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Toledo Invariants of 2-Orbifolds and
Higgs Bundles on Elliptic Surfaces

Mike Krebs

Introduction

In this paper we investigate the space of conjugacy classes of semisimple repre-
sentations ρ : πorb

1 (O) → U(2,1) for 2-orbifolds arising as the base of a Seifert
fibration. To each connected component in the corresponding representation va-
riety, we associate a number called the orbifold Toledo invariant. Our main result
(Theorem 6.2) explicitly computes all values that the orbifold Toledo invariant
takes on when the Seifert manifold Y is a homology 3-sphere. One thereby ob-
tains (Corollary 6.3(a)) a lower bound for the number of connected components in
the representation variety. Our results also yield (Corollary 6.3(b)) a lower bound
for the number of connected components in the space of conjugacy classes of ir-
reducible representations ρ : π1(Y ) → PU(2,1).

In [38], Toledo introduces an invariant τ for representations of the fundamental
group of an oriented 2-manifold M into PU(p,1). This invariant can be viewed as
a map τ : Hom(π1(M), PU(p,1)) → R. As discussed in Section 1, the construc-
tion of the Toledo invariant is quite general: one may replace M by an arbitrary
topological space and PU(p,1) by any topological groupG. We shall be concerned
with a compact Kähler manifold M and a group G of the form PU(p, q); under
these circumstances, representations that take on distinct Toledo invariants neces-
sarily lie in distinct components of the corresponding representation space.

In order to discuss some previous results on Toledo invariants, we now intro-
duce some notation that will be used throughout the paper. If π is any group
and G is a Lie group with Lie algebra g, then we shall say that a representation
ρ : π → G is irreducible (resp. semisimple) if the action of π on g induced via
ad(ρ) is irreducible (resp. semisimple). We denote the set of irreducible repre-
sentations ρ : π → G by Hom∗(π,G) and the set of semisimple representations
by Hom+(π,G). Endow Hom(π,G) with the point-open topology, and regard
Hom∗(π,G) and Hom+(π,G) as subspaces. (Note that if π is finitely generated
with generators t1, . . . , tn, then Hom(π,G) is homeomorphic to the closed sub-
space {(x1, . . . , xn) ∈ Gn | rα(x1, . . . , xn) = 1} of Gn, where the rα range over
all relations between the ts.) Let G act on Hom(π,G) by conjugation. For any
space M, let RG(M), R∗

G(M), and R+
G(M) denote the quotients by this action of

Hom(π1(M),G), Hom∗(π1(M),G), and Hom+(π1(M),G), respectively.
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In the case where M is a compact Riemann surface of genus g > 1, previously
established results include the following.

• The Toledo invariant gives a bijection between the set of all τ ∈ 2
3 Z with |τ | ≤

2g − 2 and the set of all connected components in R+
PU(2,1)(M) [18; 40].

• If τ is sufficiently large and c is any integer, then the subset of R+
PU(p,p)(M)

corresponding to representations with Toledo invariant τ and Chern class c is
connected [29].

• The Toledo invariant gives a bijection between the set of even integers τ with
|τ | ≤ 2(g − 1) and the set of connected components in R+

U(p,1)(M) [41].
• The subset R(τ, c) of R+

PU(p,q)(M) corresponding to representations with To-
ledo invariant τ and Chern class c is nonempty if and only if

τ = |qa − p(c − a)|
p + q

≤ (g − 1) · min{p, q}

for some integer a. Moreover, if this inequality is satisfied and if p + q and c

are coprime, then R(τ, c) is connected [7].

Other results concerning Toledo invariants can be found in [8; 9; 10; 17; 18; 20;
21; 38; 39].

For complex projective varieties M, there exists a correspondence between rep-
resentations of π1(M) and certain algebro-geometric objects on M called Higgs
bundles. (A Higgs bundle onM consists of a holomorphic vector bundle plus some
extra data; see Section 4 for the definition and basic properties.) The relationship
between representations of π1(M) and holomorphic vector bundles onM has been
developed over the last forty years by Narasimhan and Seshadri [30], Atiyah and
Bott [1], Hitchin [22], Donaldson [13], Corlette [11], Simpson [33], and others.

So as to take advantage of this correspondence, we associate to our orbifoldO a
complex surface X, called a Dolgachev surface, whose fundamental group is iso-
morphic toπorb

1 (O). Orbifold Toledo invariants for representations ρ : πorb
1 (O) →

U(2,1) are then essentially the same as Toledo invariants of the corresponding rep-
resentations of π1(X). A theorem of Simpson [34] shows that every component in
R+

U(2,1)(X) contains a point whose corresponding Higgs bundle is a Hodge bundle.
Following Xia [40], we divvy up these Hodge bundles into two types: binary and
ternary. In Section 5 we obtain enough detailed information about these binary and
ternary Higgs bundles so that—in combination with results of Xia [40]—we can
determine the Toledo invariants for all semisimple representations ρ : π1(X) →
U(2,1). This, in turn, computes the orbifold Toledo invariants for all semisimple
representations ρ : πorb

1 (O) → U(2,1), where πorb
1 (O) is assumed to be infinite.

The main theorem (Theorem 6.2) gives necessary and sufficient conditions that a
given real number τ must satisfy in order to arise as an orbifold Toledo invariant.
As corollaries, we obtain lower bounds for the number of connected components
in R+

U(2,1)(O) and R∗
PU(2,1)(Y ).

The representation variety R∗
SU(2)(Y ) has been studied in detail by Fintushel and

Stern [14], Bauer and Okonek [4], Kirk and Klassen [26], Furuta and Steer [16],
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Bauer [3], and Boden [5]. The motivation of these authors was the study of the
SU(2) Casson’s invariant and Floer homology for such spaces Y.

One motivation for studying PU(2,1) representations of the fundamental groups
of 3-manifolds comes from spherical Cauchy–Riemann (CR) geometry. A spher-
ical CR structure on a 3-manifold M is a system of coordinate charts into S3 such
that the transition functions are elements of PU(2,1). (Here we regard PU(2,1)
as the isometry group of the complex ball in C

2 and the conformal group of its
boundary S3; see [17].) In [24], Kamishima and Tsuboi classify those closed ori-
entable 3-manifolds that admit S1-invariant spherical CR structures; these include
the Seifert fibered homology 3-spheres considered here. The space RPU(2,1)(M)

provides a local model for the deformation space of spherical CR structures on
M [23].

There are two reasons for suspecting that the lower bound we give on the num-
ber of components in R∗

PU(2,1)(Y ) is not sharp. The first is that it takes into
account only those corresponding elements of R∗

PU(2,1)(X) that are lifted from
U(2,1) representations of π1(X). (Every representation ρ : π1(Y ) → PU(2,1) is
lifted from a U(2,1) representation, as can be seen from the vanishing of the term
H 2(π1(Y ), Z3) in the exact sequence

H1(π1(Y ), PU(2,1)) → H1(π1(Y ), U(2,1)) → H 2(π1(Y ), Z3)

in group cohomology; but there is no guarantee that the same holds for π1(X),
since H 2(π1(X), Z3) 
= 0.) The second reason is that, for R+

U(2,1)(O), we conjec-
ture that the number of components is in general strictly greater than the number
of orbifold Toledo invariants that occur. We plan to continue investigating these
representation spaces with the goal of precisely determining the number of com-
ponents in them.

The author is grateful to I. Dolgachev, E. Falbel, H. Ren, R. Seyyedali, S. Zre-
biec, G. Tinaglia, and most especially his thesis advisor, Richard Wentworth, for
many helpful discussions. The author also wishes to thank the referee for many
detailed and thoughtful suggestions.

1. Toledo Invariants

The goal of this section is to define a family of invariants, called Toledo invariants,
for representations ρ : π1(M) → G when M is a manifold and G is a topologi-
cal group. “Invariant” means unchanged by conjugation and so these invariants
define functions on the representation variety RG(M). We prove that these func-
tions are (under some mild restrictions) continuous, which means they can be
used to distinguish the components of RG(M). We then describe one such Toledo
invariant—more specifically, in the case where G = U(2,1).

Let B be a G-space homeomorphic to R
n for some n, where G is a topological

group acting continuously on B on the left. (More generally, we might take B to
be a solid topological space in the sense of [36].) We now take ω to be a fixed G-
invariant representative of a cohomology class in H ∗(B, C). We may regard ω as
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a closed singular cochain or as a closed differential form, depending on which is
more convenient.

Let M be a C∞ manifold. We define a map τB,ω from Hom(π1(M),G) to
H ∗(M, C) as follows. Let ρ ∈ Hom(π1(M),G). Let M̃ be the universal cover
of M. Note that π1(M) acts on M̃ × B by γ · (m, x) = (γ · m, ρ(γ ) · x). Let
Eρ be the flat B-bundle on M obtained by taking M̃ × B modulo the action of
π1(M). Let πB : M̃ × B → B be the projection map onto the second factor, and
let ϕ be the natural map from M̃ × B to Eρ. Since π1(M) acts freely on M̃ and ω
is G-invariant and closed, the pullback π∗

Bω descends to Eρ , where it represents a
cohomology class [ϕ∗π∗

Bω] ∈ H ∗(Eρ , C). Since the fibre B is homeomorphic to
R
n, it follows that Eρ has a section s; moreover, any two sections are homotopic

[36, Thm. 12.2]. Consequently, [s∗ϕ∗π∗
Bω] is a well-defined cohomology class

in H ∗(M, C).

Definition 1.1. The Toledo invariant τB,ω(ρ) := [s∗ϕ∗π∗
Bω] ∈H ∗(M, C).

When it is clear from the context, we will drop the B and ω and simply denote the
Toledo invariant by τ.

