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Domains in Almost Complex Manifolds with
an Automorphism Orbit Accumulating at a

Strongly Pseudoconvex Boundary Point

Kang-Hyurk Lee

1. Introduction

Let (M, J ) be an almost complex manifold and let � be a domain in M. Call p ∈
∂� a strongly J-pseudoconvex boundary point if there is a C2 local defining func-
tion whose Levi form is positive definite for the J-complex tangent vector space
T J
p ∂� = Tp∂� ∩ JTp∂� of ∂� at p. For p ∈� and a sequence ϕν ∈ Aut(�, J ),

call the sequence {ϕν(p) : ν = 1, 2, . . . } an automorphism orbit of �. This paper
pertains to the following problem.

Classify the domains � in an almost complex manifold (M, J ) that ad-
mit an automorphism orbit accumulating at a strongly J-pseudoconvex
boundary point.

In the complex case, the Wong–Rosay theorem states that such domains are bi-
holomorphically equivalent to the unit ball Bn in C

n (see [3; 5; 10; 19; 22]). For
the real 4-dimensional almost complex case, Gaussier and Sukhov [7] have shown
that under a certain restriction such (�, J ) is biholomorphic to the unit ball B2 in
C

2. But when dimM ≥ 6 it turns out that there are infinitely many biholomorphi-
cally distinct domains, as the following example shows.

Example 1.1. Let zj = xj + iyj be the standard coordinate functions of C
3 �

R
6. Set z ′ = (z2, z3) and z = (z1, z ′). Let ρt(z) = Re z1 + t |z ′|2 and let

Jt(x) =




0 −1 0 0 0 tx2

1 0 0 0 tx2 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0




for t ∈ R. Consider the domain H t = {z ∈ C
3 : ρt(z) < 0} equipped with the

almost complex structure J1. It turns out that (H t , J1) with t > 1/8 has automor-
phisms �k(z) = (

z1/k, z ′/
√
k

)
, which induces an orbit accumulating at 0 that is
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strongly J1-pseudoconvex. We show in this paper that (H t , J1) and (Hs , J1) are
biholomorphically distinct whenever t 
= s.

In fact, our main theorem is that these manifolds constitute the complete list for
n = 3. More precisely, we have the following result.

Theorem 1.2. Let (M 2n, J ) be an almost complex manifold equipped with the
almost complex structure J of Hölder class C1,α. Suppose that a domain � in M

has a strongly J-pseudoconvex boundary point q0 ∈ ∂� admitting a sequence ϕν ∈
Aut(�, J ) such that ϕν(p0) → q0 as ν → ∞ for some p0 ∈ �. Then (�, J ) is
biholomorphic to one of the models (�̂, Ĵ ) in Definition 4.7. Moreover, (�, J ) is
biholomorphic to (B2, Jst ) when n = 2, and (�, J ) is biholomorphic to one of
(H1, Jt ) for 0 ≤ t < 8 when n = 3.

We use the scaling technique in Section 4 to show that such a (�, J ) is biholo-
morphic to some model domain (�̂, Ĵ ) (see Theorem 4.6) after introducing the
basic terminology and presenting some preparations for the scaling method in Sec-
tions 2 and 3. We then simplify the model structure Ĵ (Section 5) and classify the
models in the case of real dimension 6 (Sections 6 and 7).

At the time of this writing, we were informed that Gaussier and Sukhov have ob-
tained a similar result independently. We also have results in all dimensions. How-
ever, identifying the moduli of all such domains in terms of geometric-analytic
invariants remains difficult when n ≥ 4.

Acknowledgment. This work is part of the author’s dissertation for his doc-
toral degree at the Pohang University of Science and Technology. He would like
to express his gratitude to his advisor Kang-Tae Kim for guidance. He also would
like to thank the referee for valuable comments.

2. Preliminaries

A pair (M, J ) is called an almost complex manifold if M is a C∞-smooth real
manifold and J is a field of endomorphisms of the tangent bundle TM satisfying
J 2 = −Id. We call J an almost complex structure on M.

The canonical example of the almost complex manifold is the complex Eu-
clidean space C

n with the standard complex structure J
(n)
st (or simply Jst when

there is no danger of confusion), which is given by J
(n)
st (∂/∂xj ) = ∂/∂yj for j =

1, . . . , n. An almost complex manifold (M 2n, J ) is said to be integrable if J is in-
duced from the standard complex structure J (n)

st of C
n in a local coordinate system

about p for each point p ∈M. The Newlander–Nirenberg theorem [16] says that
an almost complex manifold (M, J ) is integrable if and only if NJ is vanishing on
M, where the Nijenhuis tensor NJ of J is defined by

NJ(X,Y ) = [JX, JY ] − J [JX,Y ] − J [X, JY ] − [X,Y ]

for all X,Y ∈ TM with the same base point.
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2.1. Pseudoholomorphic Mappings between
Almost Complex Manifolds

Given two almost complex manifolds (M, J ) and (M̃, J̃ ), a mapping f from M to
M̃ of class C1 is said to be (J, J̃ )-holomorphic (or simply pseudoholomorphic) if
its differential df : TM → TM̃ satisfies the condition

J̃ � df = df � J
on TM. We denote by O(J,J̃ )(M, M̃ ) the space of (J, J̃ )-holomorphic mappings
from M to M̃. For the standard r-disc Dr = {z ∈ C : |z| < r} (simply D1 = D),
an element of O(Jst,J )(Dr ,M) is called a pseudoholomorphic disc in M.

A bijective mapping f : (M, J ) → (M̃, J̃ ) is called a biholomorphism if f ∈
O(J,J̃ )(M, M̃ ) and f −1 ∈ O(J̃,J )(M̃,M). For the case (M, J ) = (M̃, J̃ ), we call
f an automorphism of (M, J ). We denote by Aut(M, J ) the set of all automor-
phisms of (M, J ).

Sikorav [21, Prop. 2.3.6] gave an estimate for pseudoholomorphic discs in a
small neighborhood of a given point. His theorem gives rise to the following
proposition (see [15]).

Proposition 2.1. Let J be a C1,α almost complex structure of R
2n and let J̃ be

a C1 almost complex structure of R
2m. Then there is a bounded neighborhood U

of 0 in R
2m with the following property: For a given domain � in R

2n and its
compact subset K, there exists a positive constant C such that

‖f ‖C1(K) ≤ C‖f ‖C 0(�)

whenever f : � → U is a (J, J̃ )-holomorphic mapping. Moreover, this estimate
holds for sufficiently small C1 perturbations of J and J̃.

Let J and J̃ be almost complex structures of class C1 on R
2n and R

2m, respec-
tively. Regard J and J̃ as matrix-valued functions expressed by J = (J

j

k ) and
J̃ = (J̃ λ

µ ). In this section, we use x = (x1, x2, . . . , x2n) as the standard real coor-
dinate in R

2n.

For a bounded domain � in R
2n, let f = (f1, f2, . . . , f2m) : � → R

2m be a
pseudoholomorphic mapping of class C1(�). By [15, Sec. 2], each fλ satisfies the
partial differential equation

HJfλ = C(J, J̃ ; f )λ (2.1)

in the weak sense, where HJ is the linear partial differential operator expressed by

HJ =
2n∑
j=1

∂ 2

∂xj∂xj
+

2n∑
j,k,l=1

J k
j J

l
j

∂ 2

∂xk∂xl

and C(J, J̃ ; f )λ is defined by
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C(J, J̃ ; f )λ = −
2n∑

j,k=1

2m∑
µ=1

∂fµ

∂xk

∂

∂xj
(J k

j J̃
λ
µ(f ))

+
2n∑

j,k,l=1

2m∑
µ,ν=1

J k
j J̃

λ
µ(f )

∂fν

∂xl

∂

∂xk
(J l

j J̃
µ
ν (f )).

The coefficients of HJ have the same regularity with J. The symbol of HJ is∑
j ζ

2
j + ∑

j,k,l ζkJ
k
j J

l
j ζl = |ζ|2 + |Jζ|2, so HJ is strictly elliptic on �.

Let p > 2n. By the elliptic regularity theorem, the function fλ is in W
2,p
loc (�)

and in the strong solution of (2.1) for each λ.

Lemma 2.2. Let {J ν} and {J̃ ν} be sequences of C1,α almost complex structures
on R

2n and R
2m, respectively. Suppose that ‖J ν−J‖C1(�) → 0 for a bounded do-

main � in R
2n and that ‖J̃ ν − J̃‖C1(K) → 0 for any compact subset K of R

2m. If
a sequence {f ν ∈ O(J ν,J̃ ν )(�, R2m) : ν = 1, 2, . . .} converges to f in the compact-
open topology, then f is (J, J̃ )-holomorphic.

Proof. Because this problem is local, we shall prove the lemma on a relatively
compact neighborhood �′ of a given point in � whose boundary is of class C∞.
For 0 < β < 1 − 2n/p, the Sobolev space W 2,p(�′) is compactly embedded
in C1,β(�′) (see [8, Thm. 7.26]). Since f ν ∈ W 2,p(�′), it suffices to show that
‖f ν‖W 2,p(�′ ) is uniformly bounded. Then f ν has a subsequence converging to f

in C1,β(�′); hence the limiting of the equation J̃ ν � df ν = df ν � J ν shows that f
is (J, J̃ )-holomorphic on �′.

