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Comodules for Some Simple O-forms of G,

N. E. CsimAa & R. E. KortTtwITZ

Tannakian theory allows one to understand an affine group scheme G over a com-
mutative base ring A in terms of the category Rep(G) of G-modules, by which
is meant comodules for the Hopf algebra corresponding to G. The theory is es-
pecially well developed [Sa] in the case that A is a field, and some parts of the
theory still work well over more general rings A, say discrete valuation rings (see
[Sa; W]).

When A is a field of characteristic 0 and G is connected reductive, the category
Rep(G) is very well understood. However, with the exception of groups as sim-
ple as the multiplicative and additive groups, little seems to be known about what
Rep(G) looks like concretely when A is no longer assumed to be a field, even in
the most favorable case in which A is a discrete valuation ring and G is a flat affine
group scheme over A with connected reductive general fiber.

The modest goal of this paper is to give a concrete description of Rep(G) for
certain flat group schemes G over a discrete valuation ring O such that the general
fiber of G is G,,. It should be noted that O-forms of G,, are natural first examples
to consider, as G, /Q,, arises in the Tannakian description [Sa] of the category of
isocrystals with integral slopes.

Choose a generator 7 of the maximal ideal of O and write F for the field of frac-
tions of O. For any nonnegative integer k, the construction of Section 1.1, when
applied to f = x¥, yields a commutative flat affine group scheme G; over O
whose general fiber is G,,. The O-points of Gy are given by

G (O)={teO* :t=1modn*)},

a principal congruence subgroup arising naturally in the much more general con-
text of Moy—Prasad [MoP] subgroups of p-adic reductive groups. These form a
projective system

'~'—>G2—>G1—>Go=Gm

in an obvious way, and we may form the projective limit G, := proj lim G;. The
Hopf algebra Sy corresponding to Gy can be described explicitly (see Sections 1.1
and 1.2). The Hopf algebra S, corresponding to G is

inj lim S = {Zx,-Ti € F[T,Tﬁl] : Zx,- EO}.
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The categories Rep (G ) and Rep (Gy) can be described very concretely. Indeed,
Rep(G) consists of the category of O-modules M equipped with a Z-grading on
F ®o M (see Section 2.3, where a much more general result is proved). As for
Rep(Gy), we proceed in two steps.

First, the full subcategory of Rep(Gy) consisting of those Gx-modules that are
flat as O-modules is equivalent (see Theorem 1.3.1) to the category of pairs (V, M)
consisting of a Z-graded F-vector space V and an admissible O-submodule M
of V, where admissible means that the canonical map F ® » M — V is an isomor-
phism and C,M C M for all n > 0, where C,: V — V is the graded linear map
given by multiplication by %" (”1) on the ith graded piece of V. The G-module
corresponding to (V, M) is M, equipped with the obvious comultiplication.

Second, any G-module (see Section 1.4) is obtained as the cokernel of some in-
jective homomorphism M; — M, coming from a morphism (V;, M;) — (Vy, M)
of pairs of the type just described.

When O is a Q-algebra, the situation is even simpler: M is an admissible O-
submodule of the graded vector space V if and only if C;M C M and F Qo M =
V. Moreover, in case O is the formal power series ring C[[e]], there is an inter-
esting connection with affine Springer fibers (see Section 1.5).

1. A Description of Rep(G) for
Certain Group Schemes G

Throughout this section we consider a commutative ring A and a nonzerodivisor
f € A. Thus the canonical homomorphism A — Ay is injective, where Ay de-
notes the localization of A with respect to the multiplicative subset { " : n > 0}.
For the rest of this section we denote Ay by B and use the canonical injection
A — B to identify A with a subring of B.

1.1. The Group Scheme G over A

We are now going to define a commutative affine group scheme G, flat and finitely
presented over A. There will be a canonical homomorphism G — G,, that be-
comes an isomorphism after extending scalars from A to B.

We begin by specifying the functor of points for G. For any commutative A-
algebra R we put

G(R) ={(t,x)ER* X R:t—1= fx}
={xeR:1+ fxeR*}.
Then G is represented by the A-algebra
S:=A[T, T, X1/(T —1— fX)
= A[Xi4+5x, (1.1.1)

which is clearly flat and finitely presented.
The multiplication on G(R) is defined as (7, x)(¢’,x") = (tt,x +x' + fxx').
The identity element is (1,0) and the inverse of (¢, x) is (+~, —t~'x).
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There is a canonical homomorphism A: G — G, given by (¢,x) — t. When
f is a nonzerodivisor in R, the homomorphism A: G(R) — R* identifies G(R)
with ker[R* — (R/fR)*], and when f is aunitin R, then G(R) = R*, showing
that the homomorphism A: G — G, becomes an isomorphism after extending
scalars from A to B. Thus there is a canonical isomorphism B ®,4 S = B[T, T-1.