Lemma 1.2. If M is a C∞ manifold and ρ ∈ Hom(π1(M),G), then τ(ρ) =
τ(gρg−1) for all g ∈ G. In other words, the Toledo invariant is invariant under
conjugation.

Proof. We define a map ψ : M̃ × B → M̃ × B by ψ(x, b) = (x, g · b). Let ρ ′ =
gτg−1. Let Eρ = M̃×B

π1(M)
(where the action is induced by ρ), and let Eρ ′ = M̃×B

π1(M)

(where the action is induced by ρ ′). Then ψ descends to a map from Eρ to Eρ ′ ;
we denote this new map by ψ as well. If s is a section of Eρ , then s ′ = ψ � s is a
section of Eρ ′ . The lemma then follows from Definition 1.1.

Lemma 1.2 shows that the Toledo invariant can be viewed as a function τB,ω:
RG(M) → H ∗(M, C) on the representation variety, and one would expect it to
be continuous.

Lemma 1.3. Suppose that B and M are C∞ manifolds, that M is compact, that
G is a Lie group, and that ω is a closed G-invariant k-form on B. Then τB,ω de-
fines a continuous function from RG(M) to H k(M, C).

A proof of Lemma 1.3 can be found in [28].

Remark. If the image of τB,ω is discrete, then Lemma 1.3 shows that τB,ω is
constant on connected components of RG(M). This will be the case in our main
theorem (Theorem 6.2); the number of distinct values of τB,ω therefore provides,
in this case, a lower bound for the number of connected components in RG(M).

Lemma 1.3 is used (implicitly) in this manner in [7; 29; 40; 41].

Example. A simple example shows that τB,ω is not always constant on con-
nected components of Hom(π1(M),G). Let M be the unit circle S1, let G = B =
R (where G acts on B by translation), and let ω = dx. Let t be the standard
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generator of π1(M), and identify Hom(π1(M),G) with R by ρ �→ ρ(t). Since
Hom(π1(M),G) has a single connected component, it suffices to show that the
Toledo invariant is not a constant function. Identifying M̃ with R in the usual way,
a ρ-equivariant section of M̃ × B is given by x �→ (x, ρ(t)x). One can then com-
pute that the Toledo invariant τB,ω(ρ) is the cohomology class defined by ρ(t)dθ.

We now turn our attention to the special case of this construction that will be
the focus of the remainder of this paper. Define g : C

3 → C by g(z0, z1, z2) =
|z0|2 − |z1|2 − |z2|2. Let

U(2,1) = {A∈ GL(3, C) | g(Az) = g(z) for all z∈ C
3}.

This group acts on the complex hyperbolic space

H2
C

= {(1, z1, z2)∈ C
3 | 1 − |z1|2 − |z2|2 < 1}

by A ·z = λ · (Az), where λ∈ C
∗ is the inverse of the first coordinate of Az, which

is nonzero because A preserves the indefinite form g. Thus A · z∈ H2
C
. Note that

H2
C

is homeomorphic to R
4. The center Z = {λI | λ ∈ U(1)} of U(2,1) acts triv-

ially on H2
C

and so the U(2,1) action descends to an action of the quotient group
PU(2,1) = U(2,1)/Z. In fact, PU(2,1) is the isometry group of H2

C
(see [17]).

Let ω = i
2π ∂∂̄ log g, and observe that ω is invariant under the actions of U(2,1)

and PU(2,1). From here on, we study the Toledo invariant τB,ω (with B = H2
C

and ω as before) for either G = U(2,1) or G = PU(2,1).

2. PU(2,1) Representations of Fundamental Groups of
Seifert Fibered Homology 3-Spheres

The goal of this section is to note the relationship between PU(2,1) representa-
tions of the fundamental group of a Seifert fibered homology 3-sphere and PU(2,1)
representations of the fundamental group of a certain elliptic surface called a Dol-
gachev surface.

LetY be a Seifert fibered homology 3-sphere (see [31] for the definition of Seifert
fibered spaces and basic facts about them). Following Lemma 2.1, we shall impose
some additional constraints on Y. A (2n + 1)-tuple (−c0; (m1, c1), . . . , (mn, cn))
of integers, with mk positive for all k, is associated to Y. These integers are called
the Seifert invariants of Y ; we may think of mk as the degree of twisting of the kth
singular fibre of Y. For Y to be a homology 3-sphere requires that gcd(mj ,mk) =
1 whenever j 
= k [16]. The notation Y, n, and (−c0; (m1, c1), . . . , (mn, cn)) will
be fixed throughout the sequel.

The fundamental group of Y has the following presentation [31, Sec. 5.3]:

π1(Y ) = 〈t1, . . . , tn,h | t mk
k hck = t1 . . . tnh

c0 = [h, tk] = 1〉.
For any group G, let Z(G) denote its center. We have that Z(π1(Y )) is generated
by h [31, Sec. 5.3], so

π1(Y )

Z(π1(Y ))
= 〈t1, . . . , tn | t mk

k = t1 . . . tn = 1〉.
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We now construct a complex surfaceX known as a Dolgachev surface. The fol-
lowing description of this construction is taken from [4]. A generic cubic pencil in
CP

2 has nine base points. Blowing up at these nine points, we obtain an algebraic
surface X0 along with an elliptic fibration π0 : X0 → CP

1. Apply logarithmic
transformations [19] along n disjoint nonsingular fibres of X0 with multiplicities
m1, . . . ,mn. The result is an elliptic fibration π : X → CP

1, where X is the de-
sired complex surface. Throughout this paper, X will denote a Dolgachev surface
whose invariants are (m1, . . . ,mn).

Lemma 2.1. π1(X) = π1(Y )

Z(π1(Y ))
. If n ≤ 2, then π1(X) is trivial. If n = 3 and

{m1,m2,m3} = {2, 3, 5}, then π1(X) is the alternating group A5.

Proof. See [12, Chap. II, Sec. 3] or [4, Prop. 1.2] and subsequent discussion.

Because of Lemma 2.1, we will impose the restrictions that n ≥ 3 and that, if n =
3, then {m1,m2,m3} 
= {2, 3, 5}.
Lemma 2.2. Let H be a group, and let ρ ∈ Hom∗(H, PU(2,1)). Then no points
and no complex geodesics in H2

C
are invariant under the action of H on H2

C
in-

duced by ρ.

Proof. First, suppose that there exists x ∈ H2
C

such that ρ(h) · x = x for all h ∈
H. Let K = {φ ∈ PU(2,1) | φ(x) = x}. Then K is a Lie subgroup of PU(2,1); in
fact, K is conjugate to P(U(2)×U(1)). Let su(2,1) be the Lie algebra of PU(2,1),
and let k be the Lie subalgebra of su(2,1) corresponding to K. Since ρ(H ) ⊂ K,
we have that k is invariant under the action of H on su(2,1)—but this is a contra-
diction, since ρ is irreducible.

Similarly, suppose that P is a complex geodesic in H2
C

such that ρ(h) · x ∈ P

for all h ∈ H and x ∈ P. In this case, we take K to be the set of all elements in
PU(2,1) that preserve P. Again, K is a Lie subgroup of PU(2,1); this time, K is
conjugate to P(U(1)× U(1,1)). Again, we find that k is invariant under H, contra-
dicting ρ’s irreducibility.

Remarks. The converse of Lemma 2.2 also holds.

Lemma 2.3. There exists a homeomorphism ϕ : Hom∗(π1(X), PU(2,1)) →
Hom∗(π1(Y ), PU(2,1)).

Proof. By Lemma 2.1 we have a surjection σ : π1(Y ) → π1(X), which in turn
induces an injection ϕ : Hom∗(π1(X), PU(2,1)) → Hom∗(π1(Y ), PU(2,1)). We
must now show that ϕ is surjective. It suffices to prove that ρ̃ maps h to the iden-
tity element in PU(2,1) for any irreducible representation ρ̃ : π1(Y ) → PU(2,1).
Goldman [17, p. 203] shows that ρ̃(h) has a fixed point x1 ∈ H2

C
∪ ∂H2

C
. Irre-

ducibility of ρ̃ then implies that ρ̃(h) has three linearly independent fixed points
x1, x2, x3. Choose a lift h̃ of ρ̃(h) to U(2,1). We now prove by contradiction that
h̃ has exactly one eigenvalue. First, suppose that h̃ has three distinct eigenvalues.
In this case, we have that x1, x2, and x3 are exactly the three one-dimensional
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eigenspaces of h̃. For each k ∈ {1, . . . , n}, lift ρ̃(tk) to U(2,1) and denote the lift
by t̃k . We find that ρ̃(tk) maps fixed points of ρ̃(h) to fixed points of ρ̃(h). In
other words, t̃k permutes x1, x2, and x3. Let ηk be this permutation regarded as
an element of the symmetric group S3. The relation t mk

k hck = 1 implies that the
order ord(ηk) of ηk divides mk. Pairwise coprimality of the mk implies that ηk =
1 for all k. By Lemma 2.2, this contradicts irreducibility of ρ̃. A similar argument
shows that h̃ cannot have exactly two distinct eigenvalues. Therefore, h̃ has three
linearly independent eigenvectors and exactly one eigenvalue. Hence h̃ is of the
form λI, which implies that ρ̃(h) is the identity in PU(2,1).

3. Dolgachev Surfaces

In this section, we collect facts about our Dolgachev surface X that will be use-
ful later.

Recall the construction of X from Section 2. We may choose our pencil of
curves such that each singular fibre is a rational curve with an ordinary double
point. Then there are twelve such singular fibres in this fibration [15, p. 192],
which we denote by E1, . . . ,E12. Denote the generic fibre of X by F and the mul-
tiple fibres of X by F1, . . . ,Fn, where Fk has multiplicity mk. For all j, k, we have
that Ej is linearly equivalent to F is linearly equivalent to mkFk.