TheC1-convergence of J ν implies that the coefficients of HJ ν converge to those
of HJ in C1(�). Let U be a relatively compact neighborhood of �′ in �. By
the Lp estimates of an elliptic equation [8, Thm. 9.11], there exists a constant C
such that

‖f ν
λ ‖W 2,p(�′ ) ≤ C(‖f ν

λ ‖Lp(U) + ‖C(J ν, J̃ ν; f ν)λ‖Lp(U))

for sufficiently large ν and for any λ. We know that ‖f ν‖Lp(U) is uniformly
bounded. Applying Proposition 2.1, one obtains that the gradient of f ν is lo-
cally bounded on � and uniformly bounded on Ū. Since J̃ ν → J̃ in the C1 sense,
it follows that ‖C(J ν, J̃ ν; f ν)λ‖C 0(U) is uniformly bounded. We thus have that
‖f ν‖W 2,p(�′ ) is uniformly bounded, which proves the lemma.

Consider the pseudoholomorphic disc u : (D, Jst ) → (R2m, J ). Since the operator
1
2 HJ

st is the same as the standard Laplacian ., equation (2.1) can be written as

.uλ = 1

2
C(Jst , J ; u)λ, (2.2)

where
1

2
C(Jst , J ; u)λ =

2m∑
µ=1

∂uµ

∂x1

∂

∂x2
J λ
µ(u)−

2m∑
µ=1

∂uµ

∂x2

∂

∂x1
J λ
µ(u). (2.3)
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2.2. Kobayashi–Royden Pseudometric

Let (M, J ) be an almost complex manifold and let J be of class C1,α. By the
existence theorem of pseudoholomorphic discs (see [17]), we can define the
Kobayashi–Royden pseudometric F(M,J ) that is the same as the one for the in-
tegrable case (Royden [20]) as

F(M,J )(p, v) = inf

{
1

|a| : u∈ O(Jst,J )(D,M) with u(0) = p, du(e) = av

}
,

where e is the unit vector in T0 D and where p ∈M and v ∈ TpM. Because F(M,J )

is upper semicontinuous on TM (see [9]), the Kobayashi pseudodistance d(M,J )

may be defined as

d(M,J )(p, q) = inf
∫ 1

0
F(M,J )(γ (t), γ

′(t)) dt ,

where the infimum is taken over all piecewise smooth paths γ : [0,1] → M with
γ (0) = p and γ (1) = q. Since F(M,J ) is locally bounded on TM, its integrated
pseudodistance d(M,J ) is continuous on M × M. As in the integrable case (see
[12; 20]), this metric and distance have the usual distance-decreasing property for
pseudoholomorphic mappings.

We say that (M, J ) is (Kobayashi) hyperbolic if the Kobayashi pseudodistance
d(M,J ) is a proper distance. When the Kobayashi ball BK

(M,J )(p, r) = {q ∈ M :
d(M,J )(p, q) < r} is always relatively compact in M for any p ∈M and any r >

0, we call (M, J ) complete hyperbolic. We present a normal family theorem for
the complete hyperbolic almost complex manifolds (cf. [13, Cor. 5.1.2]).

Proposition 2.3. Suppose that a manifold M admits a sequence J ν of C1,α al-
most complex structures that converges to J in theC1 sense on any compact subset
of M. Let (M̃, J̃ ) be a complete hyperbolic almost complex manifold. Then a se-
quence {f ν : f ν ∈ O(J ν,J̃ )(M, M̃ )} has a subsequence converging to an element
of O(J,J̃ )(M, M̃ ) whenever {f ν(p0)} is relatively compact in M̃ for some p0 ∈M.

Proof. Let us assume that f ν(p0) converges to q0 ∈ M̃. It suffices to show that
f ν has a convergent subsequence on any compact subset K of M containing p0.

Let V be a relatively compact neighborhood of K in M and let h be a Hermitian
metric on V that is smooth up to V̄. We denote by dh the distance function on V

induced by h and let Bh(p, r) = {q ∈ V : dh(p, q) < r}. By Lemma 2.4 in [4],
there exists a positive constant C such that

F(M,J ν)(p, v) ≤ C‖v‖h
for any p ∈ V and any v ∈ TpM and for sufficiently large ν. Hence we have
d(M,J ν)(p, q) ≤ Cdh(p, q) for any p and q in V, so that

Bh(p, r) ⊂ BK
(M,J ν)(p,Cr)
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for any r. For given p ∈ V and ε > 0, any point q ∈ Bh(p, ε/C) satisfies
d(M̃,J̃ )(f

ν(p), f ν(q)) ≤ ε; this implies that {f ν} is equicontinuous onV. Choose a
positive constant R with K ⊂ Bh(p0,R). Then, by the distance-decreasing prop-
erty of the Kobayashi pseudodistance, we conclude that

f ν(K) ⊂ f ν(Bh(p0,R)) ⊂ f ν(BK
(M,J ν)(p0,CR)) ⊂ BK

(M̃,J̃ )
(q0, 2CR)

for sufficiently large ν. From the complete hyperbolicity of (M̃, J̃ ), it follows that
BK

(M̃,J̃ )
(q0, 2CR) ⊂⊂ M̃. Hence, by the Arzela–Ascoli theorem there is a conver-

gent subsequence in the compact-open topology. By Lemma 2.2, this proves the
proposition.

2.3. J-Pseudoconvexity and J-Plurisubharmonic Functions

For an almost complex manifold (M, J ), let ρ : M → R be an upper semicontin-
uous function. Call ρ J-plurisubharmonic when, for any u ∈ O(Jst,J )(D,M), the
composition ρ � u is always subharmonic. For any ρ of class C2, one can deter-
mine the J-plurisubharmonicity of ρ by the Levi form.

For any 1-form ω on M, J ∗ω is defined by J ∗ω(v) = ω(Jv). The Levi form of
ρ at p ∈M is defined by

LJ
pρ(v) = −d(J ∗dρ)(v, Jv)

for v ∈ TpM. For the case ρ ∈C2, it is known that ρ is J-plurisubharmonic on M

if and only if LJ
pρ(v) is nonnegative for any p ∈M and any v ∈ TpM. When the

Levi form is positive definite, ρ is said to be strictly J-plurisubharmonic.
Suppose that � is strongly J-pseudoconvex at p ∈ � with a defining function

ρ on a neighborhood U of p. Then there exist a positive constant A and a small
neighborhood V of p in U such that ρ +Aρ2 is strictly J-plurisubharmonic on V
and� ∩V = {ρ+Aρ2 < 0}. Therefore� has a local, strictly J-plurisubharmonic
defining function.

3. Boundary Behavior of Pseudoholomorphic Discs

In this section, we investigate the behavior of the pseudoholomorphic discs whose
origins are sufficiently close to the strongly J-pseudoconvex boundary point.
Ivashkovich and Rosay have given a localization lemma for pseudoholomorphic
discs as follows.

Lemma 3.1 [9, Lemma 2.2]. Let (M, J ) be an almost complex manifold with J ∈
C1, and let � be a domain in M with a strongly J-pseudoconvex boundary point
q0 ∈ ∂�. For every r0 ∈ [0,1) there exist positive constants C0 and δ0 such that,
for every pseudoholomorphic disc u∈ O(Jst,J )(D,�) with dist(u(0), q0) < δ0,

dist(u(0), u(ζ)) ≤ C0

√
dist(u(0), ∂�)

if |ζ| < r0, where dist is the distance induced by a Riemannian metric of M.
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For the scaling technique of Section 4, we need more information about pseudo-
holomorphic discs in a perturbed situation.

Let U be a bounded neighborhood of 0 in R
2n. We consider the following

situation.

(1) There is a sequence {J ν}ν=1,2,...,∞ of C1 almost complex structures on R
2n

such that ‖J ν − J∞‖C1(Ū) → 0 as ν → ∞. Moreover, we have

J∞(0) = Jst and J ν(0) =
(
J ν
(1,1) 0

J ν
(2,1) J ν

(2,2)

)
, (3.1)

where J ν
(1,1) and J ν

(2,2) are 2 × 2 and (2n − 2) × (2n − 2) matrices, respec-
tively. When J ν(z) = J ν(0)+ Eν(z), there is an A1 > 0 such that |Eν(z)| <
A1|z| for small z and for any ν = 1, 2, . . . , ∞.

(2) Let {ρν}ν=1,2,...,∞ be a sequence of C2 strictly J ν-plurisubharmonic func-
tions defined on a neighborhood of U such that ‖ρν − ρ∞‖C2(Ū) → 0 as ν →
∞. Furthermore, ρν(z) = Re z1 +O(|z|2) uniformly for ν = 1, 2, . . . , ∞,
where z = (z1, . . . , zn) is a standard coordinate of C

n. This means that
|ρν(z)− Re z1| < A2|z|2 for small z. Let �ν be a domain in R

2n for each ν =
1, 2, . . . , ∞ with �ν ∩ U = {z∈U : ρν(z) < 0}.

