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Automorphisms of the Graph of Free Splittings

Javier Aramayona & Juan Souto

In this paper we consider the graph Gn of free splittings of the free group Fn of
rank n ≥ 3. Loosely speaking, Gn is the graph whose vertices are nontrivial free
splittings of Fn up to conjugacy and where two vertices are adjacent if they are rep-
resented by free splittings admitting a common refinement. The group Out(Fn)

of outer automorphisms of Fn acts simplicially on Gn. Denoting by Aut(Gn) the
group of simplicial automorphisms of the free splitting graph, we prove the fol-
lowing statement.

Theorem 1. The natural map Out(Fn) → Aut(Gn) is an isomorphism for n ≥ 3.

We briefly sketch the proof of Theorem 1. We identify Gn with the 1-skeleton of the
sphere complex Sn and observe that every automorphism of Gn extends uniquely
to an automorphism of Sn. It is due to Hatcher [6] that the sphere complex con-
tains an embedded copy of the spine Kn of Culler–Vogtmann space. We prove
that the latter is invariant under Aut(Sn) and that the restriction homomorphism
Aut(Sn) → Aut(Kn) is injective. The claim of Theorem 1 then follows from a
result of Bridson and Vogtmann [1] which asserts that Out(Fn) is the full automor-
phism group of Kn.

Before concluding this introduction we would like to point out that recently
Martino and Francaviglia [12] have proved that Out(Fn) is also the full isometry
group of Culler–Vogtmann space when the latter is endowed with the Lipschitz
metric. While one could claim that Theorem 1 is the analogue of Ivanov’s theorem
on the isometries of the curve complex [8], the result of Martino and Francaviglia
is the analogue of Royden’s theorem on the isometries of Teichmüller space [13].

We are grateful to our motherland for the beauty of its villages. Once this is
said, we would like to thank the referee for providing a careful and useful report.

1

Fixing from now on n ≥ 3, let Mn = #n(S1 × S
2) be the connected sum of n

copies of S
1×S

2. Observe that π1(Mn) is isomorphic to Fn and that by choosing a
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basepoint and then conveniently forgetting it afterwards we can, once and for all,
identify

π1(Mn) � Fn (1.1)

up to conjugacy. We denote by Map(Mn) the mapping class group of Mn (i.e.,
the group of isotopy classes of self-diffeomorphisms of Mn); observe that (1.1)
induces a homomorphism

Map(Mn) → Out(Fn). (1.2)

By work of Laudenbach [11, III.4.3], the homomorphism (1.2) is surjective and
has finite kernel.

Remark. Although it will be of no importance for us, it should be remarked
that the kernel of (1.2) is generated by Dehn twists along essential embedded 2-
dimensional spheres. Notice that since

π1(Diff0(S
2)) = π1(SO3) = Z/2Z ,

any such Dehn twist has order 2. See [11, III.4.2] for a description of such a Dehn
twist.

Recall that an embedded 2-sphere in a 3-manifold is essential if it does not bound
a ball. Two essential embedded 2-spheres S, S ′ in a 3-manifold are parallel if they
are isotopic. It is due to Laudenbach [10] that S and S ′ are parallel if and only if they
are homotopic to each other. If two parallel essential embedded 2-spheres S, S ′ ⊂
Mn are parallel then they bound a submanifold homeomorphic to S

2 × (0, 1).
By a system of spheres in Mn we mean a collection of pairwise disjoint, non-

parallel, essential embedded 2-spheres. A system of spheres is maximal if it is not
properly contained in another system of spheres. Before moving on to more inter-
esting topics, we recall a few useful facts as follows.

• If 
 ⊂ M is a maximal system of spheres, then every component of M \ 


is homeomorphic to a 3-sphere with three balls removed. In particular, 
 has
3n − 3 components.

• If S is a connected component of a maximal system of spheres 
, then all com-
ponents of M \(
 \S) but one are homeomorphic to a 3-sphere with three balls
removed. The remaining component is either homeomorphic to a 3-sphere with
four balls removed or to S

1 × S
2 with one ball removed.

• If U is homeomorphic to a 3-sphere with four balls removed, then there are ex-
actly three isotopy classes of embedded spheres in U that are neither isotopic
to a component of ∂U nor bound balls. Namely, every such sphere S separates
two of the components of ∂U from the other two, and the so obtained decom-
position of the set of components of ∂U determines S up to isotopy.

