0) → Q(2, 1) be a nonconstant real-analytic CR map.
Since f is real-analytic, it extends to a holomorphic map of a neighborhood of U
in C

2 to C
3. Let us call this extension f for simplicity. Since f maps Q(2, 0) to

Q(2, 1), it follows that (in homogeneous coordinates) we have 〈Vf(z), f(z)〉 = 0
whenever 〈Jz, z〉 = 0, where V defines Q(2, 1) and J defines Q(2, 0). Then, by
polarization, the line defined by 〈Jz,w〉 = 0 for a fixed point w is mapped to the
plane defined by 〈Vζ, f(w)〉 = 0. Hence f is a planar map.

Let ξ0, ξ1, ξ2 be the homogeneous coordinates for P
2 and let the image by f be

the point ξ ′
0, ξ ′

1, ξ ′
2, ξ ′

3 in homogeneous coordinates for P
3. Suppose that our non-

homogeneous coordinates correspond to z1 = ξ1
ξ0

and z2 = ξ2
ξ0

and that for P
3 we

have z ′
1 = ξ ′

1

ξ ′
0

, z ′
2 = ξ ′

2

ξ ′
0

, and z ′
3 = ξ ′

3

ξ ′
0

.

We let w1 = η1
η0

, . . . . By polarization, the statement that f takes Q(2, 0) to
Q(2, 1) becomes:

ξ0 η̄0 − ξ1η̄1 − ξ2 η̄2 = 0 (45)

implies
ξ ′

0 η̄
′
0 + ξ ′

1η̄
′
1 − ξ ′

2 η̄
′
2 − ξ ′

3η̄
′
3 = 0. (46)

Equation (45) defines a line that in dual coordinates is (η̄0, −η̄1, −η̄2). Similarly,
(46) defines a plane that in dual coordinates is (η̄ ′

0, η̄ ′
1, −η̄ ′

2, −η̄ ′
3). Because f ∗

takes (η̄0, −η̄1, −η̄2) to (η̄ ′
0, η̄ ′

1, −η̄ ′
2, −η̄ ′

3), we have defined the conjugate isomor-
phisms ψ and ϕ such that ψf ∗ = fϕ. That is, f is self-dual.

Faran proved the following complete classification of planar maps. The desig-
nations of nondegenerate, partially degenerate, developable, degenerate, and flat
maps are not relevant to us but are retained for consistency. We say that two maps
f , g : U ⊂ P

2 → P
3 are equivalent if there exist τ ∈ Aut(P3) and χ ∈ Aut(P2)

such that f � χ = τ � g.
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Theorem 7.2 (Faran [12]). Let f : U ⊂ P
2 → P

3 be a planar immersion. Then
f is equivalent to one of the following maps.

A. Nondegenerate maps
1. (z0, z1, z2) �→ (z3

0, z3
1, z3

2, z0 z1z2);
2. (a) (z0, z1, z2) �→ (

z2
0 + 3

4z
2
1 + 3

4z
2
2 , z0 z1 + 1

2z
2
2 , z0 z2 + 1

2z
2
1, z1z2

)
,

(b) (z0, z1, z2) �→ (
z2

0 − 15
16z

2
1 − 3

4z
2
2 , z0 z1 + 1

2z
2
2 , z0 z2 + 1

2z
2
1 , z1z2

)
,

(c) (z0, z1, z2) �→ (
z2

0, z0 z1 + 1
2z

2
2 , z0 z2 + 1

2z
2
1 , z1z2

)
.

B. Partially degenerate maps
1. (a) dual to A.2(a),

(b) dual to A.2(b),
(c) dual to A.2(c);

2. (z0, z1, z2) �→ (z2
0, z2

1 , z0 z2, z1z2);
3. (z0, z1, z2) �→ (

z2
0, z0 z1, z0 z2 + 1

2z
2
1, z1z2

)
.

C. Developable map (z0, z1, z2) �→ (z2
0, z2

1 , z1z2, z2
2).

D. Degenerate maps (z0, z1, z2) �→ (z0, z1, z2, z0g(z1/z0, z2/z0)) for any
function g.

E. Flat maps (z0, z1, z2) �→ (1, g1(z1/z0, z2/z0), g2(z1/z0, z2/z0), 0) for any
functions g1 and g2.

Except for degenerate and flat maps, no listed map is equivalent to any other.