(3) For a fixed 0 < r0 < 1, there are positive constants C0 and δ0 such that

dist(u(0), u(ζ)) ≤ C0

√
dist(u(0), ∂�ν)

for any |ζ| ≤ r0 and for any u∈ O(Jst,J ν)(D,�ν) with |u(0)| < δ0.

Define Q(0, δ) = {
(z1, z ′) ∈ C × C

n−1 : |z1| ≤ δ, |z ′| ≤ √
δ
}
. Then we have

the following result (see [7, Lemma 5]).

Proposition 3.2. Let 0 < r < r0. Then there are positive constants Cr and δr
such that, if u∈ O(Jst,J ν)(D,�ν) and 0 < δ < δr , then

u(0)∈Q(0, δ) �⇒ u(Dr ) ⊂ Q(0,Crδ)

for sufficiently large ν containing ∞.

Observe that if w ∈ Q(0, δ) for a sufficiently small δ < 1, then |w| ≤ √
2δ and

dist(w, ∂�ν) < Lδ for large ν. We thus have that if u ∈ O(Jst,J ν)(D,�ν) with
u(0)∈Q(0, δ) then

|u(ζ)| ≤ |u(0)| + |u(0)− u(ζ)|
≤ |u(0)| + C

√
dist(u(0), ∂�ν)

≤ √
2δ + C0

√
Lδ

(
let = C1

√
δ
)

(3.2)

for |ζ| ≤ r0. This suggests that we need to study u1, denoting u = (u1, . . . , un) as
the standard complex coordinate of C

n.

We first look at Re u1.
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Lemma 3.3. Suppose that |z|2 is strictly J ν-plurisubharmonic on U for any ν.

Then there are positive constantsC ′
r and δ ′

r such that the following statement holds
for sufficiently large ν: If a pseudoholomorphic disc u∈ O(Jst,J ν)(D,�ν) satisfies
u(0)∈Q(0, δ) with δ < δ ′

r , then

Re u1(ζ) > −C ′
r δ

for any |ζ| < r.

Proof. Since ‖ρν −ρ∞‖C2(Ū) → 0, we may assume that |z|2 − ερν(z) is J ν-pluri-
subharmonic on U for some positive ε. For any u∈ O(Jst,J ν)(D,�ν) whose origin
is sufficiently close to 0, it follows that u(D̄r0) ⊂ U and that |u|2 − ερν � u is
a positive-valued subharmonic function. Applying the Poisson integral formula
yields a constant C2 such that

−ερν(u(ζ)) ≤ |u(ζ)|2 − ερν(u(ζ))

≤ C2

∫ 2π

0

(|u(r0e
iθ )|2 − ερν(u(r0e

iθ ))
)
dθ

for |ζ| < r. Since −ρν � u is superharmonic, it follows that if u(0) ∈Q(0, δ) and
|ζ| < r then

−ερν(u(ζ)) ≤ 2πC2
(
C2

1 δ − ερν(u(0))
)
, (3.3)

where C1 is the constant in (3.2).
Expecting a contradiction, assume that there exist sequences

uν ∈ O(Jst,J ν)(D,�ν) and ζν ∈ Dr

such that uν(0) ∈Q(0, δν) and Re uν1(ζν)/δν → −∞ as ν → ∞ when δν → 0 as
ν → ∞. Since

|ρν(uν(ζν))− Re uν1(ζν)|
δν

≤ A2
|uν(ζν)|2

δν

≤ A2
C2

1 δν

δν

= A2C
2
1

for large ν, we conclude that ρν(uν(ζν))/δν → −∞. From (3.3) it follows that

−ερν(uν(ζν))

δν
≤ 2πC2

(
C2

1 − ε
ρν(uν(0))

δν

)
→ ∞ as ν → ∞.

But |Re uν1(0)|/δν ≤ 1 and |ρν(uν(0)) − Re uν1(0)|/δν ≤ A2|uν(0)|2/δν ≤ 2A2.

Thus ρν(uν(0))/δν is bounded, which is a contradiction. This proves the lemma.

Suppose that w ∈ Q(0, δ) ∩ �ν with Rew1 > 0 for sufficiently small δ. Then
Rew1 ≤ |Rew1 − ρν(w)| < A2|w|2 < 2A2δ. Choosing a large C ′

r , we may as-
sume for any ν that, if u∈ O(Jst,J ν)(D,�ν) and u(0)∈Q(0, δ) with δ < δ ′

r , then

|Re u1(ζ)| < C ′
r δ

for |ζ| < r.

From this we obtain the following lemma, which implies Proposition 3.2.
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Lemma 3.4. There are positive constants Cr and δr such that

‖u1‖C1(Dr) < Cr δ and

‖uj‖C1(Dr) <
√
Crδ (j = 2, . . . , n)

for any u∈ O(Jst,J ν)(D,�ν) with u(0)∈Q(0, δ) and δ < δr .

Proof. Given r , choose r1 with r < r1 < r0. Since J ν converges to J∞ in the C1

sense, let us assume that there is a neighborhood V of 0 in Proposition 2.1 such
that ‖u‖C1(Dr1)

≤ K1‖u‖C 0(Dr0)
for any u ∈ O(Jst,J ν)(Dr0 ,V ) and for any ν. Now

we have a constant δ ′ such that

u(0)∈Q(0, δ) �⇒ u(Dr0) ⊂ B
(
0,C1

√
δ
) ⊂ V

for any u∈ O(Jst,J ν)(D,�ν) and for any δ < δ ′. We therefore have

‖u‖C1(Dr1)
≤ K1C1

√
δ. (3.4)

From (2.2), Re u1 is the solution of the equation .Re u1 = 1
2 C(Jst , J ; u)1. We

may assume that ‖J ν‖C1(V ) ≤ K2 for some K2 and for any ν. Then from (2.3) and
(3.4) we obtain that |C(Jst , J ; u)1| ≤ 4nK2(K1C1)

2δ on Dr1 . Using the gradient
estimates for Poisson’s equation [8, Thm. 3.9, Thm. 8.32], we may conclude that

‖Re u1‖C1(Dr) ≤ K3

(
sup
Dr1

|Re u1| + sup
Dr1

|C(Jst , J ; u)1|
)

≤ K3(C
′
r1

+ 4nK2(K1C1)
2)δ (3.5)

whenever u(0)∈Q(0, δ).
It remains to analyze Im u1. Since u(0) ∈ Q(0, δ) implies that |Im u1(0)| ≤ δ,

it suffices to show that |∇ Im u1| < Cδ on Dr for some C. We can write J ν
(1,1) in

(3.1) as

J ν
(1,1) =

(
aν bν

cν −aν

)
,

where aν → 0, bν → −1, and cν = −(1 + a2
ν )/bν → 1. By this, we can

rewrite the (1,1)th and (1, 2)th elements of the equation du � J (1)
st = J ν � du =

J ν(0) � du+ Eν � du as

−bν
∂ Im u1

∂x1
(ζ) = −∂ Re u1

∂x2
(ζ)+ aν

∂ Re u1

∂x1
(ζ)+ εν1(ζ),

−bν
∂ Im u1

∂x2
(ζ) = ∂ Re u1

∂x1
(ζ)+ aν

∂ Re u1

∂x2
(ζ)+ εν2(ζ),

where εν1 and εν2 are (respectively) the (1,1)th and (1, 2)th elements of the matrix
Eν � du. Note that aν → 0 and bν → −1 as ν → ∞. Owing to (3.5), it re-
mains only to establish a bound for |ενj | on Dr . By our assumption, |Eν(u(ζ))| ≤
A1|u(ζ)| ≤ A1C1

√
δ for |ζ| < r if u(0) ∈Q(0, δ) for sufficiently small δ. By the

definition of ενj and equation (3.4), we have
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|ενj (ζ)| ≤ 2nA1K1C
2
1 δ

for j = 1, 2 and |ζ| < r. This establishes the lemma.

This result leads to the following lemma on complete hyperbolicity; the proof is
based on the methods in [9; 11]. The author would like to express deep thanks to
K. T. Kim for permitting him to use this unpublished result.

Lemma 3.5. Let � ⊂ (M, J ) be a domain with a stronglyJ-pseudoconvex bound-
ary point q0, and assume that J is of class C1,α. Then the following statements
hold.

(1) For any R > 0, there exists a neighborhood VR of q0 such that BK
(�,J )(p,R)

is relatively compact in � for any p ∈VR ∩�.

(2) If there is a sequence ϕν ∈ Aut(�, J ) such that ϕν(p0) → q0 for some p0 ∈
�, then (�, J ) is complete hyperbolic.

Proof. Take a coordinate system D : (U , 0) → (M, q0). We identify q0 = 0 and
D(U) = U. We may assume that � is strongly J-pseudoconvex at every point in
∂�∩U. By [9, Prop. 2.1], every point q ∈ ∂�∩U is indefinitely far from any point
in � with respect to the Kobayashi distance. It follows that BK

(�,J )(p, r) ∩ U ⊂⊂
� for any p ∈ � and any r. It remains to show that if p is sufficiently close to 0
then BK

(�,J )(p,R) ⊂ U.

We estimate the Kobayashi metric in a small neighborhood of 0. Let us define
the C∞-smooth function χ by

χ(z) = |z1|2 + |z ′|4

onU. It follows that z∈Q
(
0,

√
χ(z)

)
for any z. Fix r0 and r with 0 < r < r0 < 1.