• If U is homeomorphic to S
1×S

2 with one ball removed, then there is single iso-
topy class of embedded 2-spheres in U that are neither isotopic to a component
of ∂U nor bound balls.
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• If S is a nonseparating component of a maximal system of spheres 
, then there
exists 
′ ⊂ 
 with S ⊂ 
′ and M \ 
′ a 3-sphere with 2n balls removed.

• If 
 ⊂ M is a sphere system and U is a component of M \ 
 with π1(U) �= 1,
then U contains a sphere that does not separate U and hence, a fortiori, does
not separate M.

The facts just listed follow easily from the existence and uniqueness theorem for
prime decompositions of 3-manifolds. See [7] for standard notions of 3-dimen-
sional topology and [10; 11] for a treatment of the relation between homotopy and
isotopy of embedded 2-spheres in 3-manifolds.

2

Given an essential embedded 2-sphere S in Mn, we denote its isotopy class by [S ].
The sphere complex Sn associated to Mn is the simplicial complex whose ver-

tices are isotopy classes of essential embedded 2-spheres in Mn and where k + 1
distinct vertices [S0 ], . . . , [Sk] span a k-simplex if there is a system of spheres
S ′

0 ∪ · · · ∪ S ′
k with S ′

i ∈ [Si]. By definition, the mapping class group of Mn acts
simplicially on the sphere complex Sn. This yields the homomorphism

Map(Mn) → Aut(Sn). (2.1)

Given a simplicial complex X, we denote by Aut(X) the group of simplicial auto-
morphisms of X.

It also follows from work of Laudenbach [10; 11] (see also [6]) that the ker-
nels of the homomorphisms (1.2) and (2.1) are equal. In particular, the action of
Map(M) on Sn induces the following simplicial action:

Out(Fn) � Sn. (2.2)

We will observe that the 1-skeleton S
(1)
n of Sn is equivariantly isomorphic to the

free splitting graph Gn, which we now define.
By a free splitting of the free group Fn we mean an isomorphism between Fn

and the fundamental group of a graph of groups with trivial edge groups. Two
free splittings are said to be equivalent if there is an Fn-equivariant isometry be-
tween the corresponding Bass–Serre trees. A free splitting of Fn is a refinement
of another free splitting if there is a Fn-equivariant edge-collapsing map from the
Bass–Serre tree of the first splitting to the Bass–Serre tree of the second.

In what follows we will pass freely between free splittings, the associated graph
of group decompositions, and the associated Bass–Serre trees. Similarly, we will
say for instance that a Bass–Serre tree is a refinement of some other Bass–Serre
tree. We trust that this will not cause any confusion.

The free splitting graph Gn of Fn is the simplicial graph whose vertices are
equivalence classes of free splittings of Fn whose corresponding graph of groups
have a single edge. Two vertices of Gn are adjacent if they are represented by free
splittings that have a common refinement. Equivalently, there exists a free split-
ting of Fn with two edges such that the first splitting is obtained by collapsing one
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edge of this graph of groups and the second by collapsing the other edge. Observe
that Out(Fn) acts on Gn by simplicial automorphisms.

Remark. As the referee kindly pointed out, in the literature the name free split-
ting graph is sometimes reserved for the graph whose vertices correspond to the
graph of group decompositions of Fn with a single edge that, moreover, has triv-
ial edge group (true free splittings). We are allowing for free HNN extensions as
well (cf. [9]).

Lemma 2. There is a simplicial isomorphism S
(1)
n → Gn conjugating the stan-

dard actions of Out(Fn).

Lemma 2 is surely known to all experts in the field; we sketch a proof for complete-
ness. We also refer to [11, IV] for a complete treatment of the relation between
embedded spheres in 3-manifolds and free splittings of their fundamental groups;
see also [4; 5].

Sketch of Proof. To an essential embedded sphere S in Mn we associate its
dual tree—that is, the Bass–Serre tree of the graph of groups decomposition of
π1(Mn) � Fn given by the Seifert–van Kampen theorem. Isotopic spheres yield
equivalent free splittings and hence we obtain a vertex of Gn for every vertex of
Sn. The dual tree to the union of two disjoint embedded spheres S, S ′ is the Bass–
Serre tree of a free splitting of Fn � π1(Mn), which is clearly a refinement of the
Bass–Serre trees associated to S and S ′. In other words, the map between vertices
extends to a map

� : S
(1)
n → Gn,

which clearly conjugates the actions of Out(Fn) on S
(1)
n and Gn. The map � is sur-

jective by the work of Stallings [14] and injective by the work of Laudenbach [11,
IV, Thm. 3.1].