Two CR maps of hyperquadrics could be equivalent yet not Q-equivalent. So be-
fore using the classification of planar maps for CR hyperquadric maps, we must
check (i) whether the class of planar maps contains a CR hyperquadric map and
(ii) whether the class contains other non–Q-equivalent CR hyperquadric maps.

We can apply our result for degree-2 maps to handle all the degree-2 cases.
Hence we need only study the cases A.1, D, and E. Case A.1 is handled by the
following lemma.

Lemma 7.3. Suppose that a homogeneous polynomial map of P
2 → P

3 induced
by f : Q(2, 0) �→ Q(2, 1) is equivalent to (z0, z1, z2) �→ (z3

0, z3
1, z3

2, z0 z1z2).

Then f is Q-equivalent to (z,w) �→ ( 2w3

3z2+1
, z3+3z

3z2+1
,
√

3wz2−w

3z2+1

)
.

Proof. Faran demonstrates thatf is self-dual. After changing coordinates, the map

(z0, z1, z2) �→ (
z3

0, z3
1, z3

2,
√

3z0 z1z2
)

(47)

takes the sphere to the sphere. Now f is self-dual by Lemma 7.1, and it is not hard
to compute that the dual of f is (η0, η1, η2) �→ (

η3
0, η3

1, η3
2, −√

3η0η1η2
)
.

If we have conjugate isomorphisms ψn : P
n → P

n∗ such that f ∗ψ2 = ψ3f ,
then f takes the set z ·ψ2(z) = 0 into the set w ·ψ3(w) = 0. These zero sets are
hyperquadrics if the corresponding forms are Hermitian. We then check the sig-
nature of the forms. Thus, to find all the ways that f maps a hyperquadric to a
hyperquadric, we need only find all the ways that f is conjugate isomorphic to f ∗.
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We have already found that

ψ2(z) = (−z̄0, z̄1, z̄2), ψ3(w) = (−z̄0, z̄1, z̄2, z̄3), (48)

which give the CR map of spheres.
Suppose that (ψ2,ψ3) and (ψ ′

2,ψ ′
3) are conjugate isomorphisms of f and f ∗

that give Hermitian forms (i.e., give maps of hyperquadrics). Hence we have f ∗ =
ψ3fψ

−1
2 = ψ ′

3fψ
′−1
2 and so fψ−1

2 ψ ′
2 = ψ−1

3 ψ ′
3f. Therefore, the pair

(α2,α3) = (ψ−1
2 ψ ′

2,ψ−1
3 ψ ′

3) (49)

is a pair of automorphisms of the source and target that fix f ; that is, fα2 =
α3f. We denote by Aut(f ) the set of such pairs (α2,α3). We have already found
(ψ2,ψ3); hence, by computing Aut(f ), we find all hyperquadrics that f takes to
other hyperquadrics. We need only check that they are of the right signature and
that we do not get Q-equivalent maps.

Now we note that the Jacobian of f drops rank at precisely the coordinates
(1, 0, 0), (0,1, 0), (0, 0, 1) in P

2. Hence any automorphism preserves these points.
Any permutation of the source variables (z0, z1, z2) is part of an automorphism
of f. Therefore, any automorphism of f is a composition of a permutation of the
variables and the map

(z0, z1, z2;w0,w1,w2,w3) �→ (az0, bz1, cz2; a3w0, b3w1, c3w2, abcw3). (50)

Here the first three components (in the zj variables) of the map represent the self-
map of P

2 and the last four components (in thewk variables) represent the self-map
of P

3.

Now we need to check all the permutations of variables to see what maps we
get by considering different elements of Aut(f ), which has six components (cor-
responding to the permutations). However, symmetry in the mappings means that
we need only check the identity, the permutation of two variables, and the cyclic
permutation.

Faran establishes that the identity component gives only maps that are Q-
equivalent to the CR map of spheres. It is also possible to use the following
computation to show the same result. The cyclic permutation does not give Her-
mitian forms and hence does not give CR maps to hyperquadrics.