We say that a divisor D on X is vertical if mD is linearly equivalent to π∗(D ′)
for some divisor D ′ on CP

1. Observe that a multiple fibre Fk is vertical, but it is
not the pullback of a divisor on CP

1. (This definition of a vertical divisor D is
not equivalent to the condition D · F = 0, contrary to what one sees occasion-
ally in the literature.) A divisor D is vertical if and only if it is linearly equivalent
to aF + ∑

akFk for some integers a, a1, . . . , an. When we write a vertical divi-
sor in this form, we always assume that 0 ≤ aj < mj for all j = 1, . . . , n unless
otherwise noted.

Lemma 3.1 (Dolgachev). The surface X is projective and has topological Euler
characteristic eX = 12, irregularity q = 0, geometric genus pg = 0, and canoni-
cal bundle KX = OX

(−F + ∑
k(mk − 1)Fk

)
.

Lemma 3.2. For any vertical divisor aF + ∑
akFk:

(i) h0
(OX

(
aF + ∑

akFk
)) = max(a + 1, 0);

(ii) h1
(OX

(
aF + ∑

akFk
)) = max(a, −a − 1);

(iii) if s is a global section of the locally free sheaf OX

(
aF + ∑

akFk
)
, then s is

constant on fibres.

Proof. The proofs of (i) and (ii) can be found in [4, Lemma 1.1]. For (iii), let
w0 = π(F )∈ CP

1. Choose a local coordinate w on CP
1 centered at w0. In order

that H 0
(OX

(
aF + ∑

akFk
)) 
= 0, we must have a ≥ 0, by (i). Let fj = w−j for

j = 0, . . . , a. The fj are linearly independent, so {fj � π} is a set of a +1 linearly
independent elements in H 0

(OX

(
aF + ∑

akFk
)) 
= 0. By (i), s must be a lin-

ear combination of the elements fj � π. Because each fj � π is constant on fibres,
so is s.
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Lemma 3.3. Let Fk be a multiple fibre. Then there exists a collection {Uα} of
open sets of X such that the following statements hold.

(i) The Uα cover Fk.
(ii) Each Uα is a coordinate neighborhood on X, and each Uα is disjoint from

the singular fibres and from the other multiple fibres.
(iii) Denoting the coordinates on Uα by (wα , zα) and those on Uβ by (wβ , zβ), we

have wα = ζαβwβ and zα = zβ + tαβ on Uα ∩ Uβ for some complex num-
bers ζαβ with ζ mk

αβ = 1 and some functions tαβ .
(iv) The fibration map π locally takes the form (wα , zα)

π�→ w = wmk
α , where w

is the local coordinate on CP
1.

(v) {wα = 0} is a set of local defining equations for the divisor Fk.

Proof. The result follows directly from the definition of the logarithmic transfor-
mation [19]; see [28] for more details.

We will not hereafter distinguish between a vector bundle and its associated lo-
cally free sheaf of holomorphic sections as long as no confusion is likely to result.
Two exceptions will come in Lemma 3.4 and in Section 5.2, where we will make
use of the following system of trivializations for vertical line bundles.

Let V be a small coordinate disc in CP
1, with coordinate w centered at 0, such

that π0(Ej ) /∈ V for j = 1, . . . ,12. Without loss of generality, assume that V con-
tains the points 0, ∞, and π(Fk) for each multiple fibre Fk , that π(Fk) /∈ {0, ∞}
for all k, and that F = π−1(0). Cover π−1(V − ∞)− ⋃

Fk by coordinate neigh-
borhoods Vγ so that there are coordinates (wγ , zγ ) on Vγ and the map π is given
by π(wγ , zγ ) = w on Vγ , where w is the coordinate on CP

1 centered at 0. For
each multiple fibre Fk , let {Uα,k} be a system of coordinate neighborhoods cover-
ing Fk , where Uα,k has coordinates (wα,k , zα,k). Cover π−1(V − 0)− ⋃

α,k Uα,k

by coordinate neighborhoods Wξ so that there are coordinates (wξ , zξ ) on Wξ and
the map π is given by π(wξ , zξ ) = 1/wξ on Wξ. The relationships between the
w-coordinates are as follows.

On Uα1 ∩ Uα2 : wα1,k = ζα1α2,kwα2,k for some mkth root of unity ζα1α2,k.

On Uα ∩ Vγ : wγ = w
mk

α,k + tα,k for some complex number tα,k.

On Vγ ∩Wξ : wξ = 1/wγ .

Let L = OX

(
aF + ∑

akFk
)

be a vertical line bundle. Local trivializations for
L are given by the maps f ·w−ak

α,k �→ f on Uα,k , f ·w−a
γ �→ f onVγ , and f �→ f

on Wξ. From now on, the notation Uα,k ,Vγ ,Wξ ,wα,k ,wγ ,wξ will be fixed. More-
over, sections of a vertical line bundle L will be written locally on Uα,k , Vγ , and
Wξ with respect to these trivializations.

Lemma 3.4. Let L = OX

(
aF + ∑

akFk
)

be a vertical line bundle.
(i) Suppose a ≥ 0. If 0 ≤ j ≤ a, then there exists a section sj ∈H 0(L) such

that sj is given by sξ = wa−j
ξ onWξ , sγ = w

j
γ onVγ , and sα,k = (w

mk

α,k+ tα,k)
jw

ak
α,k

on Uα,k. Moreover, {sj | 0 ≤ j ≤ a} is a basis for H 0(L).
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(ii) Suppose a ≤ −2. If a < j < 0, then there exists a Čech 1-cocycle σj ∈
C1(L) such that σj is given by σγ ξ = w

j
γ on Vγ ∩Wξ with respect to the trivializa-

tion on Vγ and such that σξ1ξ2 , σγ1γ2 , σα,k;γ , and σα1,k;α2,k vanish on Wξ1 ∩ Wξ2 ,
Vγ1 ∩Vγ2 ,Uα,k ∩Vγ , andUα1,k ∩Uα2,k , respectively. Moreover, identifying σj with
its image in H1(L), we have that {σj | a < j < 0} is a basis for H1(L).

Proof. With fj � π as in the proof of Lemma 3.2, let sj = fj � π. By Lemma 3.2
we know that {sj} is a basis for H 0(L). In local coordinates, sj has the form re-
quired in (i). The σj in (ii) are obtained by pulling back a basis for H1(OCP1(a))

via π.

Remark 3.5. Let H0 be a fixed ample divisor on X. Let

k0 = 1 + 3

(
max

{
1, −2 +

∑ mk − 1

mk

})
(H0 · F ).

Let H = H0 + k0F.

Note that H is ample. Throughout this paper, the degree of a coherent sheaf—and
all related concepts (e.g., stability)—will be with respect to H.

Lemma 3.6. There exists a short exact sequence

0 → OX

(
−2F +

∑
k

(mk − 1)Fk

)
→ B1

X → IZ ⊗ OX(F ) → 0,

where B1
X denotes the sheaf of holomorphic 1-forms on X, where Z is the reduced

subscheme associated to the set of singular points of singular fibres of X, and
where IZ is the ideal sheaf of Z.

Proof. Pullback of holomorphic 1-forms via π gives rise (see [2, p. 98]) to an in-
jection of sheaves

0 → π∗B1
CP1 → B1

X.

LetB1
X/CP1 denote the sheaf of relative differentials (i.e., the cokernel of this map).

Since π∗B1
CP1 = OX(−2F ), we compute that

det(B1
X/CP1) = OX

(
F +

∑
(mk − 1)Fk

)
.

Let T = Tor(B1
X/CP1), where Tor(S ) denotes the torsion part of a sheaf S. We

claim that T is isomorphic to
⊕n

k=1 O(mk−1)Fk((mk − 1)Fk). To prove this claim,
we first observe that the support of T is contained in the union of the multiple fi-
bres of X [2, p. 98]. Let Fk be a multiple fibre, and let {Uα} be a collection of
coordinate neighborhoods as in Lemma 3.3. It suffices to show that T |⋃Uα is iso-
morphic to O(mk−1)Fk((mk − 1)Fk).

LetV be an open subset of
⋃
Uα. A section s ofB1

X/CP1(V ) is given by a collec-
tion {(Vα , sα)}, where

⋃
Vα = V, sα ∈B1

X(Vα), and sβ − sα ∈ π∗B1
CP1(Vα ∩ Vβ).

Without loss of generality, we assume that Vα ⊂ Uα for each α. For coordinates
on Vα , take the coordinates (wα , zα) from Uα as in Lemma 3.3. Now B1

X(Vα) is
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free; its generators are dwα and dzα. Also, π∗B1
CP1(Vα) is free, with generator

π∗(du) = d(wmk
α ) = (mk −1)wmk−1

α dwα , where u is the local coordinate on CP
1.

We see then that, locally, B1
X/CP1 has two generators (dwα and dzα) subject to the

relation wmk−1
α dwα = 0. Therefore, T is given locally by the one generator dwα

subject to the relation wmk−1
α dwα = 0.

Similarly, we find that O(mk−1)Fk((mk − 1)Fk) is given locally by one gen-
erator, w1−mk

α , subject to the rather odd-looking relation wmk−1
α · w1−mk

α = 0.
Consequently, the map from T |⋃Uα to O(mk−1)Fk((mk − 1)Fk) that sends dwα to
w1−mk
α is a well-defined isomorphism of sheaves.
Let Q = B1

X/CP1/T. We can then compute that

det(Q) = det(T )∗ ⊗ det(B1
X/CP1) = OX(F ).