LEmMMA 1.1.1.  Let M be an A-module on which f is a nonzerodivisor. Let F be
any flat A-module. Then f is also a nonzerodivisor on F @4 M.

Proof. Tensor the injection M —f> M over A with F. O

COROLLARY 1.1.2.  The canonical homomorphism S — B ®4 S = B[T, T s
injective, so that we may identify S with a subring of BIT,T'].

Proof. Justnote that S is flat over A and that f is anonzerodivisor on A. Therefore
f is anonzerodivisor on S®4 A = S, and this means that S — B ®,4 S is injective.
O

1.2. Description of S as a Subring of B[T, T ']

We have just identified S with a subring of B[T, T ~']. It is obvious from (1.1.1)
that S is the A-subalgebra of B[T, T '] generated by T, T~', (T — 1)/f. However
there is a more useful description of S in terms of B-module maps
L,: B[T,T™'1— B,
one for each nonnegative integer n, defined by the formula
LS b)) =3 (1 )os.
(o) =% ()
i€’ i€Z

Here (1’1) is the binomial coefficient i(i — 1) - - - (i —n + 1)/n! defined for all i € Z.
When n = 0, we have (,’1) =1foralli eZ.

The following remarks may help in understanding the maps L,. For any non-
negative integer n, we have the divided-power differential operator

D" BIT, T\ - B[T, T

D[n](Z thl‘) — Z(i)biTi_"- (1.2.1)
n

i€’ i€’

defined by

The Leibniz formula says that

D"(gh) =" D'(g)D""(h). (12.2)
r=0

For any g € B[T] C B[T, T '] the Taylor expansion of g at T = 1 reads

g=Y (DMg)(1)- (T — 1", (1.2.3)

n=0
the sum having only finitely many nonzero terms.
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For any g € B[T, T '] we have L,(g) = f"(D"g)(1). It follows from (1.2.2)
that for all g, h € B[T, T ]

L,(gh) = Z L,(g)Lp—r(h), (1.2.4)
r=0

and for all # € B[T] C B[T, T '] it follows from (1.2.3) that

nd T -1}
h = Z Ln(h)<T> . (1.2.5)
n=0

Now we are in a position to prove the following statement.

PROPOSITION 1.2.1.  The subring S of B[T, T '] is equal to
{geB[T,T7"1: L,(g)€AVn >0}

Proof. Write S’ for {g € B[T,T~'] : L,(g) € A Vn > 0}. Obviously S’ is an
A-submodule of B[T,T '], and it follows from (1.2.4) that S’ is a subring of
B[T, T 1. A simple calculation shows that T, T-'.(T - 1)/f liein §’, and as these
three elements generate S as A-algebra, we conclude that S C §’.

Now let g € S’. There exists an integer n large enough that 1 := T™g lies
in the subring B[T]. Note that & € S’. Equation (1.2.5) shows that & € S, since
(T —1)/feSand L,(h)€ A. Therefore g =T "heS. O

Now let M be an A-module on which f is a nonzerodivisor, so that we may use
the canonical A-module map M — B ®4 M (sending m to 1 ® m) to identify M
with an A-submodule of N := B ®4 M.

It follows from Lemma 1.1.1 that the canonical A-module map

SQUM —> BR,(S®4sM)=B[T,T'1®5 N

identifies S ®4 M with an A-submodule of B[T, T '] ®5 N. We will now derive
from Proposition 1.2.1 a description of S ®4 M inside B[T, T~'1 ®z N. For this
we will need the B-module maps L,,: B[T,T~']®3 N — N defined by

i _ n i .
Ln(ZT ®xi> - Z f (n)xt-
i€eZ i€eZ
Here x; € N, all but finitely many being 0.
LEMMA 1.2.2. The A-submodule S @4 M of B[T,T "1 ®z N is equal to
{xeB[T,T'1®g N : L,(x) € M Vn > 0).