In light of Lemma 2, the claim of Theorem 1 will follow once we prove that
Out(Fn) is the full automorphism group of S

(1)
n . The first step in this direction is

to observe that every automorphism of S
(1)
n is induced by an automorphism of the

whole sphere complex.

Lemma 3. Sn is a flag complex; in particular, every automorphism of S
(1)
n is the

restriction of a unique automorphism of Sn.

Recall that a simplicial complex is flag if every complete subgraph on r + 1 ver-
tices contained in the 1-skeleton is the 1-skeleton of an r-simplex.

Lemma 3 has also been established in [4, Thm. 3.3]. Again, we supply a proof
here for completeness.

Proof of Lemma 3. By the very definition of simplicial complex as a subset of
the power set of the set of vertices, a simplex in a simplicial complex is uniquely
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determined by its set of vertices. Hence, it is clear that every automorphism of the
1-skeleton of a flag simplicial complex extends uniquely to an automorphism of
the whole complex. Therefore, it suffices to prove the first claim of the lemma.

We shall argue by induction. For complete graphs with two vertices, there is
nothing to prove. So suppose that the claim has been proved for all complete graphs
with k − 1 ≥ 2 vertices, and let v1, . . . ,vk be vertices in S

(1)
n spanning a complete

graph. Applying the induction assumption three times (namely, to the complete
subgraphs spanned by {v1, . . . ,vk−1}, {v1, . . . ,vk−2,vk}, and {v1, . . . ,vk−3,vk−1,vk})
and then isotopying spheres to avoid redundancies, we can find spheres

S1, . . . , Sk−1, Sk , S ′
k ⊂ Mn

that satisfy the following conditions:

(1) S1, . . . , Sk−1 represent v1, . . . ,vk−1 (respectively), and both Sk and S ′
k repre-

sent vk;
(2) Si ∩ Sj = ∅ for i, j = 1, . . . , k − 1 with i �= j ;
(3) Si ∩ Sk = ∅ for i = 1, . . . , k − 2; and
(4) Si ∩ S ′

k = ∅ for i = 1, . . . , k − 3 and i = k − 1.

Choose a maximal system of spheres 
 with

S1, . . . , Sk−1 ⊂ 
.

By [6, Prop. 1.1] we can assume that the sphere Sk is in normal form with respect
to 
. This means that Sk is either contained in 
 or meets 
 transversally and
that, in the latter case, the closure P of any component of Sk \ 
 satisfies:

• P meets any component of 
 in at most one circle; and
• P is not a disk that is isotopic, relative to its boundary, to a disk in 
.

Similarly, we assume that S ′
k is also in normal form with respect to 
.

By assumption, the spheres Sk and S ′
k are isotopic. By [6, Prop. 1.2], there is

a homotopy (S(t))t∈[0,1] by immersed spheres with S(0) = Sk and S(1) = S ′
k

satisfying:

• if S(0) ⊂ 
, then S(t) ⊂ 
 for all t and hence S(1) = S(0); and
• if S(0) �⊂ 
, then S(t) is transverse to 
 for all t.

If we are in the first case then S1, . . . , Sk ⊂ 
 are pairwise disjoint and we are
done. For the second case, recall that S(1) = S ′

k does not intersect Sk−1. Since
transversality is preserved through the homotopy, it follows that S(0) = Sk does
not intersect Sk−1 either. We deduce from conditions (1) and (2) that the spheres
S1, . . . , Sk are pairwise disjoint. This concludes the proof of the induction step,
thus showing that Sn is a flag complex.

3

We now briefly recall the definition of Culler–Vogtmann space CVn, also called
outer space. A point in CVn is an equivalence class of marked metric graphs X
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with π1(X) = Fn, of total length 1, without vertices of valence 1 and without sep-
arating edges. Two such marked graphs are equivalent if they are isometric via an
isometry in the correct homotopy class. Two marked metric graphs X, Y are close
in CVn if, for some L close to 1, there are L-Lipschitz maps X → Y and Y → X

in the correct homotopy classes. See [2] for details.
Following Hatcher [6], we denote by On the similarly defined space where one

allows the graphs to have separating edges (but no vertices of valence 1). Ob-
serve that

CVn ⊂ On.