We have a natural map B1
X → Q, which is surjective. Let N be the kernel of this

map. We then have a short exact sequence

0 → N → B1
X → Q → 0. (1)

As a result, N = OX

(−2F + ∑
(mk − 1)Fk

)
. Since Q is torsion-free, it follows

that Q = IZ ⊗ det(Q) = IZ ⊗ OX(F ) for some codimension-2 subscheme Z [15,
p. 33]. Now, B1

X/CP1 fails to be locally free precisely where π is singular. Because
T is supported on the union of the multiple fibres, Q will fail to be locally free at
every singular point of π outside of the multiple fibres. In particular, Z contains
the set of singular points of the twelve singular fibres. From (1) and the equation

c2(B
1
X) = c1(N ) · c1(OX(F ))+ G(Z)

(see [15, p. 29]), where G(Z) is the length of Z, we find that G(Z) = c2(B
1
X) =

12. Therefore, Z is the subscheme of X associated to the set of singular points of
the singular fibres, each point taken with multiplicity 1. The exact sequence (1)
then has the desired form.

From now on, let N, Q, and Z be as in the proof of Lemma 3.6.

Lemma 3.7. LetA = aF+∑
akFk be a vertical divisor. IfH 0(OX(−A)⊗Q) 
=

0, then H 0(OX(−A)⊗N) 
= 0 and deg(OX(A)) < 0.

Proof. A nonzero global section s of OX(−A)⊗Q is a nonzero global section of
OX(−A + F ) that vanishes on the total space of Z. Since −A + F is vertical, it
follows by Lemma 3.2 that s is constant on fibres. Thus s vanishes identically on
each singular fibre of X and hence can be regarded as a nonzero global section of
OX

(−A+ F − ∑12
j=1(Ej )

)
. Now −A+ F − ∑12

j=1(Ej ) is linearly equivalent to

(−11 − a − #{k | ak 
= 0})F +
∑
ak 
=0

(mk − ak)Fk

and so, by Lemma 3.2, a ≤ −11 − #{k | ak 
= 0} ≤ −2. Again by Lemma 3.2,
h0(OX(−A)⊗N) = (−2 − a)+ 1 > 0, as desired. Moreover,

deg(OX(A)) =
(
a +

∑ ak

mk

)
deg(F )

≤ (a + #{k | ak 
= 0}) deg(F ) ≤ −11deg(F ) < 0.
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Lemma 3.8. Let B = bF + ∑
bkFk. Then H 0(OX(−B)⊗B1

X) 
= 0 if and only
if b ≤ −2.

Proof. First assume that b ≤ −2. Tensoring the exact sequence (1) from Lemma
3.6 with OX(−B), we see that H 0(OX(−B) ⊗ N) 
= 0. The nonvanishing of
H 0(OX(−B)⊗N) follows from the effectiveness of−B+(−2F+∑

k(mk−1)Fk
)
.

(Recall the convention that bk < mk for all k.)
We now assume that H 0(OX(−B) ⊗ B1

X) 
= 0 and show that b ≤ −2. We
must have H 0(OX(−B) ⊗ Q) 
= 0 or H 0(OX(−B) ⊗ N) 
= 0. In either case,
H 0(OX(−B)⊗N) 
= 0 by Lemma 3.7. But then (−2−b)F +∑

(mk −1−bk)Fk
is linearly equivalent to an effective divisor. Therefore, b ≤ −2.

Remark. In fact, we can compute that h0(OX(−B) ⊗ B1
X) = max{0, −2 − b}.

To do so, let L = OX(B) and consider the exact sequence 0 → π∗(L∗ ⊗ N) →
π∗(L∗ ⊗ B1

X) → π∗(L∗ ⊗ Q). Then show that π∗(L∗ ⊗ N) is a line bundle on
CP

1, that π∗(L∗ ⊗B1
X) is a coherent sheaf of rank 1 on CP

1, and that π∗(L∗ ⊗Q)

is torsion-free. It follows that

max{0, −2 − b} = h0(L∗ ⊗N) = h0(π∗(L∗ ⊗N))

= h0(π∗(L∗ ⊗B1
X)) = h0(L∗ ⊗B1

X).

4. U(2,1) Higgs Bundles

Hitchin and colleagues (see [22; 33; 35]) have shown that representations of the
fundamental group of a compact Kähler manifold are closely related to holomor-
phic objects called Higgs bundles. The goal of this section is to describe the Higgs
bundles that arise from U(2,1) representations of the fundamental group of a Dol-
gachev surface and then to describe the Toledo invariant of such a representation
in terms of the Chern classes of the associated Higgs bundle.

Definition 4.1. Let M be a complex algebraic manifold, and let H be a fixed
ample line bundle on M. A Higgs bundle on M is a pair (V, θ), whereV is a holo-
morphic vector bundle on M, θ ∈H 0(End(V )⊗B1

M), and θ ∧ θ = 0; θ is called
the Higgs field. A subsheaf S of V is said to be θ -invariant if θ(S ) ⊂ S⊗B1

M. The
slope µ(S ) of a coherent sheaf S on M with rank(S ) > 0 is defined by µ(S ) =
deg(S )
rank(S ) , where deg(S ) is the degree of S with respect to H. A Higgs bundle (V, θ)
is stable if µ(S ) < µ(V ) for all coherent θ -invariant subsheaves S of V with
rank(S ) > 0. A Higgs bundle (V, θ) is polystable if it is a direct sum of stable
Higgs bundles each with the same slope (one forms the direct sum in the obvi-
ous way). A Higgs bundle (V, θ) is reducible if it is a direct sum of Higgs bundles
and is irreducible otherwise. We say that a Higgs bundle (V, θ) is a U(2,1) Higgs
bundle if V = VP ⊕ VQ (where VP and VQ are vector bundles of rank 2 and 1,
respectively) and if θ maps VP to VQ ⊗B1

M and VQ to VP ⊗B1
M.

For any group H, let Hom+(H, U(2,1)) denote the space of semisimple represen-
tations from H into U(2,1).
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Lemma 4.2. There exists a surjective function φ : H → Hom+(π1(X), U(2,1)),
where H is the set of all polystable U(2,1)Higgs bundles (V, θ) onX whose sum-
mands have vanishing Chern classes.

Proof. Let H ′ be the set of all polystable rank-3 Higgs bundles (V, θ) on X

whose summands have vanishing Chern classes. By Lemma 3.1, X is algebraic
and hence compact Kähler. In [33], Simpson shows that there is a surjective func-
tion φ : H ′ → Hom+(π1(X), GL(3, C)). In [40, Prop. 3.1], Xia shows that H =
φ−1(Hom+(π1(X), U(2,1))). (Xia’s proof is for Riemann surfaces, but it goes
through for any compact Kähler manifold.)

Lemma 4.3 [40]. Let H and φ be as in Lemma 4.2, and let (V, θ) ∈ H . Write
V = VP ⊕ VQ as in Definition 4.1. Then τ(φ(V, θ)) = c1(VP).

Remark. Lemmas 4.2 and 4.3 serve as a bridge from the world of semisimple
representations and Toledo invariants to the world of polystable Higgs bundles and
Chern classes. Consequently, even though the definition of the Toledo invariant
is topological in nature, these two lemmas enable us to use algebraic geometry in
order to compute which Toledo invariants actually occur.

Definition 4.4. For (V, θ) = (VP ⊕ VQ, θ) a U(2,1) Higgs bundle as in Defi-
nition 4.1, we define the Higgs bundle Toledo invariant τH (V, θ) by τH (V, θ) =
1
3 (c1(VP)− 2c1(VQ)).

Note that if (V, θ) ∈ H then V is flat, in which case Definition 4.4 is consistent
with Lemma 4.3. We adopt this definition so as to be consistent with [40] and [6],
for example.

Lemma 4.5. Let (V, θ)∈ H , and let L be a line bundle. Then:

(i) (V ⊗L, θ ⊗1) is a polystable U(2,1) Higgs bundle with τH (V ⊗L, θ ⊗1) =
τH (V, θ);

(ii) (V ∗, θ)∈ H and τH (V ∗, θ) = −τH (V, θ).

Proof. These statements follow directly from the definitions. See [40] for more
details.

5. Hodge Bundles on Dolgachev Surfaces

The results of Section 4 imply that computing Toledo invariants of semisimple
U(2,1) representations of the fundamental group of a Dolgachev surface requires
only that we compute Chern classes of the summands of certain polystable U(2,1)
Higgs bundles. The goal of this section is to show that we may restrict our at-
tention to a special class of these Higgs bundles—namely, Hodge bundles. The
method is due to Simpson (see [33; 34]). Following Xia [40], we then divide these
Hodge bundles into two types: binary and ternary.
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Definition 5.1. LetM be a complex algebraic manifold. A Hodge bundle onM
is a Higgs bundle (V, θ) such that V = ⊕

V r,s and θ r,s : V r,s → V r−1,s+1 ⊗B1
M ,

where θ r,s is the restriction of θ to V r,s.

Lemma 5.2. (a) There exists a quasiprojective variety MDol whose points pa-
rameterize direct sums of stable Higgs bundles with vanishing Chern classes.

(b) Let f be the map from MDol to the space of polynomials with coefficients in
symmetric powers of the cotangent bundle that takes (V, θ) to the characteristic
polynomial of θ. Then f is proper.

(c) Let MDol(U(2,1)) denote the subspace of MDol whose points parameterize
polystable U(2,1) bundles. Then every connected component of MDol(U(2,1))
contains a Hodge bundle.

(d) MDol(U(2,1)) is homeomorphic to R+
U(2,1)(X).

Proof. (a) See [34, Prop. 1.4].
(b) See [34, Prop. 1.4].
(c) In [34, Thm. 3], Simpson proves as follows that every component of MDol

contains a Hodge bundle. Let C
∗ act on MDol by t · (V, θ) = (V, tθ). As t → 0,

we have f(t · (V, θ)) → 0. Since f is proper, t · (V, θ) converges to a limit Higgs
bundle (V0, θ0). Since MDol is Hausdorff, it follows that the limit is unique. Con-
sequently, (V0, θ0) is fixed under the action of C

∗ and is therefore a Hodge bundle
[34, Lemma 4.1].