Proof. From Proposition 1.2.1 we see that there is an exact sequence

0— S — BIT.T'1 5 [] B/A,

n>0

the nth component of the map L being the composition

BIT, Tl &5 B — BJA.
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In fact the map L takes values in @, , B/A. Indeed, for any g € B[T, T 1 there
exists an integer m large enough that f™g € A[T,T '], and then L,(g) € A for
all n > m. Moreover L maps B[T, T '] onto P,~ B/A. Indeed, a simple calcu-
lation shows that forb € B and m > 0

n>0

b if m=n,

Ly@f ™™T = D" = {

0 otherwise.

(First check that D"((T — 1)™) = () )(T — 1)™~", say by induction on m; note
that this formula is valid even if n > m, since (’Z) =0when0 <m <n.)
We now have a short exact sequence

0—S— BITL.T 15 P B/A—0
n>0

of A-modules. Tensoring with the A-module M, we obtain an exact sequence

S®sM — B[T.T']®, M L2494, (EB B/A) @AM —0. (126)
n>0
Now
B[T,T M®s M =B[T, T '1®s B4 M = B[T,T"'1®3 N
and

<€B B/A) ®1 M =P N/M.

n>0 n>0

With these identifications (and recalling that S ®4 M — B[T,T'] ®s N is
injective), we see that (1.2.6) describes S ®4 M as the subset of B[T, T-1®s N
consisting of elements x such that L,,(x) € M for all n > 0, and this completes
the proof. O

1.3. Comodules for S

Since G is an affine group scheme over A, the A-algebra S is actually a commuta-
tive Hopf algebra, and we can consider Rep (G), the category of S-comodules. We
denote by Rep(G)  the full subcategory of Rep(G) consisting of S-comodules M
such that f is a nonzerodivisor on the A-module underlying M. Our next goal is
to give a concrete description of Rep(G) .

In order to do so, we need one more construction. Let N = @iez N; be a
Z-graded B-module. For each nonnegative integer n we define an endomorphism
C,: N — N of the graded B-module N by requiring that C,, be given by multi-
plication by £" (') on N;. Thus

Cn Xi)| = f”(l )x,».
(Z+)-2(
Here x; € N;, all but finitely many being 0.

Let C be the category whose objects are pairs (N, M), N being a Z-graded B-
module, and M being an A-submodule of N such that the natural map B ®4 M —
N is an isomorphism and such that C,M C M for all n > 0. A morphism
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(N,M) — (N',M’) is a homomorphism ¢: N — N’ of graded B-modules such
that pM C M.

We now define a functor F: Rep(G)y — C. Let M be an object of Rep(G)y.
Then N := B ®4 M is a comodule for B ®4 S = B[T,T~']. It is known (see
[DGr], Exp. 1) that the category of B[T, T ~']-comodules is equivalent to the cate-
gory of Z-graded B-modules. Thus N has a Z-grading N = @, ., N;, and the co-
multiplication Ay : N — B[T,T'|®g Nisgivenby Y, ,xi —> >, ., T ®x;.
Since f is a nonzerodivisor on M, the canonical map M — B ®4 M = N identi-
fies M with an A-submodule of N.

We define our functor F' by FM := (N, M). For this to make sense we must
check that C,M C M foralln > 0. Let m € M, and write m = )_,_, x; in
@D,z Ni = N. Since the comodule N was obtained from M by extension of
scalars, the element x = Aym = Y, , T' ® x; € B[T,T™'] ® N lies in the
image of S ®4 M — BIT, T~'1® N. Lemma 1.2.2 then implies that L,,(x) =
ez f"(1)xi = Cu(m) lies in M, as desired.

THEOREM 1.3.1.  The functor F: Rep(G); — C is an equivalence of categories.

Proof. Let us first show that F is essentially surjective. Let (N, M) be an object
in C. We are going to use the comultiplication Ay : N — BT, T~'1®g N to turn
M into an S-comodule.

Since M is an A-submodule of N, itis clear that f is a nonzerodivisor on M. As
we have seen before, it follows that f is a nonzerodivisor on § ®4 M and hence
that the natural map S @4 M — B @4 (S ®4 M) = B[T,T~'] ®3 N identifies
S ®4 M with an A-submodule of B[T,T '] ®5 N.

Using Lemma 1.2.2, we see that our assumption that C,M C M foralln > 0
is simply the statement that AyM C § ®4 M. In other words, there exists a
unique A-module map Ay : M — S ®4 M such that Ay, yields Ay after extend-
ing scalars from A to B.