We are tempted to refer to On as hairy outer space. (In the literature, there does
not seem to be complete agreement on the name for CVn: sometimes it is referred
to as reduced outer space and On simply as outer space. We find our terminology
more descriptive.)

The group Out(Fn) acts on On by changing the marking. This action preserves
CVn as a subset of On. The interest of the space On in our setting is that, by work
of Hatcher, it is Out(Fn)-equivariantly homeomorphic to a subset of the sphere
complex Sn. We now describe this homeomorphism.

From now on we interpret points in the sphere complex Sn as weighted sphere
systems in M; to avoid redundancies we assume without further mention that all
weights are positive. As in [6], let S

∞
n be the subcomplex of Sn consisting of those

elements
∑

i aiSi ∈ Sn such that M \ ⋃
i Si has at least one nonsimply connected

component.
To a point

∑
i aiSi ∈ Sn \ S

∞
n we associate the dual graph to

⋃
i Si and declare

the edge corresponding to Si to have length ai. This yields a map

Sn \ S
∞
n → On.

Hatcher [6, Apx.] shows the following.

Proposition 4 (Hatcher). The map Sn \ S
∞
n → On is an Out(Fn)-equivariant

homeomorphism.

Besides introducing CVn, in [2] Culler and Vogtmann define what is called the
spine Kn of CVn. Considering CVn as a subset of Sn, the spine Kn is the maximal
simplicial subcomplex in the first barycentric subdivision of Sn that is contained
in CVn; this means that every simplex is contained in a closed simplex in CVn.

By construction, (2.2) induces an action Out(Fn) � Kn by simplicial automor-
phisms and hence a homomorphism

Out(Fn) → Aut(Kn). (3.1)

The key ingredient in the proof of Theorem 1 in the next section is the following
result of Bridson and Vogtmann [1].

Theorem 5 (Bridson–Vogtmann). For n ≥ 3, the homomorphism (3.1) is an
isomorphism.

Observe that, for n = 2, Aut(K2) is uncountable.
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4

In this section we prove Theorem 1, whose statement we now recall.

Theorem 1. The natural map Out(Fn) → Aut(Gn) is an isomorphism for n ≥ 3.

To begin we recall that, by Lemma 2, the free splitting graph Gn is Out(Fn)-
equivariantly isomorphic to the 1-skeleton S

(1)
n of the sphere complex Sn. By

Lemma 3, Sn is flag and hence the claim of Theorem 1 will follow once we prove
that the simplicial action Out(Fn) � Sn in (2.2) induces the isomorphism

Out(Fn) → Aut(Sn). (4.1)

We start by proving that S
∞
n is invariant under Aut(Sn).

Lemma 6. Every automorphism of Sn preserves the subcomplex S
∞
n .

Proof. We first observe that every simplex in S
∞
n is contained in a codimension-1

simplex that is also contained in S
∞
n . To see this, let v0, . . . ,vk be vertices of S

n

spanning a k-simplex in S
∞
n . We represent these vertices by pairwise disjoint em-

bedded spheres S0, . . . , Sk. By the definition of S
∞
n there is a component U of

M \ ⋃
i Si that is not simply connected. As remarked previously, this implies that

U contains a nonseparating sphere S. Let α be an embedded curve in U intersect-
ing S exactly once, V a closed regular neighborhood of S ∪α, and S ′ the boundary
of V. Clearly S ′ is an essential embedded sphere, for otherwise M \V would be a
3-ball and hence Mn = S

1 × S
2 = M1, contradicting our assumption that n ≥ 3.

Cutting V open along S, we obtain a 3-sphere with three balls removed. In par-
ticular, every embedded sphere in V disjoint from S is parallel to one of S or S ′.
Let 
 be a maximal sphere system containing S0, . . . , Sk , S, S ′. The simplex in Sn

determined by 
 \ S has codimension 1 and is contained in S
∞
n .