Since U(2,1) is closed in GL(3, C), we have that MDol(U(2,1)) is closed in
MDol. Therefore, f restricted to MDol(U(2,1)) is still proper, and our proof goes
through unchanged.

(d) See [34, Prop. 1.5].

Definition 5.3 [40]. We say a Higgs bundle (V, θ) is binary if V = VP ⊕VQ is

a U(2,1) Higgs bundle with θ |VQ = 0. In this situation, denote (V, θ) by VP
θ⊕−→

VQ (omitting θ if it’s clear from the context).
We say a Higgs bundle (V, θ) is ternary if V = V2 ⊕V3 ⊕V1. HereV1,V2, and

V3 are line bundles, and θ maps V2 to V3 ⊗ B1
X, maps V3 to V1 ⊗ B1

X, and maps

V1 to 0. In this situation, denote (V, θ) by V2
⊕−→ V3

⊕−→ V1. (Here we have VP =
V1 ⊕ V2 and VQ = V3.)

It follows from Definition 5.3 and Lemma 4.5 that if a polystable U(2,1) Higgs
bundle is a Hodge bundle then it is either ternary, binary, or dual to a binary bun-
dle. Also, every polystable Higgs bundle is either stable or reducible. We there-
fore investigate the following four types of polystable U(2,1)Higgs bundles: stable
ternary, stable binary, reducible ternary, and reducible binary.

5.1. Stable Ternary Higgs Bundles

Proposition 5.4. Let V2 = OX

(
bF + ∑

bkFk
)

and V1 = OX

(
aF + ∑

akFk
)
.

Then there exists a Higgs field θ such that (V, θ) = V2
⊕−→ OX

⊕−→ V1 is a stable
ternary Higgs bundle if and only if
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(i) b ≤ −2,
(ii) a + #{k | ak 
= 0} ≥ 2,

(iii) 2A < B, and
(iv) A < 2B,

where A = a + ∑ ak
mk

and B = b + ∑ bk
mk
.

Proof. First assume that such a Higgs field θ exists. Stability then implies that
θ |V2 and θ |OX

are nonzero. Hence H 0(V ∗
2 ⊗ B1

X) 
= 0 and H 0(V1 ⊗ B1
X) 
= 0.

Conditions (i) and (ii) then follow from Lemma 3.8. Conditions (iii) and (iv) fol-
low because the θ -invariant subsheaves OX ⊕ V1 and V1 are not destabilizing.

Conversely, if (i) and (ii) hold, then let θ2 be a nonzero global map from V2 to
N and let θ1 be a nonzero global map from OX toV1 ⊗N. (Lemma 3.8 shows that
θ2 and θ1 exist.) Let (wγ , zγ ) be coordinates onVγ , as in the discussion following
Lemma 3.3. On Vγ , then, θ1 has the form g1dwγ for some meromorphic function
g1, and θ2 = g2dwγ on Vγ for some meromorphic g2. Define θ by θ |V2 = θ2,
θ |OX

= θ1, and θ |V1 = 0. Then θ ∧ θ = θ1 ∧ θ2 = 0 on Vγ . Similarly, we find
that θ ∧ θ vanishes outside the union of the singular fibres and the multiple fibres.
Hence θ ∧ θ = 0 everywhere. Moreover, conditions (iii) and (iv), together with
the nonvanishing of θ1 and θ2, guarantee that (V, θ) is stable.

Lemma 5.5. Suppose that (V, θ) = V2
⊕−→ OX

⊕−→ V1 is a stable ternary Higgs
bundle. Then V2 and V1 are vertical.

Proof. Choose divisorsD1 andD2 such thatV1 = OX(D1) and V2 = OX(D2). As
in the proof of Lemma 5.4, we see that H 0(OX(−D2)⊗B1

X) 
= 0. From the short
exact sequence (1) in Lemma 3.6, we find that either −D2 − 2F + ∑

(mk −1)Fk
or −D2 + F is linearly equivalent to an effective divisor. Hence D2 · F ≤ 0,
with equality if and only if D2 is vertical; furthermore, H0 ·D2 ≤ k0/3, where
H0 and k0 are as in Remark 3.5. Similarly, we find that D1 · F ≥ 0, with equal-
ity iff D1 is vertical, and that H0 · D1 ≥ −k0/3. Therefore, H0 · (D1 − 2D2) ≥
−k0. Suppose that either D1 or D2 is nonvertical. Then, by Remark 3.5, we have
H · (D1 − 2D2) ≥ 0. But this violates (iv) of Proposition 5.4.

5.2. Stable Binary Higgs Bundles with rank(im(θ)) = 1

Let (V, θ) = VP
⊕−→ OX be a stable projectively flat binary Higgs bundle. When

restricted toVP , the Higgs field θ |VP is a map fromVP to B1
X. The image im(θ |VP )

of this map is a subsheaf ofB1
X. Stability implies that θ |VP cannot be the zero map,

so im(θ |VP ) must have rank 1 or rank 2. We shall address these cases separately,
beginning with rank 1.

Proposition 5.6. If (V, θ) = VP
⊕−→ OX is a stable projectively flat binary Higgs

bundle with rank(im(θ |VP )) = 1, then VP can be written as an extension of the
form

0 → V1 → VP
β−→ V2 −→ 0, (2)
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where V1 = OX

(
aF + ∑

akFk
)

and V2 = OX

(
bF + ∑

bkFk
)

and where a and
b are subject to the following numerical conditions:

(i) −B < A < 1
2B;

(ii) d2 ≤ −2;
(iii) b ≤ −2;
(iv) if (c, c1, . . . , cn) is an (n+1)-tuple of integers such that 0 ≤ ck < mk for all

k and if d1 ≥ 0 and C ≥ 2
3 (A+ B), then d1 + 1 ≤ min(−d2 − 1, −d3 − 1).

Here we have used the notation A = a+ ∑ ak
mk

, B = b+ ∑ bk
mk

, C = c+ ∑ ck
mk

,
d1 = b−c−#{bk < ck}, d2 = a−b−#{ak < bk}, and d3 = a − c − #{ak < ck}.

Conversely, for a and b satisfying (i)–(iv) there exists a stable projectively flat
binary Higgs bundle VP

⊕−→ OX with VP given as an extension of the form (2).

Before proving this proposition, we first prove several preliminary lemmas.

Lemma 5.7. Let (V, θ) = VP
⊕−→ OX be a binary Higgs bundle such that im(θ |VP )

has rank 1. Let V1 = ker(θ |VP ). Then (V, θ) is stable if and only if

(SB1) deg(V1) <
1
3 deg(VP),

(SB2) deg(S ) < 2
3 deg(VP) for every rank-1 subsheaf S of VP , and

(SB3) deg(VP) > 0.

Proof. If (V, θ) is stable, then (SB1), (SB2), and (SB3) follow directly from the
fact that the θ -invariant subsheaves V1, S ⊕ OX, and OX (respectively) do not de-
stabilizeV. Conversely, if (SB1)–(SB3) hold, then any proper θ -invariant subsheaf
S ′ of V must be a rank-1 subsheaf of V1, a rank-1 subsheaf of OX, or of the form
S ⊕ OX (with S a rank-1 subsheaf of VP), in which case (SB1)–(SB3) imply that
S ′ is not destabilizing.

Lemma 5.8. Let (V, θ) = VP
⊕−→ OX be a stable projectively flat binary Higgs

bundle such that im(θ |VP ) has rank 1. Let V1 = ker(θ |VP ) and V2 = im(θ |VP ).
Then V1 and V2 are vertical line bundles.

Proof. We have an exact sequence 0 → V1 → VP → V2 → 0. It follows that
there exist divisors D1 and D2 and a dimension-0 subscheme Z̃ such that V1 =
OX(D1) and V2 = IZ̃ ⊗ OX(D2), where IZ̃ is the ideal sheaf associated to Z̃ [15].

We first show that D2 is a vertical divisor. SinceV2 is the image of θ |VP , which
maps to B1

X, we find from the short exact sequence (1) in Lemma 3.6 that either
Hom(IZ̃ ⊗ OX(D2),N) 
= 0 or Hom(IZ̃ ⊗ OX(D2),Q) 
= 0. Since Z̃ has codi-
mension 2, we deduce that either H 0

(OX

(−D2 − 2F + ∑
(mk − 1)Fk

)) 
= 0 or
H 0(OX(−D2 + F )) 
= 0. Let H0, H, and k0 be as in Remark 3.5. Since either
−D2 −2F +∑

(mk −1)Fk or −D2 +F is linearly equivalent to an effective divi-
sor, it follows thatH0 ·D2 <

1
3k0 < k0. We also find thatD2 ·F ≤ 0, with equality

iff D2 is vertical. Suppose that D2 · F < 0. This would imply that H · D2 =
H0 · D2 + k0F · D2 < k0 − k0 = 0. But conditions (SB1)–(SB3) in Lemma 5.7
imply that H ·D2 > 0.
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We now show that D1 is a vertical divisor. We begin by showing that F ·D1 =
0. Suppose that F · D1 > 0. Since V is projectively flat, we have (D1 + D2)

2 =
3(G(Z̃) + D1 · D2), where G(Z̃) denotes the length of Z̃ [15]. Since D2 is ver-
tical, we have that D1 · D2 = (H0 · D2)(D1 · F )/(H0 · F ) > 0. It follows that
D2

1 > 0. The Hodge index theorem, applied to (H · F )D1 − (H · D1)F, then
shows that H · D1 ≥ 0. But conditions (SB1)–(SB3) in Lemma 5.7 imply that
H ·D1 < 0.