Applying Lemma 3.1 for r0 and Lemma 3.4 for r , we have that if u∈ O(Jst,J )(D,�)
and u(0) is sufficiently close to 0 then

‖u1‖C1(Dr) < Cr

√
(χ � u)(0) and ‖uj‖C1(Dr) <

√
Cr

√
(χ � u)(0)

for j = 2, . . . , n. Set uj = g2j−1 + ig2j for each j. It follows that if u(0) is close
to 0 then

|∇(χ � u)(0)| ≤ 2
2∑

j=1

|gj(0)||∇gj(0)| + 4
2n∑
j=3

|gj(0)|3|∇gj(0)|

≤ 8Cr(χ � u)(0)+ 16(n− 1)
√
Cr(χ � u)(0)

≤ C(χ � u)(0)
for some constant C. Let Bχ(r) = {z ∈ R

2n : χ(z) < r} and let R0 be a constant
with Bχ(R0) ⊂ B(0, δ0). For a piecewise smooth path γ : [0,1] → � with γ (0)∈
Bχ(R1) and γ (1) ∈ � \ Bχ(R0) for R1 < R0, there is a segment [a, b] such that
χ(γ (a)) = R1, χ(γ (b)) = R0, and γ ([a, b]) ⊂ B(0, δ0). Then∫ 1

0
F(M,J )(γ (t), γ

′(t)) dt ≥
∫ b

a

F(M,J )(γ (t), γ
′(t)) dt ≥ 1

2

∫ R0

R1

1

Ct
dt



Domains in Almost Complex Manifolds 189

by the proof of Lemma 1.1 in [9]. It follows that

d(M,J )(p1,p2) >
1

2C
log

R0

R1

for any p1 ∈Bχ(R1)∩U and p2 ∈U \Bχ(R0). Given R, we have a small R1 such
that log(R0/R1) > 2CR. Hence BK

(�,J )(p,R)⊂ Bχ(R0)⊂ U for p∈Bχ(R1)∩U.

This proves (1).
In order to prove (2), choose any point p ∈� and any positive real number R.

For R ′ = d(�,J )(p0,p) there exists a ν0 such that ϕν0(p0) ∈VR+2R ′ . Since ϕν ∈
Aut(�, J ), the distance-decreasing property of the Kobayashi distance means that
d(�,J )(ϕ

ν0(p0),ϕν0(p)) = d(�,J )(p0,p) = R ′ and

ϕν0(BK
(�,J )(p,R)) ⊂ BK

(�,J )(ϕ
ν0(p0),R + 2R ′) ⊂⊂ �.

Therefore, BK
(�,J )(p,R) is relatively compact in � and so (�, J ) is complete in

the sense of Kobayashi.

4. Scaling Method

The scaling method used in this section was initiated by Pinchuk [18].
Let (M, J ) be an almost complex manifold with J ∈C1,α and let � be a domain

in M. Suppose that, for some point p0 ∈�, there is a sequence of automorphisms
ϕν ∈ Aut(�, J ) such thatϕν(p0) converges to the strongly J-pseudoconvex bound-
ary point q0 ∈ ∂�.

Choosing a coordinate system D : U → M about q0 with D(0) = q0, we make
the following identifications: q0 = 0; D(U) = U , a bounded domain in R

2n; and
D∗J = J, an induced almost complex structure on U. For a suitable D, we may
assume that:

• J(0) = J
(n)
st ;

• U ∩ � = {z ∈ C
n : ρ(z) < 0} for some C2 strictly J-plurisubharmonic func-

tion ρ on U and T0∂� = {Re z1 = 0}; and
• the defining function ρ can be expressed as

ρ(z) = Re z1 +
∑
j,k

(Re ρj,k zj zk)+
∑
j,k

ρj,k̄ zj z̄k + ρε(z),

where ρj,k and ρj,k̄ are constants with ρj,k = ρk,j and ρj,k̄ = ρ̄k,j̄ and where
ρε(z) = o(|z|2).
We shall consider only ϕν with ϕν(p0) ∈ U. For each pν = ϕν(p0), there is a

point p∗
ν ∈U ∩ ∂� with

dist(pν , ∂�) = dist(pν ,p∗
ν ) = τν

as well as a rigid motion Lν : R
2n → R

2n with the following properties.

(1) Lν(p∗
ν ) = 0 and Lν(pν) = (−τν , 0, . . . , 0).

(2) If we let �ν = Lν(U ∩�) and J ν = dLν �J � (dLν)−1, then the tangent space
of ∂�ν at 0 is {Re z1 = 0} and each J ν(0) carries {0} × C

n−1, the complex
tangent space at 0, into itself. This means that J ν(0) satisfies (3.1).
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(3) Lν converges to the identity mapping on any compact subset of R
2n in the C2

topology.

It then follows that ρν = ρ � (Lν)−1 → ρ in the C2 sense and that J ν → J in the
C1 sense. Multiplying each ρν by a suitable positive number, we can replace ρν

with
ρν(z) = Re z1 +

∑
j,k

(Re ρνj,k zj zk)+
∑
j,k

ρνj,k̄ zj z̄k + ρνε(z), (4.1)

where ρνj,k = ρνk,j → ρj,k and ρνj,k̄ = ρ̄νk,j̄ → ρj,k̄ as ν → ∞ and where ρνε(z) =
o(|z|2) uniformly for ν.

By Lemma 3.1, for a fixed R0 with 0 < R0 < 1 we have that u(DR0) ⊂ U ∩�

if u ∈ O(Jst,J )(D,�) and if u(0) is sufficiently close to 0. Now we regard u only
as its restriction on DR0 . For this u, Lν � u|DR0

∈ O(Jst,J ν)(DR0 ,�ν).

Proposition 4.1. For a fixed 0 < r0 < R0, there are positive constants C0 and
δ0 such that

dist(u(0), u(ζ)) ≤ C0

√
dist(u(0), ∂�ν)

for any |ζ| ≤ r0 and for any u∈ O(Jst,J ν)(DR0 ,�ν) with |u(0)| < δ0.

Proof. By Lemma 3.1, we have constants C1 and δ1 such that dist(u(0), u(ζ)) ≤
C1

√
dist(u(0), ∂�) for any |ζ| < r0 and for any u∈ O(Jst,J )(DR0 ,�)with |u(0)| <

δ1. Choose a small δ0 and a positive integer N1 such that

|(Lν)−1(z)| < δ1 and dist((Lν)−1(z), ∂�) < 2 dist(z, ∂�ν)

for z∈B(0, δ0) ∩�ν and ν > N1. We also have that

dist(p, q) < 2 dist((Lν)−1(p), (Lν)−1(q))

for any p, q ∈U and ν > N2. If u ∈ O(Jst,J ν)(DR0 ,�ν) with |u(0)| < δ0 for ν >

max{N1,N2}, then (Lν)−1 � u∈ O(Jst,J )(DR0 ,�) and |(Lν)−1 � u(0)| < δ1. Hence
it follows that

dist(u(0), u(ζ)) < 2 dist((Lν)−1 � u(0), (Lν)−1 � u(ζ))
< 2C1

√
dist((Lν)−1 � u(0), ∂�)

< 2
√

2C1

√
dist(u(0), ∂�ν)

for |ζ| < r0. This proves the proposition.

We can choose a small neighborhood V of 0 in U such that V ∩ �ν = {ρν < 0}
and |z|2 is strictly J ν-plurisubharmonic on V̄ for sufficiently large ν. Now we can
rewrite Proposition 3.2 and Lemma 3.4 for pseudoholomorphic discs defined on
DR0 . Thus there are positive constants Cr and δr for each 0 < r < r0 such that

u(0)∈Q(0, δ) �⇒




u(Dr ) ⊂ Q(0,Crδ),

‖u1‖C1(Dr) < Cr δ,

‖uj‖C1(Dr) <
√
Crδ (j = 2, . . . , n)

(4.2)

for any u∈ O(Jst,J ν)(DR0 ,�ν) and for any δ < δr .
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Proposition 4.2. For each compact subset K of �, there is a constant CK such
that

Lν � ϕν(K) ⊂ Q(0,CKτν)

for large ν.

Proof. For each pointp ∈�, there exist a neighborhoodUp ofp and a family Fp of
pseudoholomorphic discs passing p at the origin such that Up ⊂ ⋃

u∈Fp
u(Dr(p)),

where r(p) < r0 (see [2; 9; 14]). Hence there is a finite covering {Uqj : j =
0, . . . , k} of K with related constants r(qj ) such that q0 = p0 and Uqj ∩Uqj+1 
= ∅.
Let r = max{r(qj )} < r0. Since Lν � ϕν(q0) ∈Q(0, τν), Proposition 3.2 implies
that Lν �ϕν �u(Dr ) ⊂ Q(0,Crτν) for any u∈ Fq0 . Hence we have Lν �ϕν(Uq0) ⊂
Q(0,Crτν). For some u ∈ Fq1 there is a w ∈ Dr such that u(w) ∈ Uq0 ∩ Uq1 .

