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The Argument Principle for
Quaternionic Slice Regular Functions

Fabio Vlacci

1. Introduction

Let H be the skew field of Hamilton numbers. The elements of H are of the form
q = x0 + e1x1 + e2x2 + e3x3, where the xl are real and e1, e2, e3 are imagi-
nary units (i.e., their squares equal −1) such that e1e2 = −e2e1 = e3, e2e3 =
−e3e2 = e1, and e3e1 = −e1e3 = e2. We will also denote a generic element w

of H by w = x0 + ∑3
k=1 xk ek and define in a natural fashion the conjugate w̄ =

x0 − ∑2
k=1 xk ek and the square norm |w|2 = ww̄ = ∑3

k=0 x 2
k of w. We will de-

note by S the (2-dimensional) sphere of imaginary units of H—that is, the sphere
S = {

I = ∑3
k=1 xk ek :

∑3
k=1 x 2

k = 1
}

whose elements I are characterized by the
property I 2 = −1. In particular, any w ∈ H uniquely defines two real numbers
x, y (with y > 0) and an imaginary unit I0 such that w = x+I0y. If w = x+I0y,
then we sometimes write x = Re w and y = Im w; furthermore, we adopt the
notation wJ := x + Jy (with J ∈ S) and Sw = {wJ : J ∈ S}.

New theories of regular functions of a quaternionic (octonionic and hyper-
complex) variable have been introduced (see [5; 7; 8; 9; 11]) that turn out to
be interesting and rich. For a survey of recent results for these functions, we refer
the interested reader to [2; 6] and the references therein.

According to these theories, a regular function in H is defined as follows.

Definition 1.1. Let � be a domain in H and let f : � → H be a real differen-
tiable function with continuous real partial derivatives. Then f is said to be slice
regular if, for every I ∈ S, its restriction fI to the complex line LI = R + RI

passing through the origin and containing 1 and I is holomorphic on � ∩ LI .

Remark 1.2. The requirement for f : � → H to be slice regular is equivalent to
saying that, for every I in S,

∂̄If(x + yI ) := 1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI ) = 0

on � ∩ LI .

From now on, we will always refer to slice regular functions and, for the sake of
brevity, call them regular functions.
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If � is a domain in H and f : � → H is regular in �, then the Cullen derivative
of f is (well) defined (see [8]) as follows:

∂Cf(w) = f ′(w)

=




∂If(x + yI )

:= 1

2

(
∂

∂x
− I

∂

∂y

)
fI(x + yI ) if w = x + yI and y 
= 0,

∂

∂x
fI(x + yI ) if w = x ∈ R.

With this notation, any function that is regular in an open ball B = B(0, R) =
{w ∈ H : |w| < R} centered at the origin has Cullen derivatives that are also reg-
ular functions in B(0, R). Furthermore, f is analytic (see [8; 11]); namely,

f(w) =
∞∑

n=0

wn 1

n!

∂nf

∂xn
(0).

Since the pointwise multiplication of regular functions does not maintain regular-
ity in general, we need to introduce the following definition (see also [3]).

Definition 1.3. Let f(q) = ∑+∞
n=0 qnan and g(q) = ∑+∞

n=0 qnbn be given
quaternionic power series with radii of convergence greater than R. We define the
regular product of f and g as the series f ∗g(q) = ∑+∞

n=0 qncn, whose coefficients
cn = ∑n

k=0 akbn−k are obtained by discrete convolution from the coefficients of
f and g.

The regular product of f and g, which we denote indifferently as f ∗ g, f ∗ g(q),
or f(q) ∗ g(q), has radius of convergence greater than R. It can be easily proven
that the regular multiplication ∗ is an associative, noncommutative operation and
that, when f(q) 
= 0,

f ∗ g(q) = f(q)g(f(q)−1qf(q)), (1.1)

whereas f ∗ g(q) = 0 if f(q) = 0.

Theorem 1.4. Let f(q) = ∑+∞
n=0 qnan be a given quaternionic power series

with radius of convergence R, and let α ∈ B(0, R). Then f(α) = 0 if and only if
there exists a quaternionic power series g with radius of convergence R such that

f(q) = (q − α) ∗ g(q). (1.2)

This result (whose proof can be found in [3]) would of course be uninteresting if
the other zeros of f did not depend on the zeros of g. Fortunately, this is not the
case: the zeros of a regular product f ∗ g are strongly related with those of f and
g, as shown by the following theorem (see [3]).