Now suppose that F · D1 < 0. This time, we apply the Hodge index theorem
to (H0 · F )D1 − (H0 ·D1)F to find that H0 ·D1 ≤ (H0 · F )(3G(Z̃)+D1 ·D2)/

2(D1 · F ). It follows that H ·D1 ≤ (H ·D2)/2 − k0 < −H ·D2. But conditions
(SB1)–(SB3) in Lemma 5.7 imply that H ·D1 > −H ·D2.

Hence F · D1 = 0. The Hodge index theorem now implies that D2
1 ≤ 0, with

equality iff D1 is vertical. Projective flatness implies that D2
1 = 3G(Z̃) ≥ 0.

Therefore, D1 is vertical. Finally, since D1 is vertical, we have 0 = D2
1 = 3G(Z̃).

This implies that V2 is a line bundle.

Lemma 5.9. Let V1 = OX

(
aF + ∑

akFk
)

and V2 = OX

(
bF + ∑

bkFk
)

be ver-
tical line bundles such that d2 ≤ −2, where d2 = a − b − #{ak < bk}.

If there is a nonsplit extension of the form

0 −→ V1 → VP
β−→ V2 −→ 0 (3)

and if L = OX

(
cF + ∑

ckFk
)

is a vertical line bundle with d1 ≥ 0 and d3 ≤
−2, where d1 = b − c − #{bk < ck} and d3 = a − c − #{ak < ck}, such that
H 0(L∗ ⊗VP) = 0, then d1 + 1 ≤ min(−d2 − 1, −d3 − 1).

Conversely, there exists a nonsplit extension (3) such that if L = OX

(
cF +∑

ckFk
)

is any vertical line bundle with d1 ≥ 0 and d3 ≤ −2 and such that
d1 + 1 ≤ min(−d2 − 1, −d3 − 1), then H 0(L∗ ⊗VP) = 0.

Proof. First we show that, if VP and L are subject to the given conditions, then
d1 + 1 ≤ min(−d2 − 1, −d3 − 1).

Note that L∗ ⊗V1 = OX

(
d3F + ∑

rkFk
)

and L∗ ⊗V2 = OX

(
d1F + ∑

r ′
kFk

)
for some rk , r ′

k ≥ 0. Consider the short exact sequence

0 → L∗ ⊗V1 → L∗ ⊗VP → L∗ ⊗V2 → 0. (4)

The associated long exact sequence in cohomology then implies that the co-
boundary map δ : H 0(L∗ ⊗ V2) → H1(L∗ ⊗ V1) is injective. Consequently,
h0(L∗ ⊗V2) ≤ h1(L∗ ⊗V1) and so, by Lemma 3.2, d1 + 1 ≤ −d3 − 1.

Suppose now that d1 + 1 > −d2 − 1. Let σ be an element of H1(V ∗
2 ⊗ V1)

that defines the extension (3). Observe that V ∗
2 ⊗ V1 = OX

(
d2F + ∑

rkFk
)

for some rk ≥ 0. Taking notation from Lemma 3.4(ii), we have that σ equals
σ−1w

−1
γ + · · · + σd2+1w

d2+1
γ on Vγ ∩ Wξ and equals 0 elsewhere for some

σ−1, . . . , σd2+1. Let {φ ′
αβ} be a system of transition functions for the line bun-

dle L∗ ⊗ V1, and let {φ ′′
αβ} be a system of transition functions for the line bundle

L∗ ⊗ V2. We may regard σ as the extension class of (4). Transition matrices for

L∗ ⊗VP are then given by
( φ ′

αβ φ ′′
αβσαβ

0 φ ′′
αβ

)
.
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Let s ∈ H 0(L∗ ⊗ V2) be the nonzero section such that, with respect to the
trivialization on Vγ , we have sγ = wd1

γ as in Lemma 3.4(i). Then δ(s) =
σ−1w

d1−1
γ + · · · + σd2+1w

d1+d2+1
γ on Vγ ∩ Wξ and δ(s) = 0 elsewhere. So, by

Lemma 3.4(ii) and the inequality d1 + 1 > −d2 − 1, we have δ(s) = 0 ∈
H1(L∗ ⊗V1). But since δ is injective, this yields the desired contradiction.

Conversely, we now show that there exists a nonsplit extension (3) such that,
if L = OX

(
cF + ∑

ckFk
)

is any vertical line bundle with d1 ≥ 0 and d3 ≤
−2 such that d1 + 1 ≤ min(−d2 − 1, −d3 − 1), then H 0(L∗ ⊗ VP) = 0. Let
(σ−1, σ−2, . . . , σd2+1) be a (−d2 − 2)-tuple of complex numbers such that, for any
G1, G3 with G1 ≥ 0 and G3 ≤ −2 with G1 + 1 ≤ min(−d2 − 1, −G3 − 1), the matrix

JG1,G3 =




σG3+1 σG3 . . . σd2+1 0 0 . . . 0

σG3+2 σG3+1 . . . σd2+2 σd2+1 0 . . . 0
...

. . .
...

σG3+d2+1 σG3+d2 . . . . . . . . . σd2+1
...

...

σ−1 σ−2 . . . . . . . . . σ−G1−1




has maximal rank. (One may construct such a sequence of cocycles σ by induc-
tion on −d2 −1: given σ−1, σ−2, . . . , σd2 , choose σd2+1 so that every square matrix
of the above form has nonzero determinant; this is possible because there are only
finitely many such matrices. For each such matrix, the determinant is zero for only
finitely many values of σd2+1.)

Let σ be the element in H1(V ∗
2 ⊗ V1) represented by a 1-cocycle that equals

σγ ξ = σ−1w
−1
γ + · · · + σd2+1w

d2+1
γ onVγ ∩Wξ and equals 0 elsewhere. LetVP be

the rank-2 bundle given as an extension, as in (3), whose extension class is deter-
mined by σ. Because σ is nonzero, (3) does not split. Let L = OX

(
cF +∑

ckFk
)

be a vertical line bundle with d1 ≥ 0 and d3 ≤ −2 such that d1+1 ≤ min(−d2 −1,
−d3 − 1). We must show that H 0(L∗ ⊗VP) = 0.

The condition d3 ≤ −2 guarantees that H 0(L∗ ⊗V1) = 0. It therefore suffices
to show that the coboundary map δ : H 0(L∗ ⊗ V2) → H1(L∗ ⊗ V1) is injective.
Let s ∈H 0(L∗ ⊗V2). We now show that if δ(s) = 0 then s = 0.

By Lemma 3.4(i) we know that, on Vγ , the section s is of the form sγ =
s0 + s1wγ + · · · + sd1w

d1
γ with respect to the trivialization on Vγ . By Lemma

3.4(ii) we know that, if c is the 1-cocycle given by wj on Vγ ∩Wξ and by 0 else-
where, then [c] = 0 ∈H1(L∗ ⊗V1) iff j ≥ 0 or j ≤ −d3. Since δ(s) equals sγ σγ ξ
on Vγ ∩ Wξ and equals 0 elsewhere, we have δ(s) = 0 iff the following equali-
ties hold:

σd3+1s0 + σd3 s1 + · · · + σd2+1sd3−d2 = 0,
σd3+2 s0 + σd3+1s1 + · · · + σd2+1sd3−d2+1 = 0,

...

σd3+d2+1s0 + σd3+d2 s1 + · · · + σd2+1sd1 = 0,
...

σ−1s0 + σ−2 s1 + · · · + σ−d1−1sd1 = 0.
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Since Jd1,d3 has maximal rank and since d1 +1 ≤ −d3 −1 (which is to say, re-
garding all s as variables, that there are at least as many equations as variables),
we conclude that s = 0.

Proof of Proposition 5.6. We first show that if (V, θ) = VP
⊕−→ OX is a stable pro-

jectively flat binary Higgs bundle with rank(im(θ |VP )) = 1, thenVP has the stated
form.

Lemma 5.8 implies that V1 = ker(θ |VP ) and V2 = im(θ |VP ) are vertical line
bundles; we therefore obtain the extension (2). Condition (i) follows from (SB1)
and (SB3) of Lemma 5.7. Stability implies that (2) does not split; therefore,
h1(V ∗

2 ⊗V1) > 0. It follows from (i) that d2 < 0. Condition (ii) then follows from
Lemma 3.2(ii). SinceV2 is a subsheaf of B1

X, we must have that H 0(V ∗
2 ⊗B1

X) 
=
0. Condition (iii) then follows from Lemma 3.8.

Let (c, c1, . . . , cn) be an (n + 1)-tuple of integers such that 0 ≤ ck < mk for
all k, and let d1 ≥ 0 and C ≥ 2

3 (A + B). Let L = OX

(
cF + ∑

ckFk
)
. From

(SB2) of Lemma 5.7, we know that H 0(L∗ ⊗VP) = 0. Note that L∗ ⊗ V1 =
OX

(
d3F + ∑

rkFk
)

for some rk with 0 ≤ rk < mk for all k. Arguing as in the
proof that condition (ii) holds, we see that d3 < 0. From the long exact sequence
in cohomology associated to (4), we find that H1(L∗ ⊗V1) 
= 0. Lemma 3.2 then
implies that d3 ≤ −2. Condition (iv) then follows from Lemma 5.9.

Conversely, let a and b satisfy (i)–(iv) and let V1 = OX

(
aF + ∑

akFk
)

and
V2 = OX

(
bF + ∑

bkFk
)
. We will show that there exists a stable projectively flat

binary Higgs bundle VP
⊕−→ OX with rank(im(θ |VP )) = 1 and VP as in (2).