We claim that A, makes M into an S-comodule. For this we must check the
commutativity of two diagrams, and this follows from the commutativity of these
diagrams after extending scalars from A to B, once one notes that for any two
A-modules M, M, on which f is a nonzerodivisor

HOIIIA(Ml,Mz) = {d) EHOI’IIB(B ®a Ml,B ®a Mz) . ¢(M1) C MQ}. (131)

Here of course we are identifying M; and M, with A-submodules of B ®4 M,
and B ®4 M, respectively. (At one point we need that f is a nonzerodivisor on
S ®4 S ®4 M, which is true since S ®4 S is flat over A.)

As F takes M to (N, M), we are done with essential surjectivity. It is easy to
see that F is fully faithful; this too uses (1.3.1). O

1.4. Principal Ideal Domains A

One defect of the theorem we have just proved is that it only describes those G-
modules on which f is a nonzerodivisor. When A is a principal ideal domain, as
we assume for the rest of this subsection, we can do better. Now f is simply any
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nonzero element of A. As a consequence of Theorem 1.3.1 we obtain an equiv-
alence of categories between the category Rep(G)qa of G-modules M such that
M is flat as A-module and the full subcategory of C consisting of pairs (N, M)
for which M is a flat A-module (in which case N = B ®,4 M is necessarily a flat
B-module).

The next lemma is a variant of [Se, Prop. 3].

LEMMA 1.4.1.  Let A be a principal ideal domain, let C be a flat A-coalgebra, and
let E be a C-comodule. Then there exists a short exact sequence of C-comodules

00— F— Fy— E—O0

in which Fy and F) are flat as A-modules.

Proof. We imitate Serre’s proof. Recall [Se, 1.2] that for any A-module M the
map A ®idy: C®4 M — C ®4 C ®4 M (A being the comultiplication for C)
gives C ®4 M the structure of C-comodule, and [Se, 1.4] that the comultiplication
map Ag: E — C ®4 E is an injective comodule map when C ®,4 E is given the
comodule structure just described. We use Ag to identify £ with a subcomodule
of C®4 E.

Now choose a surjective A-linear map p: F — E, where F is a free A-
module. Let Fy denote the preimage of E under the surjective comodule map
d® p: C®4 F — C Q4 E. Since F) is the kernel of

C® F—>C®4E — (C®4E)/E,

itis a subcomodule of C ®,4 F. Moreover id ® p restricts to a surjective comodule
map Fy — E, whose kernel we denote by Fj. Since C and F are flat, so too are
C ®4 F, Fy, and F}, and we are done. We used that for principal ideal domains, a
module is flat if and only if it is torsion-free, and the property of being torsion-free
is inherited by submodules. 0

Returning to our Hopf algebra S, we see that any G-module E has aresolution 0 —
Fy — Fy — E — Oinwhich Fj and Fj are objects of Rep (G)q,c and hence are de-
scribed by our theorem. We conclude that E has the following form. There exist an
injective homomorphism¢: N — N’of graded B-modules and flat A-submodules
M, M’ of N, N' respectively such that pM C M’ and (N, M),(N’,M") € C, hav-
ing the property that E is isomorphic to M'/¢M as a G-module.

1.5. A Special Case

When A is a Q-algebra, the category C is very simple. Indeed, there is a polyno-
mial P, € Q[U] of degree n such that (:l) = P,(i), and therefore C,, = Q,(C),
where C = C; and Q, = f”P,,(f’lU) € A[U]. Therefore C is the category
of pairs (N, M) consisting of a Z-graded B-module N and an A-submodule M
of N such that the natural map B ®4 M — N is an isomorphism and such that
CM C M, where C is the endomorphism of the graded module N = @, N;

given by multiplication by fi on N;.



186 N. E. CsimAa & R. E. KoTtTwITZ

When A is the formal power series ring @ := C[[e]], and f = e’ (for some
nonnegative integer k) our constructions yield a group scheme G over O such that
G(0) = {t € O* : t = I mod £}, and the category of representations of G on free
O-modules of finite rank is equivalent to the category of pairs (V, M), where V is a
finite-dimensional graded vector space over F' := C((g)) and M is an O-lattice in
V such that CM C M, where C is given by multiplication by ie* on the ith graded
piece of V. It is amusing to note that for fixed V, the space of all M satisfying
CM C M is an affine Springer fiber, which, when all the nonzero graded pieces
of V are one-dimensional, is actually one of the affine Springer fibers studied at
some length in [GKM], where it was shown to be paved by affine spaces. Finally,
since O is a principal ideal domain, the results in Section 1.4 give a concrete de-
scription of all G-modules.