Theorem 1.5 (Zeros of a regular product). Let f and g be given quaternionic
power series with radii greater than R and let α ∈B(0, R). Then f ∗ g(α) = 0 if
and only if either f(α) = 0 or f(α) 
= 0 and g(f(α)−1αf(α)) = 0.
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In particular, if f ∗ g has a zero in S = x + yS then either f or g have a zero in
S. However, the zeros of g in S need not be in one-to-one correspondence with
the zeros of f ∗ g in S that are not zeros of f.

Example 1.6. Let I ∈ S be an imaginary unit. The regular product

(q − I ) ∗ (q + I ) = q2 + 1

has S as its zero set, whereas q −I and q +I vanish only at I and −I, respectively.

Example 1.7. Let I, J ∈ S be different imaginary units and suppose I 
= −J.

The regular product

(q − I ) ∗ (q − J ) = q2 − q(I + J ) + IJ

vanishes at I but has no other zero in S: given any L∈ S, we get

L2 − L(I + J ) + IJ = 0 ⇐⇒ L(I + J ) = −1 + IJ

⇐⇒ L(I + J ) = I(I + J )

⇐⇒ L = I,

since I + J 
= 0.

The principal aim of this paper is to define a sort of logarithmic derivative of a reg-
ular function and apply it in order to “detect” the existence of zeros (and poles) of
regular functions in the “symmetric regions” that naturally arise in this setting.

2. Symmetrization and Computation of the Zeros

In this section we summarize the results that characterize the zero set of f. This
leads to the introduction of new power series related to f , as follows.

Definition 2.1. Let f(q) = ∑+∞
n=0 qnan be a given quaternionic power series

with radius of convergence R. We define the regular conjugate of f as the series
f c(q) = ∑+∞

n=0 qnān.

We remark that f c also has radius of convergence R and that, in general, if h =
f ∗ g then hc = gc ∗ f c. If we define the symmetrized of f as f s = f ∗ f c =
f c ∗ f , then f s is analytic and has radius of convergence R. Notice furthermore
that the coefficients of f s are all real and that, if the coefficients of f are all real,
then simply f s = f 2. In particular (see [3]), we have the following statement.

Proposition 2.2. Let f(q) = ∑+∞
n=0 qnan be a given quaternionic power series

with radius of convergence R. If α = x0 + I0y0 (with x0, y0 ∈ R and I0 ∈ S) is
such that f(α) = f(x0 + I0y0) = 0, then f s(x0 + Ly0) = 0 for all L∈ S.

Actually, something more precise can be proven about the zeros of f , of f c, and
of f s (see again [3]).
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Proposition 2.3. Let f be a given quaternionic power series with radius of con-
vergence R, and let α = x0 +I0y0 (with x0, y0 ∈ R and I0 ∈ S) be such that Sα :=
x0 + y0S ⊆ B(0, R). Then the zeros of f in S are in one-to-one correspondence
with those of f c.

Theorem 2.4 (Structure of the zero set). Let f : B(0, R) → H be a regular func-
tion and suppose that f does not vanish identically. Then the zero set of f consists
of isolated points or isolated 2-spheres of the form S = x + yS for x, y ∈ R.

A nonreal zero α of a regular function f is called spherical if ᾱ is also a zero of f.

Symmetrization allows us to transform any nonreal zero into a spherical zero, and
these zeros cannot accumulate: if they did then zeros would accumulate in each
complex line LI , which is impossible for the identity principle of (holomorphic
and) regular functions (see [8]) unless f ≡ 0. We recall that a domain U ⊆ H is
called

(i) an axially symmetric domain if, for any x + yI ∈ U with y 
= 0, the whole
2-sphere x + yS is contained in U ;

(ii) a slice domain if U ∩ R is nonempty and if LI ∩ U is a domain in LI for all
I ∈ S.

Furthermore, we have the following theorem.

Theorem 2.5. Let f be any given quaternionic power series with radius R. Then
f s vanishes exactly on the 2-spheres (or singletons) x+yS containing a zero of f.

The following Leibniz rule holds for the Cullen derivative of a ∗-product function
(see [5]).