Lemma 5.9 and condition (ii) guarantee the existence of a rank-2 bundle VP
and a nonsplit extension (2) such that, if L = OX

(
cF + ∑

ckFk
)

is any verti-
cal line bundle with d1 ≥ 0 and d3 < 0 with d1 + 1 ≤ min(−d2 − 1, −d3 − 1),
then H 0(L∗ ⊗ VP) = 0. By Lemma 3.8 and condition (iii), there exists a non-
zero map α : V2 → B1

X. Let V = VP ⊕ OX. Define a Higgs field θ by θ |VP =
α � β and θ |OX

= 0. Note that θ ∧ θ = 0. Then (V, θ) is a binary Higgs bundle
with rank(im(θ |VP )) = 1. Moreover, V is projectively flat, since 0 = c2

1 (V ) =
3c2(V ).

It remains to be shown that (V, θ) is stable. (SB1) and (SB3) from Lemma 5.7
follow from condition (i). Let us now verify that (SB2) holds. Suppose to the con-
trary that there exists a rank-1 subsheaf S of VP such that deg(S ) ≥ 2

3 deg(VP).
Let L be the kernel of the natural map VP → VP/S

Tor(VP/S ) . Then L is a line bundle,

deg(L) ≥ deg(S ), and H 0(L∗ ⊗VP) 
= 0 (see [27]). Stability, together with Re-
mark 3.5, implies that L is vertical.

Write L = OX

(
cF + ∑

ckFk
)
. Dividing both sides of deg(L) ≥ 2

3 deg(VP) by
H · F, we find that C ≥ 2

3 (A + B). Note that L∗ ⊗ V2 = OX

(
d1F + ∑

rkFk
)
,

and so H 0(L∗ ⊗V2) 
= 0 implies that d1 ≥ 0. It now follows from condition (iv)
that d1 + 1 ≤ min(−d2 − 1, −d3 − 1). Moreover, d3 < 0 since H 0(L∗ ⊗ V1) =
0. Our choice of VP then implies that H 0(L∗ ⊗ VP) = 0, contradicting our ear-
lier assertion that H 0(L∗ ⊗VP) 
= 0. Therefore (V, θ) = VP

⊕−→ OX is stable, as
desired.
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5.3. Stable Binary Higgs Bundles with rank(im(θ)) = 2

We now show that there exists no stable binary Higgs bundle (V, θ) on X with
rank(im(θ)) = 2. Throughout this section, let N = OX

(−2F + ∑
k(mk − 1)Fk

)
and Q = IZ ⊗ OX(F ), as in Lemma 3.6.

Lemma 5.10. Suppose that (V, θ) = VP
⊕−→ OX is a stable projectively flat bi-

nary Higgs bundle with rank(im(θ)) = 2. Then there exists an exact sequence

0 → V1 → VP → V2 → 0,

where V1 and V2 are vertical line bundles and H 0(V ∗
2 ⊗Q) 
= 0.

Proof. Let β be the map in the exact sequence of Lemma 3.6 from B1
X to Q.

Let V2 = im(β � (θ |VP )) and V1 = ker(β � (θ |VP )). This gives us an exact se-
quence 0 → V1 → VP → V2 → 0. Since rank(im(θ)) = 2, we see that 1 =
rank(V2) = rank(V1). The proof of Lemma 5.8 shows that V1 and V2 are vertical
line bundles. Moreover, the inclusion map ι : V2 ↪→ Q yields a nonzero element
of H 0(V ∗

2 ⊗Q).

Proposition 5.11. If (V, θ) is a stable binary Higgs bundle, then im(θ) has
rank 1.

Proof. By tensoring with a line bundle, as in Lemma 4.5, we may assume that
(V, θ) is of the form VP

⊕−→ OX. Then im(θ) is a subsheaf of B1
X and so has rank

0, 1, or 2. As noted in the introduction to Section 5.2, im(θ) cannot have rank 0.
Suppose im(θ) has rank 2. By Lemma 5.10, we have an exact sequence

0 → V1 → VP → V2 → 0,

where V1 and V2 are vertical line bundles and H 0(V ∗
2 ⊗ Q) 
= 0. By Lemma 3.7,

deg(V2) < 0. As in Lemma 5.7, stability implies that deg(VP) > 0, whence 0 <

deg(VP) = deg(V1) + deg(V2) < deg(V1). The proof of Lemma 5.7 also shows
that deg(V1) <

2
3 deg(VP), whereby one obtains the contradictory inequality

0 < deg(V1) < 2 deg(V2) < 0.

5.4. Reducible Ternary Higgs Bundles

We now consider reducible polystable ternary Higgs bundles of the form (V, θ) =
V2

⊕−→ V3
⊕−→ V1. In this case, either θ |V2 or θ |V3 must be the zero map (other-

wise,V is not reducible). Hence we divide into three cases depending on whether
the first map only is zero, the second map only is zero, or both maps are zero.

Case 1: θ |V2 = 0 and θ |V3 
= 0.

Proposition 5.12. There exists a polystable ternary Higgs bundle (V, θ) =
V2

⊕−→ V3
⊕−→ V1 with θ |V2 = 0 and θ |V3 
= 0 and with c1(V2) = c1(V3 ⊕ V1) =

c2(V3 ⊕V1) = 0 if and only if V2 = OX, V3 = OX

(
bF + ∑

bkFk
)
, and V1 = V ∗

3 ,
where all b are subject to the following numerical conditions:
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(i) B = b + ∑ bk
mk

> 0; and

(ii) 2b + #
{
bk ≥ mk

2

} ≤ −2.

Proof. First, letV2 = OX and V3 = OX

(
bF +∑

bkFk
)

and V1 = V ∗
3 , where all b

satisfy (i) and (ii). Note thatV3 ⊗V3 = OX

((
2b+ #

{
bk ≥ mk

2

})
F + ∑

rkFk
)

for
some rk with 0 ≤ rk < mk. Condition (ii) guarantees that there exists a nonzero
map θ : V3 → V1 ⊗ B1

X, by Lemma 3.8. Extend θ to V by letting θ |V2 = θ |V1 =
0; then θ ∧ θ = 0. Condition (i) guarantees that V3

⊕−→ V1 is stable. We have
c1(V3 ⊕ V1) = 0 since V1 = V ∗

3 . Also, c2(V3 ⊕ V1) = c1(V3)c1(V1) = 0 since V3

and V1 are vertical.
Now let (V, θ) = V2

⊕−→ V3
⊕−→ V1 be a polystable ternary Higgs bundle with

θ |V2 = 0, θ |V3 
= 0, and c1(V2) = c1(V3 ⊕ V1) = c2(V3 ⊕ V1) = 0. Then V2 =
OX and V1 = V ∗

3 , since c1(V2) = 0 and c1(V3 ⊕ V1) = 0. Write V3 = OX(D)

for some divisor D. We now show that D is linearly equivalent to bF + ∑
bkFk

for some (n + 1)-tuple of b-values (i.e., that D is vertical). First we show that
D · F = 0. Suppose D · F > 0. Let H0, H, and k0 be as in Remark 3.5. Using
the same line of reasoning as in the proof of Lemma 5.7, we see that the non-
vanishing of θ |V3 implies that H · D < k0. From this we deduce that H0 · D <

0. The condition c2(V3 ⊕ V1) = 0 implies that D2 = 0. The Hodge index theo-
rem, applied to (H0 · F )D − (H0 · D)F, then yields the contradictory inequality
−2(H0 · F )(H0 · D)(D · F ) ≤ 0. Now suppose that D · F < 0. This time, we
use that the nonvanishing of θ |V3 implies H0 · D < k0, which shows in turn that
H · D = H0 · D + k0F · D < 0. But stability implies the contradictory inequal-
ity H · D > 0; therefore, D · F = 0. The Hodge index theorem, applied to
(H · F )D − (H · D)F, then implies that D is vertical. We obtain condition (i)
by dividing both sides of the inequality deg(V3) > 0 by H · F. Lemma 3.8 then
yields condition (ii).

Case 2: θ |V2 
= 0 and θ |V3 = 0. This is the same as Case 1 but with the Vn
relabeled.

Case 3: θ |V2 = θ |V3 = 0. This case is trivial, since there exists a polystable
Higgs bundle V2

⊕−→ V3
⊕−→ V1 with c1(V2) = c1(V3) = c1(V1) = 0 and θ |V2 =

θ |V3 = 0 iff V2 = V3 = V1 = OX.

5.5. Reducible Binary Higgs Bundles

Let (V, θ) = VP
⊕−→ VQ be a reducible polystable binary Higgs bundle whose sum-

mands have vanishing Chern classes, where rank(VP) = 2 and rank(VQ) = 1. The
rank R of the image of θ in VQ ⊗ B1

X is either 2, 1, or 0. If R = 2, then (V, θ)
can not be reducible. If R = 1, then we must have VP = V1 ⊕ V2, where V1 =
ker(θ |VP ); this case was discussed in Section 5.4. IfR = 0, then θ is the zero map.
In this case, we must have VQ = OX and VP stable.

Remark. An explicit description of all stable rank-2 bundles on X with van-
ishing Chern classes can be found in [4, Prop. 4.1]. (The method of proof of
Proposition 5.6 also yields such a description.)
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6. Main Theorem and Examples

Putting together the pieces from the previous sections, we at last obtain an explicit
description of all orbifold Toledo invariants that arise from semisimple U(2,1)
representations of the orbifold fundamental group of the 2-orbifold associated to
a Seifert fibered homology 3-sphere.

Let O be the hyperbolic 2-orbifold such that the underlying space |O| of O is
the sphere S 2 and O has n elliptic points p1, . . . ,pn (also known as cone points) of
orders m1, . . . ,mn, respectively. (We refer to [5; 16; 25; 32; 37] for details of this
construction and for basic facts about orbifolds.) The orbifold fundamental group
of O has the following presentation:

πorb
1 (O) = 〈u1, . . . , un | umk

k = u1 . . . un = 1〉
We may think of uj as a small loop that travels once around the cone point

pj . In our elliptic fibration π : X → CP
1, we identify CP

1 with |O| and assume
that pj = π(Fj ) for each multiple fibre Fj . Note that π induces an isomorphism
π∗ : π1(X) → πorb

1 (O). It follows from the results of Sections 3 and 4 that the
Toledo invariant of any semisimple U(2,1) representation of π1(X) is vertical. We
thus make the following definition.