The new pseudoholomorphic disc g(ζ) = u
( ζ+w

1+w̄ζ

)
satisfies both g(0) = u(w) ∈

Q(0,Crτν) and g(−w) = u(0). Now we have Lν � ϕν(q1) ∈Q(0,C2
r τν), so that

Lν � ϕν(Uq1) ⊂ Q(0,C 3
r τν). Inductively, then, Lν � ϕν(Uqk ) ⊂ Q(0,C2k+1

r τν).

This proves the proposition.

Now we introduce Pinchuk’s scaling mapping. For a positive real number τ , de-
fine the biholomorphism �τ of C

n by

�τ(z) =
(
z1

τ
,
z2√
τ

, . . . ,
zn√
τ

)
. (4.3)

For simplicity we use �ν to denote �τν . Let F ν = �ν � Lν � ϕν. It follows that
F ν(p0) = (−1, 0, . . . ) = −1. For any compact subset K of �, we already know
that Lν � ϕν(K) ⊂ Q(0,CKτν). Since �ν(Q(0,CKτν)) = Q(0,CK), the family
{F ν} is uniformly bounded on K. In order to obtain a convergence of F ν on �,
we need the following result.

Proposition 4.3. Let h be a J-Hermitian metric on M. Then, for each compact
subset K ⊂ �, there exists a constant C ′

K such that

|dF ν(v)| ≤ C ′
K‖v‖h

for each v ∈ T� based on K.

Proof. For any u ∈ O(Jst,J )(D,�) with u(0) ∈K, it follows from Proposition 4.2
that Lν � ϕν � u(0)∈Q(0,CKτν). Hence, by (4.2) we have

‖Lν
1 � ϕν � u‖C1(Dr ) ≤ CrCKτν and ‖Lν

j � ϕν � u‖C1(Dr ) ≤ √
CrCKτν

for j = 2, . . . , n. Therefore,

|d(F ν � u)(e)| < C = max
{
CrCK ,

√
CrCK

}
.

By [17, 5.4a] there is a positive number R such that, for any v ∈ T� based on
K with ‖v‖h ≤ R, there exists a pseudoholomorphic disc u ∈ O(Jst,J )(D,�) sat-
isfying du(e) = v. Hence, for any v ∈ T� based on K, we can take u such that
du(e) = (R/‖v‖h)v. Then
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|dF ν(v)| = ‖v‖h
R

|d(F ν � u)(e)|

≤ C

R
‖v‖h.

The proposition follows.

Let J̃ ν = d�ν � J ν � (d�ν)−1 and �̃ν = �ν(�ν). Notice, for each compact subset
K of �, that F ν : K → �ν(�ν) is (J, J̃ ν)-holomorphic for large ν.

Now we go to the limits of J̃ ν and �̃ν. Write J and J ν as the matrix-valued
functions on V :

J(z) = J(0)+ E(z) =
(
J
(1)
st + A(z) B(z)

C(z) J
(n−1)
st +D(z)

)
,

J ν(z) = J ν(0)+ Eν(z) =
(
J ν
(1,1) + Aν(z) Bν(z)

J ν
(2,1) + Cν(z) J ν

(2,2) +Dν(z)

)
,

where Aν → A, Bν → B, Cν → C, and Dν → D in the C1 sense. Then J̃ ν can
be expressed as

J̃ ν(z) =
(
I/τν 0

0 I/
√
τν

)
J ν((�ν)−1(z))

(
τν I 0
0

√
τνI

)

=
(

J ν
(1,1) + Aν((�ν)−1(z))

(
Bν/

√
τν

)
((�ν)−1(z))√

τνJ
ν
(2,1) +

√
τνC

ν((�ν)−1(z)) J ν
(2,2) +Dν((�ν)−1(z))

)
.

Since (�ν)−1(z) converges uniformly to 0 on any compact subset of C
n and since

J ν converges uniformly to J on V, it follows that

J ν
(1,1) + Aν((�ν)−1(z)) → J

(1)
st ,

√
τνJ

ν
(2,1) +

√
τνC

ν((�ν)−1(z)) → 0, and

J ν
(2,2) +Dν((�ν)−1(z)) → J

(n−1)
st

on any compact subset of R
2n in the C1 sense. Write Bν(z) and B(z) as

Bν(z) =
n∑

j=1

(Bν
2j−1xj + Bν

2j yj )+ Bν
ε(z),

B(z) =
n∑

j=1

(B2j−1xj + B2j yj )+ Bε(z),

where Bν
j is a sequence of constant matrices that converges to Bj as ν → ∞,

Bν
ε → Bε in the C1 sense, and Bν

ε(z) = o(|z|). Then we have

1√
τν
Bν((�ν)−1(z)) = √

τν(B
ν
1x1 + Bν

2y1)

+
n∑

j=2

(Bν
2j−1xj + Bν

2j yj )+ 1√
τν
Bν
ε

(
τν z1,

√
τν z

′)

→
n∑

j=2

(B2j−1xj + B2j yj ) as ν → ∞.
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Now we obtain that J̃ ν converges to

Ĵ(z) =
(
J
(1)
st B̂(z ′)
0 J

(n−1)
st

)
where B̂(z ′) =

n∑
j=2

(B2j−1xj + B2j yj ) (4.4)

on any compact subset of R
2n in the C1 sense.

After scaling ρν, we have

ρ̃ν = ρν � (�ν)−1(z)

= τν

(
Re z1 +

n∑
j,k=2

(Re ρνj,k zj zk)+
n∑

j,k=2

ρνj,k̄ zj z̄k

)

+ τ 2
ν (Re ρν1,1z

2
1 + ρν1,1̄z1z̄1)

+ τν
√
τν × remaining terms in the summation of (4.1)

+ ρνε
(
τν z1,

√
τν z

′).
Therefore the sequence ρ̃ν/τν converges to ρ̂ defined by

ρ̂(z) = Re z1 +
n∑

j,k=2

(Re ρj,k zj zk)+
n∑

j,k=2

ρj,k̄ zj z̄k , (4.5)

and �̃ν converges to �̂ = {z∈ R
2n : ρ̂(z) < 0} in the sense of local Hausdorff set

convergence.

Proposition 4.4 (see [6]). The domain �̂ is strongly Ĵ-pseudoconvex at 0.

Proof. Let ρ̌ν = ρ � (�ν)−1 and J̌ ν = d�ν � J � (d�ν)−1. By the same reasons
as given for ρ̃ν and J̃ ν, the sequence ρ̌ν/τν converges to ρ̂ in the C2 sense and J̌ ν

converges to Ĵ in the C1 sense. Hence

LJ̌ ν

0 ρ̌
ν/τν(v) → LĴ

0 ρ̂(v)

for any vector v. Note that the Levi form is invariant under the pseudoholomor-
phic mappings. Since each �ν is (J, J̌ ν)-holomorphic, LJ

0ρ(v) = LJ̌ ν

0 ρ̌
ν(d�ν(v)).

From J̌ ν(0) = Jst it follows that every complex tangent vector of the domain de-
fined by ρ̌ν is of the form v = (0, v ′) and so d�ν(v) = v/

√
τν. For this v, we have

LJ̌ ν

0 ρ̌
ν(d�ν(v)) = LJ̌ ν

0 ρ̌
ν
(
v/

√
τν

) = LJ̌ ν

0 ρ̌
ν/τν(v). After limiting, one obtains that

LĴ
0 ρ̂(v) > 0 for any v ∈ T Ĵ

0 ∂�̂. This proves the proposition.

Now we finish the limiting procedure of F ν. For each compact subset K of �,
Propositions 4.2 and 4.3 imply that F ν |K has a convergent subsequence in the
compact-open topology. By the convergence of J̃ ν and Lemma 2.2, the limit of
this subsequence is a (J, Ĵ )-holomorphic mapping from the interior of K to the
closure of �̂. Using a compact exhaustion of � yields the following result.
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Proposition 4.5. The sequenceF ν has a subsequence that converges to a (J, Ĵ )-
holomorphic mapping F from � to the closure of �̂.

We now prove our main theorem.

Theorem 4.6. (�, J ) is biholomorphic to (�̂, Ĵ ).

Proof. By Lemma 3.5, (�, J ) is complete hyperbolic. Since �τ ∈ Aut(�̂, Ĵ ) and
�τ(−1) → 0 as τ → ∞, the domain (�̂, Ĵ ) is also complete hyperbolic.

Consider the (J̃ ν, J )-holomorphic mapping Gν = (F ν)−1 : �̃ν → �. For each
relatively compact neighborhood �′ of −1 in �̂, we have �′ ⊂ �̃ν for sufficiently
large ν. Since Gν(−1) = p0, it follows from Proposition 2.3 that Gν |�′ has a sub-
sequence converging to an element of O(Ĵ,J )(�

′,�) in the compact-open topology.
Thus we have a pseudoholomorphic mapping G : (�̂, Ĵ ) → (�, J ) that is a sub-
sequential limit of Gν on each compact exhaustion of �̂.