Proposition 2.6. Let h = f ∗ g. Then

h′ = f ′ ∗ g + f ∗ g ′.

Consider the derivative of f s = f ∗ f c = f c ∗ f ; we have, from Proposition 2.6,
(f s )′ = f ′ ∗ f c + f ∗ (f c)′.

Assume that f is a regular function and that α is a zero of f. Then we can write:

• f(q) = (q − α) ∗ r(q) if α is not a spherical zero of f ;
• f(q) = (q2 − 2q Re(α) + |α|2) ∗ r(q) if α is a spherical zero of f.

In both cases we assume—for the moment—that r(α) 
= 0. Thus we have:

• f s(q) = (q − α) ∗ r(q) ∗ r c(q) ∗ (q − ᾱ) = (q − α)s ∗ r s(q)

if α is not a spherical zero of f ;
• f s(q) = (q2 − 2q Re(α) + |α|2) ∗ r(q) ∗ r c(q) ∗ (q2 − 2q Re(α) + |α|2)c

= (q2 − 2q Re(α) + |α|2)2 ∗ r s(q)

if α is a spherical zero of f.

Therefore,
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• (f s )′(q) = ((q − α)s )′ ∗ r s(q) + (q − α)s(r s )′(q)
= (2q − 2 Re α) ∗ r s(q) + (q − α)s(r s )′(q)

if α is not a spherical zero of f ;
• (f s )′(q) = 2(q2 − 2q Re(α) + |α|2) ∗ (2q − 2 Re α) ∗ r s(q)

+ (q2 − 2q Re(α) + |α|2)2 ∗ (r s )′(q)
if α is a spherical zero of f.

Finally, we have the following definition.

Definition 2.7. Consider a regular function f with a zero α. Then we define

Lf (q) := (f s )′(q)
f s(q)

=




2
q − Re α

(q − α)s
+ (r s )′(q)

r s(q)

= 2
q − Re α

(q − α)s
+ Lr (q) if α is not a spherical zero of f ,

4
q − Re α

(q − α)s
+ (r s )′(q)

r s(q)

= 4
q − Re α

(q − α)s
+ Lr (q) if α is a spherical zero of f.

Notice that if, for a regular function f , we put

f −∗ := f c

f s

(the position is justified by f ∗ f −∗ = f −∗ ∗ f ≡ 1), then we can rewrite the
previous definition as

Lf (q)

:= (f s )′(q)
f s(q)

=
{

(q − ᾱ)−∗ + (q − α)−∗ + Lr (q) if α is not a spherical zero of f ,

2(q − ᾱ)−∗ + 2(q − α)−∗ + Lr (q) if α is a spherical zero of f.

Recall that, on any LI , the restriction fI of the regular function f in B(0, R)

is holomorphic (and so is rI , with r as in the decomposition given previously).
Therefore let α = x0 + I0y0 and consider any point α̃ = a−1αa with a ∈ H and
a 
= 0; observe that α̃ = x0 + I1y0 (i.e., α̃ = αI1 is on the sphere Sα). In the com-
plex plane LI1, take any disc !l(α̃) centered at α̃ and with radius l > 0 such that
|α̃ + leI1ϑ | < R for ϑ ∈ [0, 2π). We can apply a well-known result in complex
analysis (see e.g. [1; 12]) to obtain the following result.

Proposition 2.8. Let f be a regular function in B(0, R) not identically zero.
Assume that α = x0 + I0y0 is a zero of f. Given I ∈ S, we consider !l(αI) ⊂
B(0, R) ∩ LI , which is any disc in B(0, R) ∩ LI that is centered at αI and such
that f s never vanishes on ∂!l(αI). Then
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1

2πI

∫
∂!l(αI )

Lf (z) dz 
= 0.

Conversely, if for a given disc !l(αI) ⊂ B(0, R) ∩ LI we have

1

2πI

∫
∂!l(αI )

Lf (z) dz 
= 0,

then the regular function f must have a zero in the axially symmetric domain
!l(αI) × S = ⋃

η∈!l(αI )
Sη.

The regular function Lf (q) just introduced in H plays the role of the logarithmic
derivative of f in C, and it can actually be used to replicate the notion of index
for a zero of f. We recall that to each zero α of a regular polynomial P we can
associate a multiplicity nα ∈ N as in [10]; that is, we have the following result.