Definition 6.1. Let ρ ∈ Hom+(πorb
1 (O), U(2,1)). We then define the orbifold

Toledo invariant τorb(ρ) to be c1(L), where L is the unique orbifold line bundle
on O such that τ(ρ � π∗) = c1(π

∗(L)).

See [28], where an equivalent definition is given, and observe that if τ(ρ � π∗) =
c1

(OX

(
aF + ∑

akFk
))

then τorb(ρ) = a + ∑ ak
mk
.

Theorem 6.2. With notation as in Proposition 5.6, let O be the base orbifold of
Seifert fibered homology 3-sphere Y such that πorb

1 (O) is infinite. Let n equal the
number of cone points thatO has, and letm1, . . . ,mn denote the orders of these cone
points. Let τ ∈ R. Then there exists a semisimple representation ρ : πorb

1 (O) →
U(2,1) such that τ is the orbifold Toledo invariant of ρ if and only if τ = 0 or
τ = ±(A + B) for some (2n + 2)-tuple (a, a1, . . . , an, b, b1, . . . , bn) of integers
with 0 ≤ ak , bk < mk for all k = 1, . . . , n and such that at least one of the follow-
ing conditions (i)–(iii) holds.

(i) b ≤ −2; a + #{k | ak 
= 0} ≥ 2; 2A < B and A < 2B; and (N) holds.
(ii) −B < A < 1

2B; d2 ≤ −2 and b ≤ −2; (N) holds; and d1 + 1 ≤
min(−d2 − 1, −d3 − 1) for every (n + 1)-tuple of integers (c, c1, . . . , cn)
such that 0 ≤ ck < mk for all k with d1 ≥ 0 and C ≥ 2

3 (A+ B).

(iii) a = ak = 0 for all k; B > 0; and 2b + #
{
bk ≥ mk

2

} ≤ −2.
(N) There exist integers y, y1, . . . , yn such that

3y +
∑ ⌊

3yk
mk

⌋
= a + b,

3yk −
⌊

3yk
mk

⌋
mk = ak + bk

for k = 1, . . . , n.



24 Mike Krebs

Proof. The trivial representation yields τ = 0. Therefore—by Lemmas 4.3,
4.5(ii), and 5.2 as well as the discussions following Definitions 5.3 and 6.1—it
suffices to show that c1

(OX

(
(a + b)F + ∑

(ak + bk)Fk
))

equals the Higgs bun-
dle Toledo invariant of a nontrivial stable ternary, stable binary, reducible ternary,
or reducible binary Higgs bundle whose summands have vanishing Chern classes
if and only if a and b satisfy one of (i)–(iii).

Suppose (V, θ) = V2
⊕−→ V3

⊕−→ V1 is a stable ternary Higgs bundle with van-
ishing Chern classes. By Lemma 4.5, tensoring with V ∗

3 yields a stable ternary
Higgs bundle (V ′, θ ′) = (V ⊗ V ∗

3 , θ ⊗ 1) = (V2 ⊗ V ∗
3 )

⊕−→ OX
⊕−→ (V2 ⊗ V ∗

3 )

with τH (V, θ) = τH (V ′, θ ′). By Proposition 5.4 and Definition 4.4, we then have
τH (V ′, θ ′) = c1

(OX

(
(a + b)F + ∑

(ak + bk)Fk
))

(here a and b satisfy (i)–(iv)
from Proposition 5.4). Moreover, OX

(
(a + b)F + ∑

(ak + bk)Fk
) = det(V ′) =

V ∗
3 ⊗ V ∗

3 ⊗ V ∗
3 and is vertical. Thus V ∗

3 is of the form OX

(
yF + ∑

ykFk
)
, with

3
(
yF + ∑

ykFk
)

linearly equivalent to (a + b)F + ∑
(ak + bk)Fk. Condition (N),

which is equivalent to the condition that (a + b)F + ∑
(ak + bk)Fk be “divisible

by 3”, therefore holds.
Conversely, given a and b satisfying (i), Proposition 5.4 and Definition 4.4

guarantee the existence of a stable projectively flat ternary Higgs bundle (V ′, θ ′)
with τH (V ′, θ ′) = OX

(
(a + b)F + ∑

(ak + bk)Fk
)
. Condition (N) is then equiv-

alent to the existence of a vertical line bundle V3 = OX

(
yF + ∑

ykFk
)

such that
c1(V

′ ⊗V3) = c2(V
′ ⊗V3) = 0. By Lemma 4.5,V ′ ⊗V3 is a stable ternary Higgs

bundle with τH (V, θ) = τH (V ′, θ ′).
To summarize: c1

(OX

(
(a + b)F + ∑

(ak + bk)Fk
))

equals the Higgs bundle
Toledo invariant of a stable flat ternary Higgs bundle on X if and only if all a and
b satisfy (i).

A similar argument (using Proposition 5.6 instead of Proposition 5.4) shows that
c1

(OX

(
(a + b)F + ∑

(ak + bk)Fk
))

equals the Higgs bundle Toledo invariant of
a stable binary Higgs bundle (V, θ) with c1(V ) = c2(V ) = 0 and rank(im(θ)) =
1 iff all a and b satisfy (ii). Proposition 5.11 shows that there are no stable binary
Higgs bundles with rank(im(θ)) = 2. Condition (iii) covers Cases 1 and 2 from
Section 5.4. The Toledo invariant vanishes in Case 3 from Section 5.4 and also in
the reducible binary case with θ = 0 (as discussed in Section 5.5).

Corollary 6.3. (a) A lower bound for the number of distinct connected com-
ponents in the representation space R+

U(2,1)(O) is given by the number of distinct

values ±(
a + b + ∑ ak+bk

mk

)
, where a and b either vanish or satisfy one of (i)–(iii)

from Theorem 6.2.
(b) A lower bound for the number of distinct connected components in the

representation space R∗
PU(2,1)(Y ) is given by the number of distinct values

±(
a + b + ∑ ak+bk

mk

)
, where a and b satisfy (i) or (ii) from Theorem 6.2.

Proof. We prove (b) only; the proof of (a) is similar. Given Lemma 2.3, we
may replace Y by X in the statement of this theorem. Lemma 1.3 shows that
(equivalence classes of ) PU(2,1) representations with distinct Toledo invariants
lie in distinct components of R∗

PU(2,1)(X). If ρ ∈ Hom∗(π1(X), U(2,1)) then
ϕ � ρ ∈ Hom∗(π1(X), PU(2,1)), where ϕ : U(2,1) → PU(2,1) is the canonical
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homomorphism. Lemmas 4.2 and 4.3 show that the number of distinct Toledo in-
variants arising from irreducible U(2,1) representations of π1(X) exactly equals
the number of distinct Higgs bundle Toledo invariants of stable U(2,1)Hodge bun-
dles on X with vanishing Chern classes. There exist a and b satisfying (i) or (ii)
from Theorem 6.2 if and only if ±c1

(OX

(
(a + b)F + ∑

(ak + bk)Fk
))

equals the
Higgs bundle Toledo invariant of a stable U(2,1) Higgs bundle on X with vanish-
ing Chern classes—in which case, the corresponding orbifold Toledo invariant is
±(

a + b + ∑ ak+bk
mk

)
.

Example. Let n = 3, let m1 = 2 and m2 = 3, and let m3 ≥ 13 be relatively
prime to 6. If a = −1, a1 = a2 = a3 = 1, b = −2, b1 = 1, b2 = 2, and m3 − 2 ≥
b3 ≥ ⌈ 5m3

6

⌉
, then a and b satisfy Theorem 6.2(i). Hence it follows from Corol-

lary 6.3 that R∗
PU(2,1)(Y ) contains at least 2

⌊m3
6

⌋ − 1 connected components.

Example. Let n = 3, and let (m1,m2,m3) = (2, 3,11). Departing from our
previous notation, let Fmk

(instead of Fk) denote the multiple fibre on X of multi-
plicity mk.

Let (V1, θ1) = OX(−2F + F2 + 2F3 + 10F11)
⊕−→ OX

⊕−→ OX(−F + F2 +
F3 + F11) be a stable ternary Higgs bundle.

Let (V2, θ2) = OX
⊕−→ OX

⊕−→ OX, where θ2 is the zero map.
Let (V3, θ3) be a stable binary Higgs bundle of the form VP

⊕−→ OX, where
VP is given by a nontrivial extension 0 → OX(−F + F3 + 7F11) → VP →
OX(−2F + F2 + 2F3 + 10F11) → 0.

Let

(V4, θ4)

= OX(−2F + F2 + 2F3 + 10F11)
⊕−→ OX

⊕−→ OX(−F + F2 + F3 + 2F11)

be a stable ternary Higgs bundle.
Now Theorem 6.2 guarantees that all orbifold Toledo invariants arise from these

four Higgs bundles and their duals. Let τk be the orbifold Toledo invariant cor-
responding to (Vk , θk). Then 0 = τ1 = τ2, 0.0455 ≈ τ3, and 0.0909 ≈ τ4. We
conclude that, in this case, R+

U(2,1)(O) contains at least five distinct connected
components.

Indeed, there are either five, six, or seven components, depending on whether
(V1, θ1), (V ∗

1 , θ1), and (V2, θ2) lie in one, two, or three distinct components of
MDol(U(2,1)). Conditions that determine when two Hodge bundles with equal
Toledo invariants can be deformed into one another will yield a precise count of
the number of components in the representation variety. We hope to address this
question in a future paper.
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