Therefore, we need only check the permutation of two variables. For example,

(z0, z1, z2;w0,w1,w2,w3) �→ (az2, bz1, cz0; a3w2, b3w1, c3w0, abcw3). (51)

Then ψ ′
2 and ψ ′

3 give the forms

z · ψ ′
2(z) = −āz0 z̄2 + b̄z1z̄1 + c̄z2 z̄0, (52)

w · ψ ′
3(w) = −ā3w0w̄2 + b̄3w1w̄1 + c̄3w2w̄0 + āb̄c̄w3w̄3. (53)

These forms are Hermitian if b ∈ R and c = −ā. The first form has two positive
eigenvalues only if b > 0. We can now change variables z �→ (c−1z0, b−1/2z1, z2)

to eliminate the variables a, b, c from the problem. That is, we obtain
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z · ψ ′
2(z) = z0 z̄2 + z1z̄1 + z2 z̄0, (54)

w · ψ ′
3(w) = w0w̄2 + z1w̄1 + w2w̄0 − w3w̄3. (55)

The forms are of correct signature and hence we have a map taking Q(2, 0)
to Q(2, 1).

As a side note, we get the same map that we obtain by looking at the real-
algebraic version of the monomial problem. Take the negative of the homoge-
nized version of the degree-3 monomial map. We have that

p(x, y, t) = x3 + y2 + t 3 − 3xyt is zero on x + y + t = 0. (56)

Now we compute p(z0 z̄2, z1z̄1, z2 z̄0), which will give the form w ·ψ ′
3(w) after re-

moving the Veronese map. Hence, even this nonmonomial map comes about from
a monomial map.

After changing variables we get the map (in nonhomogeneous coordinates)

(z,w) �→
(

2w3

3z2 + 1
,
z3 + 3z

3z2 + 1
,
√

3
wz2 − w

3z2 + 1

)
. (57)

Because we found no other maps, all degree-3 maps taking Q(2, 0) to Q(2, 1) are
Q-equivalent to the map (57).

Proof of Theorem 1.2. Let f : U ⊂ Q(2, 0) → Q(2, 1) be a nonconstant real-
analytic CR map. Since f is real-analytic, it extends to a holomorphic map of a
neighborhood of U in C

2 to C
3. Let us call this extension f for simplicity. The

map f is planar by Lemma 7.1.
First suppose that the derivative of the map is at most 1. Then the derivative

must be of rank 1 at generic points of a neighborhood of U. That is, at a generic
point, f takes a germ of C

2 into a germ of a 1-dimensional subvariety of C
3. This

behavior occurs on the complement of a complex analytic set in C
2. Hence there

exists a point p ∈U ⊂ Q(2, 0) such that f takes a neighborhood of p in C
2 into

a 1-dimensional complex subvariety in C
3. It is easy to see that f takes a neigh-

borhood W of p in C
2 into Q(2, 1). If f(W ) ∩ Q(2, 1) were of less than two

real dimensions then we could pull back a point and get a complex subvariety of
Q(2, 0), which is impossible.

Therefore, f takes a neighborhood of p into an irreducible complex subvariety
contained in Q(2, 1). After a change of coordinates on the target side, we can as-
sume that f(p) = (1, 0, 0) and that the complex variety inside Q(2, 1) containing
the image of f is given by {z∈ C

3 | z2 = z3, z1 = 1}. We immediately get that f
is Q-equivalent to the map (z,w) �→ (1, g, g) for some CR function g.

So suppose that, at generic points, the rank of the derivative is 2. Recall that
the rank can drop only on a complex variety, which means that the rank of the de-
rivative must be 2 on an open and dense subset of U ⊂ Q(2, 0). Taking a perhaps
smaller neighborhood U, we can simply assume that the rank of the derivative is
identically 2 and that f is an immersion. We know that f is equivalent to one
of the maps in Theorem 7.2. However, as we said before, the type of equivalence
is not quite correct (it is not Q-equivalence). We need to check each class to see
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whether it contains a CR map of hyperquadrics. If it does, we need to see whether
it contains several non–Q-equivalent maps.

If f is of type E, then f must map into a plane P. We know that Q(2, 1) ∩ P

is equivalent to Q(2, 0) or S1 × C. If Q(2, 1) ∩ P ∼= Q(2, 0) then f must be lin-
ear. If Q(2, 1)∩P ∼= S1 × C then f cannot be an immersion (essentially because
the inverse image of {p} × C cannot be contained in a sphere). We have already
handled this case.

If f is of type D, then f is not self-dual by an easy computation. Being self-
dual is a requirement for maps to take a hyperquadric to a hyperquadric, so f is
not equivalent to any map of hyperquadrics. See Faran [12] for more details.

Therefore, f must be rational of degree ≤ 3. If f is linear then it is obviously
Q-equivalent to (z,w) �→ (z,w, 0). If f is of degree 2, we apply Lemma 6.1. If
f is of degree 3, we apply Lemma 7.3.
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