Theorem 2.9. Let P be a regular polynomial of degree m. Then there exist
p, m1, . . . , mp ∈ N and w1, . . . , wp ∈ H , which are generators of the spherical roots
of P, such that

P(q) = (q2 −2q Re(w1)+|w1|2)m1 · · · (q2 −2q Re(wp)+|wp|2)mpQ(q), (2.1)

where Re(wi) denotes the real part of wi andQ is a regular polynomial with coeffi-
cients in H having only nonspherical zeros. Moreover, if n = m−2(m1+· · ·+mp)

then there exist a constant c ∈ H , t distinct 2-spheres S1 = x1 + y1S, . . . , St =
xt + ytS, t integers n1, . . . , nt with n1 + · · · + nt = n, and ( for any i = 1, . . . , t)
ni quaternions αij ∈ Si, j = 1, . . . , ni, such that

Q(q) =
[ t

∗
∏
i=1

ni

∗
∏
j=1

(q − αij )

]
c, (2.2)

where ∗∏ is the analogue of
∏

in the case of ∗-product.

Following the ideas developed in [3; 4; 10], we can state the next definitions.

Definition 2.10. Let f : U → H be a regular function. If x + Iy is a spherical
zero of f , then its spherical multiplicity is defined as 2 times the largest inte-
ger m for which it is possible to write f(q) = (q2 − 2qx + (x 2 + y2))mg(q) for
g : U → H a regular function. Furthermore, we say that a zero α1 ∈ H \ R of f

has isolated multiplicity k if g can be written as

g(q) = (q − α1) ∗ (q − α2) ∗ · · · ∗ (q − αk) ∗ h(q)

with αj on the sphere Sα1 and such that αj 
= ᾱj+1 for j = 1, . . . , k − 1 and
h : U → H a regular function such that h does not vanish on the sphere Sα1.

Finally, for x ∈ R a zero of f , we say that x has isolated multiplicity n if we can
write

g(q) = (q − x)nh(q),

where h : U → H is some regular function that does not vanish at x.
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Definition 2.11. Let f be a regular function on a symmetric slice domain �,
and let α be a nonreal zero of f. If Sα = x + Sy ⊂ �, we define the total mul-
tiplicity of Sα to be the sum of the spherical multiplicity of α and all isolated
multiplicities of points of Sα. If instead α is real, then the total multiplicity of x is
defined as the isolated multiplicity of f.

We denote by nα the total multiplicity of Sα. After observing that in (2.2) if αij

lies on the sphere Sα then (q − αij )
s = (q − α)s, from the previous calculations

we conclude that, for sufficiently small l > 0,

1

2πI

∫
∂!l(αI )

Lf (z) dz =
{

nα if α is not a real zero of f ,

2nα if α is a real zero of f.

As in the complex case, we are now interested in finding a notion of “total num-
ber of inverse images of a value β 
= 0 in a bounded region V ” for a regular
function f. Typically, one repeats for the regular function q �→ f(q) − β the def-
inition of Lf−β and then calculates the integrals as before. In the complex case,
this leads one to evaluate

1

2πi

∫
γ

f ′(z)
f(z) − β

dz,

where the boundary of the region V is a (simple) closed curve γ : [t0, t1] → C

such that f(γ (t)) 
= β for all t ∈ [t0, t1]. To make the definition consistent, in the
case of a regular function f in H we must consider

1

2πI

∫
∂!l(αI )

[(f(z) − β)s]′

(f(z) − β)s
dz (2.3)

with αI and l > 0 small enough and such that f(αI + leIt ) 
= β for all t ∈
[0, 2π). Notice that [(f(q) − β)s]′ 
= (f s )′(q) − β and [(f(q) − β)s]′ 
= (f s )′.
Furthermore, the value obtained in (2.3) is independent of the choice of the slice LI

because the functions involved in the definition have all real coefficients. There-
fore, if f(α) = β then we define gs

β(q) := (f(q) − β)s; clearly, gs
β(α) = 0 and

gs
β(LI) ⊆ LI for every I ∈ S. Moreover, gs

β |LI
is holomorphic for every I ∈ S.