The upshot of this observation is that the claim of Lemma 6 follows once we
show that codimension-1 simplices contained in S

∞
n can be characterized in terms

of simplicial data. Namely, we claim that a codimension-1 simplex is contained
in S

∞
n if and only if it is contained in a unique top-dimensional simplex. Suppose

that a system of spheres 
 determines a codimension-1 simplex [
], and consider
M \ 
. As already mentioned, all components of M \ 
 but one are homeomor-
phic to a 3-sphere with three balls removed. The remaining component, call it U, is
either a 3-sphere with four balls removed or S

1× S
2 with one ball removed. In the

first case, [
] is contained in Sn \ S
∞
n and, since U contains three different essen-

tial spheres, the simplex [
] is a face of three distinct maximal simplices. In the
second case, if U is homeomorphic to S

1 × S
2 with one ball removed, then [
] ⊂

S
∞
n and U contains a unique embedded sphere that does not bound a ball and is

not parallel to ∂U. We deduce that [
] is a face of a unique maximal simplex.
This concludes the proof of Lemma 6.

It follows from Lemma 6 that Aut(Sn) preserves the hairy Culler–Vogtmann space
On = Sn \ S

∞
n . We now prove that Aut(Sn) preserves the spine Kn of CVn ⊂ On

as well.
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Lemma 7. Every simplicial automorphism of On preserves the spine Kn of CVn.

Abusing terminology, we will say from now on that a simplex σ is contained in,
for instance, CVn if the associated open simplex is.

Proof of Lemma 7. Since the spine of CVn is defined simplicially, it suffices to show
that every automorphism of On preserves CVn itself. As in the proof of Lemma 6,
it suffices to characterize combinatorially the maximal simplices (whose interior
is) contained in CVn; equivalently, we characterize those in On \ CVn.

We claim that a top-dimensional simplex σ is contained in On\CVn if and only
if the following condition is satisfied:

(∗) σ has a codimension-1 face τ such that, if η ⊂ σ is a face contained in Sn \ S
∞
n ,

then η ∩ τ ⊂ Sn \ S
∞
n .

We first prove that every top-dimensional simplex σ ⊂ On\CVn satisfies (∗). Let
σ be represented by a maximal sphere system 
. The assumption σ ⊂ On \ CVn

implies that 
 has a component S that separates M. Let τ be the codimension-1
face of σ determined by 
 \ S, and suppose that η ⊂ σ is a face contained in
Sn\S

∞
n . Denote by 
′ the subsystem of 
 corresponding to η. Since S is separat-

ing and since all components of M \ 
′ are simply connected, it follows from the
Seifert–van Kampen theorem that every component of M \(
′ \S) is simply con-
nected as well. In other words, the simplex η∩τ is contained in Sn\S

∞
n as claimed.

Suppose now that the top-dimensional simplex σ is contained in CVn; we shall
prove that (∗) is not satisfied for any codimension-1 face τ ⊂ σ. Continuing with
the same notation, let S1 ⊂ 
 be the sphere such that 
 \S1 represents τ. Since S1

is (by assumption) nonseparating, we can find other n − 1 components S2, . . . , Sn

of 
 such that M \ ⋃
i Si is homeomorphic to a 3-sphere with 2n balls removed.

The simplex η associated to the system S1 ∪ · · · ∪ Sn is contained in Sn \ S
∞
n . On

the other hand, the complement of S2 ∪ · · · ∪ Sn is not simply connected. Hence,
the simplex η ∩ τ is not contained in Sn \ S

∞
n . This proves that (∗) is not satisfied

for the face τ. Since τ is arbitrary, this concludes the proof of Lemma 7.

It follows from Lemma 7 and the Bridson–Vogtmann theorem that there is a
homomorphism

Aut(Sn) → Aut(Kn) � Out(Fn). (4.2)

As mentioned before, by Lemma 2 and Lemma 3 we have identified Aut(Gn) with
Aut(Sn). In particular, the proof of Theorem 1 boils down to showing that the
homomorphism (4.2) is injective. This is the content of the following lemma.

Lemma 8. The identity is the only automorphism of Sn acting trivially on the
spine Kn.

Proof. Recall that Kn is the maximal full subcomplex of the first barycentric sub-
division of Sn that is contained in CVn and is disjoint from S

∞
n . The interior of

every simplex contained in CVn intersects Kn. In particular, an automorphism α
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of Sn that acts trivially on the spine Kn maps every simplex in CVn to itself. We
claim that the restriction of α to CVn is actually the identity.