It is easy to see thatF �G = Id�̂ andG � F |F −1(�̂) = IdF −1(�̂). Hence it remains
only to show that F −1(�̂) = �. Take any point x0 ∈ � ∩ ∂F −1(�̂) ⊂ F −1(∂�̂)

and a sequence xν ∈ F −1(�̂) such that xν → x0. Since limν→∞ F(xν) ∈ ∂�̂, we
obtain that limν→∞ d(�̂,Ĵ )(−1,F(xν)) = ∞. However, then

d(�̂,Ĵ )(−1,F(xν)) ≤ d(�,J )(p0, xν) → d(�,J )(p0, x0) < ∞
as ν → ∞. This is a contradiction, hence F −1(�̂) is closed in �. The set � is
connected and so F −1(�̂) = �, proving the theorem.

Definition 4.7. Let �̂ ⊂ C
n be a domain defined by ρ̂ in the form (4.5) and

let Ĵ be an almost complex structure on C
n as in (4.4). A pair (�̂, Ĵ ) is called a

model domain if �̂ is strongly Ĵ-pseudoconvex at 0.

5. Simplification of Ĵ

In order to classify the model domains (�̂, Ĵ ), we need to simplify the almost
complex structure Ĵ on R

2n. We shall introduce some notation.
A 2n × 2m real matrix A = (A

j

k) is called anticomplex linear if J (n)
st � A =

−A � J (m)
st ; if J (n)

st � A = A � J (m)
st then we call A complex linear. For a complex

or anticomplex linear matrixA, let 〈A〉 = (〈A〉jk ) be a n×m complex matrix where
〈A〉jk = A

2j−1
2k−1 + iA

2j
2k−1. The corresponding linear transformation of the complex

(resp. anticomplex) linear 2×2 matrix A is z "→ 〈A〉z (resp. z "→ 〈A〉z̄). It is easy
to see that two complex or two anticomplex linear matrices A and B are same if
and only if 〈A〉 = 〈B〉. If both A and B are either complex linear or anticomplex
linear, then AB is complex linear. If A is anticomplex linear and B is complex
linear, then AB is anticomplex linear and 〈AB〉 = 〈A〉〈B〉.

In this paper, by a shear mapping we mean a mapping D : C
n → C

n defined as

D(z) = (z1 + f(z ′), z2, . . . , zn), (5.1)
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where f : C
n−1 → C is a C1-smooth function. If f is holomorphic in z ′ then we

call D complex shear. It is easy to see that the shear mapping D is a C1 diffeo-
morphism of C

n and that the Jacobian matrices of D and its inverse D−1 can be
expressed (respectively) as

dD =
(
I df

0 I

)
and dD−1 =

(
I −df

0 I

)
.

Now we move on to the simplification of Ĵ (denoted simply by J ). For each
model J, let BJ(z ′) = B̂(z ′) in (4.4).

Given J, let BJ
j = (BJ

2,j , . . . ,BJ
n,j ) for each BJ

k,j a 2 × 2 square matrix. Then

BJ(z ′) =
( n∑
j=2

(BJ
2,2j−1xj + BJ

2,2j yj ) · · ·
n∑

j=2

(BJ
n,2j−1xj + BJ

n,2j yj )

)
.

Since J � J = −Id, it follows that J (1)
st �BJ +BJ � J (n−1)

st = 0. So BJ is anticom-
plex linear. Hence, for each

∑
(BJ

k,2j−1xj + BJ
k,2j yj ) we can write

〈 n∑
j=2

(BJ
k,2j−1xj + BJ

k,2j yj )

〉
=

n∑
j=2

(〈BJ
k,2j−1〉xj + 〈BJ

k,2j〉yj )

=
n∑

j=2

(aJk,j zj + bJk,j z̄j ),

where

aJk,j = 1
2 (〈BJ

k,2j−1〉 − i〈BJ
k,2j〉) and bJk,j = 1

2 (〈BJ
k,2j−1〉 + i〈BJ

k,2j〉).
Let D : C

n → C
n be a shear mapping as in (5.1). Because J �D−1 = J on C

n,
the induced structure J ′ by D can be written as

J ′ = dD � J � dD−1 =
(
J
(1)
st BJ(z)− J

(1)
st � df + df � J (n−1)

st

0 J
(n−1)
st

)
. (5.2)

We shall therefore simplify BJ(z)− J
(1)
st � df + df � J (n−1)

st , which is anticomplex
linear. Observe that J (1)

st � df − df � J (n−1)
st is also anticomplex linear and that its

corresponding matrix is

〈J (1)
st � df − df � J (n−1)

st 〉 = 2i

(
∂f

∂z̄2
, . . . ,

∂f

∂z̄n

)
. (5.3)

One may thereby obtain that every complex shear mapping is an automorphism of
(R2n, J ).

Set

f(z ′) = −i

(
1

2
aJ2,2z2z̄2 + 1

4
bJ2,2z̄

2
2 + 1

2

n∑
j=3

(aJ2,j zj + bJ2,j z̄j )z̄2

)
;

then 2i∂f/∂z̄2 = ∑n
j=2(a

J
2,j zj + bJ2,j z̄j ). Hence the induced J ′ of (5.2) satisfies

BJ ′
2,j = 0 for j = 3, . . . , 2n.
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Now we use simply J to denote J ′. For this J, let

f(z ′) = −i

(
1

2
aJ3,3z3z̄3 + 1

4
bJ3,3z̄

2
3 + 1

2

n∑
j=4

(aJ3,j zj + bJ3,j z̄j )z̄3

)
.

This f has no term containing z2 or z̄2, so it follows that ∂f/∂z̄2 = 0 and
2i∂f/∂z̄3 = ∑n

j=3(a
J
3,j zj + bJ3,j z̄j ). Hence for newly induced J ′ we have BJ ′

2,j =
0 for j = 3, . . . , 2n and BJ ′

3,j = 0 for j = 5, . . . , 2n.
Inductively we have that the first J is diffeomorphically equivalent to the J ′

satisfying BJ ′
k,j = 0 for j ≥ 2k − 1. More precisely,

BJ ′
(z ′) =

(
0 BJ ′

3,3x2 + BJ ′
3,4y2 · · ·

n−1∑
j=2

(BJ ′
n,2j−1xj + BJ ′

n,2j yj )

)
.

By this procedure, we conclude that (R4, Ĵ ) is biholomorphic to (C2, Jst ). In
fact, the Nijenhuis tensor NĴ is always vanishing on R

4. We thus have the fol-
lowing generalization of the Wong–Rosay theorem for the case of real dimen-
sion 4.

Proposition 5.1. If a domain � in an almost complex manifold (M 4, J ) ad-
mits an automorphism orbit accumulating at a strongly J-pseudoconvex boundary
point, then (�, J ) is biholomorphic to (B2, Jst ).

In R
6, we have more simplification of Ĵ to J1 (as in Example 1.1 for the noninte-

grable case).

Proposition 5.2. (R6, Ĵ ) is biholomorphic to (C3, Jst ) or (R6, J1).

Proof. We already know that (R6, Ĵ ) is biholomorphic to (R6, J ) with BJ(z ′) =
(0, BJ

3,3x2 + BJ
3,4y2). Suppose there is a shear mapping D as in (5.1) such that

f is holomorphic in z2 and Re(2i∂f/∂z̄3) = Re(aJ3,2z2 + bJ3,2z̄2). Then the J ′
induced by D satisfies

BJ ′
(z ′) =

(
0 0 0 ax2 + by2

0 0 ax2 + by2 0

)

by (5.2) and (5.3). Let g = Re(aJ3,2z2 + bJ3,2z̄2); this is a linear function in x2 and
y2. There is a harmonic conjugate h of g on all of the z2-plane such that h− ig is
holomorphic in z2. Then the function f = (h− ig)z̄3/2 satisfies our condition.

Let w = a − bi. It follows that J ′ = Jst when w = 0. Suppose that w 
= 0.
Setting D(z) = (z1,wz2, z3), we obtain dD � J ′ � dD−1 = J1.

Note that the shear mappings used in this section change our model defining func-
tions. But the induced defining functions are always in the form (4.5).
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6. Nijenhuis Tensor and Pseudoholomorphic Mappings
in (R6, J1)

Computing the Nijenhuis tensor NJ1, we have

NJ1

(
∂

∂x2
,
∂

∂x3

)
= −NJ1

(
∂

∂y2
,
∂

∂y3

)
= ∂

∂x1
,

NJ1

(
∂

∂x2
,
∂

∂y3

)
= NJ1

(
∂

∂x3
,
∂

∂y2

)
= − ∂

∂y1
,

NJ1

(
∂

∂x1
, ·

)
= NJ1

(
∂

∂y1
, ·

)
= 0.

Hence NJ1(X,Y )∈ 〈∂/∂x1, ∂/∂y1〉 for any X,Y ∈ TR
6 with the same base point.