We write β = f(α) and observe that the equality

1

2πI

∫
∂!l(αI )

[(f(z) − β)s]′

(f(z) − β)s
dz = 1

2πI

∫
∂!l(αI )

(g s
β(z))

′

gs
β(z)

dz

does not depend on the choice of I, since gs
β maps any LI into itself for any I ∈ S;

furthermore, we observe that the integrand function in

1

2πIβ

∫
∂!l(αIβ )

[(f(z) − β)s]′

(f(z) − β)s
dz

is (locally) continuous in β where it is defined. This means that the value of

1

2πIβ

∫
∂!l(αIβ )

[(f(z) − β)s]′

(f(z) − β)s
dz
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remains constant for any choice of β ′ in an open neighborhood of β, and since
β = f(α) we have

1

2πIβ

∫
∂!l(αIβ )

[(f(z) − β)s]′

(f(z) − β)s
dz = 1

2πIβ ′

∫
∂!l(αIβ′′′)

[(f(z) − β ′)s]′

(f(z) − β ′)s
dz 
= 0.

Hence, by Proposition 2.8 we obtain a version of the open mapping theorem as
presented in [4] for axially symmetric domains.

Theorem 2.12. Let f : B(0, R) → H be a regular function. If U is an axially
symmetric open subset of B(0, R), then f(U) is open. In particular, f(B(0, R))

is an open set.

3. The Argument Principle

Given the peculiar properties of the zeros of regular functions, it is natural to look
for singularities resembling the poles of holomorphic complex functions. This
question has the following complete answer, as given in [13].

Proposition 3.1. Consider a quaternionic Laurent series f(q) = ∑
n∈Z

qnan

with quaternionic coefficients an ∈ H. There exists a spherical shell

A = A(0, R1, R2) = {q ∈ H : R1 < |q| < R2}
such that : (i) the series f +(q) = ∑+∞

n=0 qnan and f −(q) = ∑+∞
n=1 q−na−n both

converge absolutely and uniformly on the compact subsets of A; (ii) f +(q) di-
verges for |q| > R2; (iii) f −(q) diverges for |q| < R1. If A is not empty (i.e., if
0 ≤ R1 < R2), then the function f : A → H defined by f(q) = ∑

n∈Z
qnan =

f +(q) + f −(q) is regular.

This proposition ensures the existence of functions that are regular on a punctured
ball B(0, R) \ {0} and have a singularity at 0. Moreover, any function that is reg-
ular on a spherical shell A(0, R1, R2) admits a Laurent series expansion centered
at 0. The latter statement is a special case of the following result.

Theorem 3.2. Let f be a regular function on a domain �, let p = x + Iy

for p ∈ H , and let LI = R + IR be the complex line through p. If � contains
an annulus AI = A(p, R1, R2) ∩ LI , then there exist {an}n∈Z ⊆ H such that
fI(z) = ∑

n∈Z
(z − p)nan for all z ∈ AI . If, moreover, p ∈ R, then f(q) =∑

n∈Z
(q − p)nan for all q ∈A(p, R1, R2) ∩ �.

Definition 3.3. Let f , p, and {an}n∈Z be as in Theorem 3.2. The point p is
called a pole if there exists an n ∈ N such that a−m = 0 for all m > n; the mini-
mum of such an n∈ N is called the order of the pole and is denoted ordf (p). If p

is not a pole for f then we call it an essential singularity for f.

Notice that, by the final statement of Theorem 3.2, real singularities are completely
analogous to singularities of holomorphic functions of one complex variable but
bear no resemblance to the case of several complex variables.
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We are now able to introduce an analogue of the concept of a meromorphic
function (see [13]).

Definition 3.4. Let � be a domain in H , let S ⊆ �, and suppose the intersec-
tion SI = S ∩ LI is a discrete subset of �I = � ∩ LI for all I ∈ S. A regular
function f : � \ S → H is said to be semiregular on � if S does not contain es-
sential singularities for f.

Notice that a function f is semiregular if the restriction fI is meromorphic for all
I ∈ S. As proven in [13], f is semiregular on B(0, R) if and only if f |B(0,R1) is
a left regular quotient for all R1 < R. This enables the definition of a multiplica-
tion operation ∗ on the set of semiregular functions on a ball as well as the proof
of the following result.