Let 
 be a sphere system in M determining a top-dimensional simplex σ in
CVn, and let S be a component of 
. We claim that the codimension-1 face given
by 
 \ S is also contained in CVn; in order to see this, it suffices to prove that it
is contained in Sn\ S

∞
n . If this were not the case, then the unique component U of

M \ (
 \ S) distinct from a 3-sphere with three balls removed is homeomorphic
to S

1 × S
2 with one ball removed. The boundary of U would then be a connected

component of 
 that separates M, in contradiction to our assumption that σ ⊂
CVn. It follows that the automorphism α maps the codimension-1 face of σ deter-
mined by 
 \ S to itself. In particular, α must fix the opposite vertex [S ] of σ ;
since [S ] is arbitrary, we have proved that α is the identity on σ. Hence, α is the
identity on CVn.

We are now ready to prove that α fixes every vertex [S ] in Sn; once we have
done this, the claim of the lemma will follow. Given a vertex [S ], there are two
possibilities. If the sphere S is nonseparating then we can extend S to a maximal
sphere system 
 with no separating components. The simplex determined by 
 is
contained in CVn and hence is fixed by α. If S is separating, let U and V be the two
components of M \ S. For a suitable choice of r, we identify U with the comple-
ment of a ball B in the connected sum # r(S1×S

2) of r copies of S
1×S

2. Similarly,
V is the complement of a ball in the connected sum of s copies of S

1 × S
2. The

cases r = 1 and s = 1 are minimally special; they are left to the reader.
We choose a maximal sphere system 
U in # r(S1×S

2) whose dual graph has no
separating edges. Choosing some sphere S ′ in 
U , we take a small regular neigh-
borhood N(S ′) of S ′ in # r(S1 × S

2). Up to isotopy we may assume that the ball B
is contained in N(S ′). The collection of spheres ∂N(S ′) ∪ 
U \ S ′ is contained
in U = # r(S1 × S

2) \ B and hence determines a sphere system 
′
U in M. We do a

similar construction for V to obtain a system 
′
V , and we set


 = S ∪ 
′
U ∪ 
′

V .

The simplex determined by 
 \S is contained in CVn and is thus fixed by the auto-
morphism α. Also, it follows from our construction that S is the unique separating
sphere contained in M \ (
 \ S). By the foregoing, all the vertices determined by
any other sphere disjoint from 
 \ S are fixed by α. It follows that α fixes the ver-
tex [S ] as claimed.

As mentioned previously, the proof of Lemma 8 concludes the proof of Theorem 1.

Post scriptum. After the completion of this paper, the authors were informed by nu-
merous experts in the field—most prominentlyYaelAlgom-Kfir, Mladen Bestvina,
and Larsen Edmund Louder—that our proof could easily be modified to avoid mak-
ing use of 3-manifold topology. This suggestion was followed up by the referee,
who, with infinite kindness and a patience of biblical proportions, outlined the
main steps of the argument in his/her report.
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The basic idea of this alternative approach is to work with the complex of all
graphs of group decompositions of Fn with trivial edge group. This complex is
Out(Fn)-equivariantly isomorphic to Sn; compare with Lemma 2 and Proposi-
tion 4. From this point of view, S

∞
n corresponds to splittings with some nontrivial

vertex stabilizer in the splitting graph.
All facts in this paper can be proved directly in terms of graphs, edge col-

lapses, and so forth. For instance, Lemma 3 follows rapidly from a result of
Dunwoody [3]. Also, the manipulations in the proofs of Lemmas 6–8—for ex-
ample, removing spheres and completing sphere systems—can be replaced by
collapsing edges and completing graphs.

This approach to Theorem 1 bypasses completely the rather difficult results of
Laudenbach [10; 11], which control the relation between homotopy and isotopy of
spheres in Mn. In other words, it has the virtue of being more elementary. On the
other hand, what we find remarkable is that, by interpreting free splittings as iso-
topy classes of spheres, one can think of free splittings of free groups almost in
the same way as one thinks of elements in the curve complex of a surface: com-
pare with [4; 5] or with the list of facts in Section 1. It is due to our own limitations
that we could probably not have proved Theorem 1 without being able to visualize
free splittings in this way.
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