Let D3 be the polydisc in C
3 and let D∈ O(J1,J1)(D3, R6); this D satisfies

dD(NJ1(X,Y )) = NJ1(dD(X), dD(Y ))

for any X and Y. Now dD(NJ1(∂/∂x2, ∂/∂x3)) = dD(∂/∂x1)∈ 〈∂/∂x1, ∂/∂y1〉 and
dD(NJ1(∂/∂x2, ∂/∂y3)) = dD(−∂/∂y1) ∈ 〈∂/∂x1, ∂/∂y1〉. Then dD′(∂/∂x1) =
dD′(∂/∂y1) = 0, where D = (D1,D′). This means that D′ is independent of the
variable z1 (precisely x1 and y1). Let

dD =
(
dD1,z ′ dD1,z1

0 dD′

)
,

where D1,z ′(ζ) = D1(ζ , z ′) and D1,z1(ζ
′) = D1(z1, ζ ′). The (1,1)th and (2, 2)th

parts of the equation J1 � dD = dD � J1 are

J
(1)
st � dD1,z ′ = dD1,z ′ � J (1)

st and J
(2)
st � dD′ = dD′ � J (2)

st ,

respectively. As a result, D1,z ′ : D → C and D′ : D2 → C
2 are (standard)

holomorphic.
Let � = {ρ < 0} and �′ = {ρ ′ < 0} be our model domains. We define the

slice of � at z ′ ∈ C
2 by �z ′ = {z1 ∈ C : ρ(z1, z ′) < 0}, which is connected.

Proposition 6.1. Suppose there is a biholomorphism D : (�, J1) → (�′, J1).

Then D′ is an automorphism of (C2, Jst ), and D1,z ′ : �z ′ → �′
D′(z ′ ) is a biholo-

morphism for each z ′ ∈ C
2.

Proof. For each w ′ ∈ C
2 there is a w1 ∈ C with (w1,w ′) ∈ �. (This inclusion

holds also for �′.) Hence D′ is defined on C
2 and is surjective to C

2. Now sup-
pose that (D′)−1(w ′) is not single for some w ′ ∈ C

2. Then

�′
w ′ =

⋃
z ′∈(D′ )−1(w ′ )

D1,z ′(�z ′).

Note that this union is disjoint. For each z ′ ∈ (D′)−1(w ′), the holomorphic function
D1,z ′ : �z ′ → �′

w ′ is nonconstant. By the open mapping theorem, eachD1,z ′(�z ′)
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is open; hence �′
w ′ is the disjoint union of open sets. But since �′

w ′ is connected,
this is a contradiction. We conclude that D′ is injective and D1,z ′ : �z ′ → �′

D′(z ′ )
is biholomorphic.

Let us extend NJ1 as complex linear. In this case, NJ1(∂/∂z2, ∂/∂z3) = ∂/∂z̄1. It
follows that

dD

(
NJ1

(
∂

∂z2
,
∂

∂z3

))
= dD

(
∂

∂z̄1

)
=

(
∂D1

∂z1

)
∂

∂z̄1

and

NJ1

(
dD

(
∂

∂z2

)
, dD

(
∂

∂z3

))
=

(
∂D2

∂z2

∂D3

∂z3
− ∂D2

∂z3

∂D3

∂z2

)
∂

∂z̄1
,

and this implies (
∂D1

∂z1

)
= ∂D2

∂z2

∂D3

∂z3
− ∂D2

∂z3

∂D3

∂z2
. (6.1)

Lemma 6.2. Let � and �′ be model domains. Let ρ(z) = Re z1 + Q(z ′) and
ρ ′(z) = Re z1 +Q′(z ′) be the defining functions of � and �′, respectively. A C1

mapping D : (�, J1) → (�′, J1) is a biholomorphism if and only if D satisfies the
following.

(1) D′ is an automorphism of C
2 and det〈dD′ 〉 = r on C

2 for some positive real
constant r.

(2) D1(z) = rz1+f(z ′), where f1+if2 = f : C
2 → C is of classC∞. Moreover,

f1(z
′) = rQ(z ′)−Q′(D′(z ′)) and

2i
∂f2

∂z̄2
= −2

∂f1

∂z̄2
− φ2

(
∂D3

∂z2

)
,

2i
∂f2

∂z̄3
= −2

∂f1

∂z̄3
− φ2

(
∂D3

∂z3

)
+ rx2,

(6.2)

where φ2 = ReD2.

Proof. By Proposition 6.1,

D1,z ′ : �z ′ = {Re z1 < −Q(z ′)} → �′
D′(z ′ ) = {Re z1 < −Q′(D′(z ′))}

is a biholomorphism. Equation (6.1) implies that ∂D1/∂z1 = ∂D1,z ′/∂z1 =
det〈dD′ 〉 and that this is independent in z1 and antiholomorphic in z ′. Therefore,
D1,z ′ must be linear in z1 for each z ′. Hence we can write

D1,z ′(ζ) = ∂D1

∂z1
(z ′)ζ + f(z ′)

for each z ′. Since �z ′ and �′
D′(z ′ ) are left half-planes in C, (∂D1/∂z1)(z

′) must be
a positive real number rz ′ and also Re f(z ′) = rz ′Q(z ′)−Q′(D′(z ′)) for each z ′.
Now the antiholomorphic function ∂D1/∂z1 is positive real valued, so it is a posi-
tive real constant r throughout C

2. Hence D1 = rz1 + rQ(z ′)−Q′(D′(z ′))+ if2.
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Since J1 is of class C∞, we obtain that D is C∞-smooth (see [15]); thus f is also
of class C∞.

Consider the equation J1 �dD = dD�J1. Since dD = (
rI df
0 dD′

)
, the (1, 2)th part

of this equation is J (1)
st � df +B(D′(z ′)) � dD′ = rB(z ′)+ df � J (2)

st . We therefore
have

〈J (1)
st � df − df � J (2)

st 〉 = 〈rB(z ′)〉 − 〈B(D′(z ′))〉〈dD′ 〉

= (0, rx2 i)− (0,φ2 i)




∂D2
∂z2

∂D2
∂z3

∂D3
∂z2

∂D3
∂z3




=
(
−φ2 i

(
∂D3

∂z2

)
, rx2 i − φ2 i

(
∂D3

∂z3

))
.

Applying (5.3), one obtains (6.2).
Suppose that D : � → �′ satisfies conditions (1) and (2) of the lemma. Then

D is a bijective pseudoholomorphic mapping from (�, J1) to (�′, J1). In order
to prove that D is biholomorphic, it suffices to show that dD is nonsingular on
�. From (6.1), we know that (∂D2/∂z2)(∂D3/∂z3)− (∂D2/∂z3)(∂D3/∂z2) = r.

The determinant of the Jacobian matrix dD is

det

(
rI df

0 dD′

)
= det

(
rI 0
0 dD′

)
=

∣∣∣∣∣∣∣∣
det



r 0 0

0 ∂D2
∂z2

∂D2
∂z3

0 ∂D3
∂z2

∂D3
∂z3




∣∣∣∣∣∣∣∣

2

= r 4.

This proves the sufficiency.

By a similar argument as in the proof of Lemma 6.2, we also obtain the complete
description of the (J1, J1)-holomorphic mappings as follows.

Proposition 6.3. A mapping D = (D1,D2,D3) : D3 → C
3 is (J1, J1)-holo-

morphic if and only if :

(1) D2 and D3 are holomorphic in z2 and z3, independent of z1;
(2) D1(z) = r(z ′)z1 + f(z ′), where

r(z ′) =
(
∂D2

∂z2

∂D3

∂z3
− ∂D2

∂z3

∂D3

∂z2

)
(z ′)

and f : D2 → C; and
(3) f satisfies

4
∂f

∂z̄2
= −(D2 + D̄2)

(
∂D3

∂z2

)
and

4
∂f

∂z̄3
= −(D2 + D̄2)

(
∂D3

∂z3

)
+ (z2 + z̄2)r(z ′).
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7. Classification of Model Domains (�̂, Ĵ )

in Real Dimension 6

One can show that every model domain (�̂, Ĵ ) of real dimension 6 is biholomor-
phic to (�, J1) or (�, Jst ), where � = {ρ < 0} and is strongly J1-pseudoconvex
or strongly Jst -pseudoconvex at 0 and where ρ is in the form (4.5). Since (�, Jst )
is biholomorphically equivalent to (B3, Jst ), it remains to classify the domains
(�, J1). The complex shear mapping is in Aut(R6, J1); we may assume that

ρ(z) = Re z1 +
3∑

j,k=2

ρj,k̄ zj z̄k.

Let us compute the Levi form of ρ.
Computing J1, one obtains

J ∗
1 dzj =

{
idz1 + x2 idz̄3 if j = 1,

idzj if j = 2, 3;

J ∗
1 dz̄j =

{ −idz̄1 − x2 idz3 if j = 1,

−idz̄j if j = 2, 3.
Now we have

J ∗
1 dρ = 1

2
(idz1 − idz̄1 + x2 idz̄3 − x2 idz3)+

∑
ρj,k̄(iz̄k dzj − izj dz̄k).

The Levi form of ρ is expressed as

−d(J ∗
1 dρ) = 2ρ2,2̄dz2 ∧ dz̄2 + 2ρ3,3̄dz3 ∧ dz̄3

+
(

2ρ2,3̄ − 1

4

)
idz2 ∧ dz̄3 +

(
2ρ3,2̄ − 1

4

)
idz3 ∧ dz̄2

+ i

4
(dz2 ∧ dz3 − dz̄2 ∧ dz̄3).