Theorem 3.5 (Structure of the poles). If f is a semiregular function on B =
B(0, R), then f extends to a regular function on B minus a union of isolated real
points or isolated 2-spheres of the type x + yS = {x + yI : I ∈ S} for x, y ∈ R

and y 
= 0. All the poles on each 2-sphere x + yS have the same order, with the
possible exception of one pole that must have lesser order.

Let us now consider a semiregular function f that can be locally written as f =
h−∗ ∗ g = h−shc ∗ g, where h and g are regular functions. Then we deduce from
the properties of the regular conjugate and ∗ product that

f c = gc ∗ h ∗ h−s,

f s = f ∗ f c = h−shc ∗ g ∗ gc ∗ h ∗ h−s

= h−s ∗ hc ∗ gs ∗ h ∗ h−s

= h−sg shc ∗ h ∗ h−s

= h−sg s = (hs )−1gs.

Given any pair G, H of quaternionic power series with real coefficients, from the
properties of derivation that are similar to the analogue in C it follows that

(H −1G)′ = −H −2H ′G + H −1G′.

Therefore we conclude that

(f s )′ = −(hs )−2(hs )′gs + (hs )−1(g s )′

and so

Lf = (f s )−1(f s )′ = (g s )−1(g s )′ − (hs )−1(hs )′ = Lg − Lh.

Hence, by recalling the results of the previous section, we obtain the following
analogue for semiregular functions of the argument principle for meromorphic
functions in C.

Theorem 3.6. Given a semiregular function f ∈ B(0, R) and I ∈ S, consider
BI(0, r) := B(0, r) ∩ LI , r < R, which is any disc in B(0, R) ∩ LI such that
∂BI(0, r) does not pass through any of the zeros or poles of f. Then
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1

4πI

∫
∂BI(0,rf )

Lf (z) dz

counts the difference between the sum of (isolated and spherical ) multiplicities of
zeros of f and the sum of orders of poles of f that lie in B(0, r).

As a consequence of Theorem 2.5 and Theorem 3.6, we obtain the following ana-
logue of the Rouché theorem.

Corollary 3.7. Let h and g be two regular functions in B(0, R), and assume
that |hs − gs | < |hs | on ∂B(0, r), r < R. Then h and g have the same number of
zeros (counted with their multiplicities) in B(0, r).

Proof. First observe that if |hs − gs | < |hs | on ∂B(0, r) then hs and gs are zero-
free on ∂B(0, r). Moreover, this implies that the function (hs )−1gs is the “sym-
metrized” (see paragraph following Definition 2.1) of the semiregular function
f = h−∗ ∗ g = (hs )−1hc ∗ g and is such that |f s − 1| < 1 on ∂B(0, r). Hence,
given any I ∈ S, we have

1

4πI

∫
∂(B(0,r)∩LI )

Lf (z) dz = 0

and so the assertion follows from Theorem 2.5 and Theorem 3.6.

We conclude this paper with a version of the Hurwitz theorem.

Theorem 3.8. Let {fn}n∈N be a sequence of regular functions in B(0, R), and
assume that fn → f as n → +∞ uniformly on each compact subset of B(0, R).

Then either f ≡ 0 or every zero of f s is a limit of a sequence of spheres of zeros
of (fn)

s for n > n0.

Proof. Observe that the limit function f is regular; furthermore, we recall (see
[14]) that the convergence of {fn}n∈N to f uniformly on each compact subset of
B(0, R) implies the uniform convergence (on compacta of B(0, R)) of {(fn)

s}n∈N

to f s.

Assume that f(q0) = 0 for q0 = x0 + I0y0 but that f 
= 0 in a neighborhood
U(q0) = LI0 ∩ B(q0, r) in B(0, R) for sufficiently small r > 0. This implies that
f s(q0) = 0 but f s 
= 0 in U(q0). Assume that r is chosen such that f s 
= 0 in
∂U(q0) := LI0 ∩ B(q0, r). Let m be the minimum of |f s | on ∂U(q0). Then, for
all n > n0 and q ∈ ∂U(q0), we have

|(fn)
s(q) − f s(q)| < m < |f s(q)|.

From Corollary 3.7 it now follows that (fn)
s has the same number of zeros of f s

inside ∂U(q0); in other words, (fn)
s must vanish at least once inside ∂U(q0) for

all n > n0.
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