2. Certain Hopf Algebras and Their Comodules

Throughout this section A is a commutative ring and B is a commutative alge-
bra such that the canonical homomorphism B ®4 B — B (given by b1 ® by +—
bibs) is an isomorphism. For example B might be of the form S~'A/I for some
multiplicative subset S of A and some ideal 7 in S ~'A.

Let N be a B-module. Then the canonical B-module map B®4 N — N (given
by b®n > bn) is an isomorphism. It follows that the canonical A-module homo-
morphism N — B ®4 N (given by n — 1 ® n) is actually an isomorphism of
B-modules (since N - B ®4 N — N is the identity).

Moreover, for any two B-modules N; and N,, we have isomorphisms

Homp (N;, N2) = Hom(Nj, N») 2.0.1)

and
N ®4 Ny = N; @5 No. (2.0.2)

2.1. General Remarks on Hopf Algebras and Their Comodules

Let S be a Hopf algebra over A. The composition A — S — A of the unit and co-
unit is the identity, and therefore there is a direct sum decomposition S = A @ S
of A-modules, where Sy is by definition the kernel of the counit § — A. In this
subsection all tensor products will be taken over A and the subscript A will be
omitted.

We denote by A: § — S ® S the comultiplication for S. The counit axioms
imply that A takes the form A(a +sp) =a+s0 Q1+ 1® sp + A(sg) when we
identify S with A@ Spand S®@ Swith A @ (So ® A) & (A ® So) & (So ® So).
Here A is a uniquely determined A-module map Sy — So ® So.

For any S-comodule M with comultiplication Ay : M — S ® M the counit
axiom for M implies that Ay (m) = 1 ® m + Ay (m) for a uniquely determined
A-module map

Ay: M — So®@ M.
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In this way we obtain an equivalence of categories between S-comodules and A-
modules M equipped with an A-linear map Ay : M — So ® M such that the
diagram

M—2" LM

AM\L A®idl 2.1.1)

d®A
So®@ M 225 §0® So @ M
commutes.

2.2. HopfAlgebras for B Give Hopf Algebras for A

Let S be a Hopf algebra over B. As in Section 2.1, we decompose S as B & Sy. It
is easy to see that there is a unique Hopf algebra structure on R := A @ Sy such
that the unit and counit for R are the obvious maps A < R and R — A and
such that the Hopf algebra structure on B ®4 R agrees with the given one on S
under the natural B-module isomorphism B ®4 R = S. What makes this work is
(2.0.2), a consequence of our assumption that B ®4 B — B is an isomorphism, so
that, for example, So ®p So = So ®4 So. The comultiplications Az, Ag on R, S
respectively are given by

Ar(a+so) =a+s0®1+1® so+ Also), 2.2.1)
Asb+s50)=b+s501+1® 50+ Alsg), (2.2.2)
and similar considerations apply to the multiplication maps R ®4 R — R and

S ®p S — S and the antipodes R — Rand S — S.

PROPOSITION 2.2.1.  The category of R-comodules is equivalent to the category
of A-modules M equipped with an S-comodule structure on N := B ®4 M.

Proof. We have already observed that giving an R-comodule is the same as giv-
ing an A-module M equipped with an A-module map Ay : M — Sy ®4 M such
that (2.1.1) commutes. Since Sy is a B-module and B ®4 B = B, giving Ay such
that (2.1.1) commutes is the same as giving a B-module map Ay : N — Sy ®3 N
such that

A
N— So®z N
ANJ A®idl
id®Ay
So®p N —— So®p So @ N

commutes, or, in other words, giving an S-comodule structure on N. O

2.3. Special Case

Let O be a valuation ring and F its field of fractions. Let G be an affine group
scheme over F and let S be the corresponding commutative Hopf algebra over F.
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Decompose S as F @ Sy and define a commutative Hopf algebra R over O by
R := O& S,. Corresponding to R is an affine group scheme G over O, and giving
a representation of G (i.e., an R-comodule) is the same as giving an O-module M
together with an S-comodule structure on F @ M.

For example, when G is the multiplicative group G,,, the Hopf algebra R is
{YiczaiT € FIT, T : Y, a; € O}, which is easily seen to be the union of
the Hopf subalgebras Sy discussed in the Introduction.
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