Since J1(0) = Jst , we have T J1
0 ∂� = {z1 = 0}. For w = ∑3

j=2

(
wj

∂
∂zj

+ w̄j
∂
∂z̄j

) ∈
T
J1
0 ∂�, it follows that

LJ1
0 ρ(w) = 4

3∑
j=2

ρj,j̄ |wj |2 +
(

4ρ2,3̄ − 1

2

)
w2w̄3 +

(
4ρ3,2̄ − 1

2

)
w3w̄2.

The associated matrix of LJ1
0 ρ on T

J1
0 ∂� is(

4ρ2,2̄ 4ρ2,3̄ − 1
2

4ρ3,2̄ − 1
2 4ρ3,3̄

)
; (7.1)

we call this the tangential Levi matrix of ρ at 0. For the domain H t in Example 1.1,
we have our next proposition.

Proposition 7.1. The domain H t is strongly J1-pseudoconvex at 0 if and only if
t > 1/8.
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Proof. For w = ∑3
j=2

(
wj

∂
∂zj

+ w̄j
∂
∂z̄j

) ∈ T
J1
0 ∂�, we have

LJ1
0 ρt(w) = 4t(|w2|2 + |w3|2)− 1

2 (w2w̄3 + w̄2w3)

≥ 4t(|w2|2 + |w3|2)− |w2||w3|,
where equality holds when w2/w3 is positive real. Hence the last term of the fore-
going inequality is always positive if and only if 1 − 4(4t)2 < 0. This proves the
proposition.

Next we address the classification of (�, J1).

An almost complex manifold (M, J ) is called homogeneous if, for any points p
and q in M, there exists an automorphism ϕ ∈ Aut(M, J ) with ϕ(p) = q.

Lemma 7.2. (�, J1) is homogeneous.

Proof. We know that �τ and Ms(z) = (z1 + si, z ′) for any positive τ and any real
s are automorphisms of (�, J1). It thus suffices to prove that there exists a Dw ′ ∈
Aut(�, J1) with D′

w ′ = z ′ + w ′ for any w ′ = (w2,w3)∈ C
2. More precisely,

Dw ′(z) = (rz1 + f(z ′), z2 + w2, z3 + w3)

for some f : C
2 → C. For this D′

w ′ we have 〈dD′
w ′ 〉 = Id, so Lemma 6.2 implies

that r = 1 and

f1(z
′) =

3∑
j,k=2

ρj,k̄ zj z̄k −
2∑

j,k=3

(zj + wj)(w̄k + w̄k)

=
3∑

j,k=2

ρj,k̄(−zj w̄k − z̄kwj − wjw̄k).

It only remains to find f2 satisfying the two equations in (6.2), expressed by

∂f2

∂z̄2
= −iρ2,2̄w2 − iρ3,2̄w3 and

∂f2

∂z̄3
= −iρ2,3̄w2 − iρ3,3̄w3 + i

2
Rew2.

Observe that ∂(Re az̄)/∂z̄ = a/2. Let us define the real-valued function f2 by

f2(z
′) = Re(−2iρ2,2̄w2 − 2iρ3,2̄w3)z̄2

+ Re(−2iρ2,3̄w2 − 2iρ3,3̄w3 + i Rew2)z̄3.

Then this f2 is our desired function.

Given this lemma, we have our main result as follows.

Theorem 7.3. (�, J1) is biholomorphic to (�′, J1) if and only if the determinant
of the tangential Levi matrix of ρ at 0 is the same as that of ρ ′.

Proof. By Lemma 7.2, the existence of this biholomorphism is equivalent to the
existence of a biholomorphism with fixed point −1 = (−1, 0, 0)∈ C

3.
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Suppose there is a biholomorphism D : (�, J1) → (�′, J1) with D(−1) = −1.
Proposition 6.1 implies that D′ : C

2 → C
2 and D1,0 ′ : {Re z1 < 0} → {Re z1 <

0} are biholomorphisms with D′(0) = 0 and D1,0 ′(−1) = −1, respectively. This
means that the constant r in Lemma 6.2 is exactly 1. It is easy to see that D1 =
z1+f(z ′), f(0) = 0, and df0 = 0. Now we have dD0(v) = dD′

0(v
′) for any com-

plex tangent vector v = (0, v ′) of ∂� at 0. Note that D is the (J1, J1)-holomorphic
mapping defined on all of C

3 and that ρ = ρ ′ � D (Lemma 6.2 and Proposition
6.3). Thus it follows that LJ1

0 ρ(v) = LJ1
0 ρ

′(dD0(v)) = LJ1
0 ρ

′(dD′
0(v

′)) for any v =
(0, v ′)∈ T

J1
0 ∂�. This equation can be expressed as(
4ρ2,2̄ 4ρ2,3̄ − 1

2

4ρ3,2̄ − 1
2 4ρ3,3̄

)
= 〈dD′

0〉t
( 4ρ ′

2,2̄
4ρ ′

2,3̄
− 1

2

4ρ ′
3,2̄

− 1
2 4ρ ′

3,3̄

)
〈dD′

0〉.

Applying det〈dD′ 〉 = 1, one obtains the necessity.
In order to prove the sufficiency, we need only consider the case �′ = H t .

Suppose the tangential Levi matrix of ρ is the same as that of ρt . We will find
complex numbers α,β, γ , δ (“our Greek letters”) such that there exists a biholo-
morphism D : (�, J1) → (H t , J1) with

D(−1) = −1 and D′(z ′) = (αz2 + βz3, γz2 + δz3).

By Lemma 6.2, D1(z) = z1 + f(z ′) must hold where f = f1 + if2 and

f1(z
′) =

3∑
j,k=2

ρj,k̄ zj z̄k − t |αz2 + βz3|2 − t |γz2 + δz3|2.

It remains to find α,β, γ , δ such that there is a function f2 : C
2 → R satisfying

equation (6.2). It is easy to see that the existence of such an f2 is equivalent to the
partial derivatives of (6.2) satisfying

∂ 2f2

∂z̄3∂z̄2
= ∂ 2f2

∂z̄2∂z̄3
,

∂ 2f2

∂z3∂z̄2
= ∂ 2f2

∂z2∂z̄3
,

∂ 2f2

∂z2∂z̄2
= ∂ 2f2

∂z2∂z̄2
,

∂ 2f2

∂z3∂z̄3
= ∂ 2f2

∂z3∂z̄3
.

Because the right-hand sides of (6.2) are already determined, we can rewrite the
previous four equations as (respectively)

βγ − αδ = −1, (7.2)(
4t ᾱ − 1

2 γ̄
)
β + (

4t γ̄ − 1
2 ᾱ

)
δ = 4ρ3,2̄ − 1

2 , (7.3)

4tαᾱ + 4tγ γ̄ − 1
2αγ̄ − 1

2 ᾱγ = 4ρ2,2̄, (7.4)

4tββ̄ + 4tδδ̄ − 1
2βδ̄ − 1

2 β̄δ = 4ρ3,3̄. (7.5)

Now our problem is to find the solution of (7.2)–(7.5). It is possible to choose
α and γ satisfying (7.4). Then β and δ are automatically determined by (7.2) and
(7.3). In particular, (7.2) and (7.3) can be expressed as
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(
γ −α

4t ᾱ − 1
2 γ̄ 4t γ̄ − 1

2 ᾱ

)(
β

δ

)
=

( −1
4ρ3,2̄ − 1

2

)
. (7.6)

The determinant of the square matrix in (7.6) is the same as the left-hand side of
(7.4). Since � is strongly J1-pseudoconvex at 0, the number 4ρ2,2̄ must be posi-
tive. For chosen α and γ , we can find the solution β and δ of (7.6) via(

β

δ

)
= 1

4ρ2,2̄

(
4t γ̄ − 1

2 ᾱ α

−4t ᾱ + 1
2 γ̄ γ

)(−1
κ

)

= 1

4ρ2,2̄

(−4t γ̄ + 1
2 ᾱ + κα

4t ᾱ − 1
2 γ̄ + κγ

)
,

where κ = 4ρ3,2̄ − 1
2 .

Now our Greek letters satisfy (7.2)–(7.4), so it remains to test (7.5). Before
doing so, we compute that

4tβ̄ − 1

2
δ̄ = 1

4ρ2,2̄

((
−16t 2 + 1

4

)
γ + 4tκ̄ᾱ − 1

2
κ̄γ̄

)
,

4t δ̄ − 1

2
β̄ = 1

4ρ2,2̄

((
16t 2 − 1

4

)
α + 4tκ̄γ̄ − 1

2
κ̄ ᾱ

)
.

Observe that 16t 2 − 1
4 is the determinant of the tangential Levi matrix of ρt at 0,

and set µ = 16t 2 − 1
4 . Then (7.5) can be written as

4ρ3,3̄ = β

(
4tβ̄ − 1

2
δ̄

)
+ δ

(
4t δ̄ − 1

2
β̄

)

=
(

1

4ρ2,2̄

)2(
4tµγγ̄ − 1

2
µᾱγ − κµαγ − 16t 2κ̄ ᾱγ̄ + 2tκ̄ᾱ2

+ 4tκκ̄αᾱ + 2tκ̄γ̄ 2 − 1

4
κ̄ ᾱγ̄ − 1

2
κκ̄αγ̄

)

+
(

1

4ρ2,2̄

)2(
4tµαᾱ − 1

2
µαγ̄ + κµαγ + 16t 2κ̄ ᾱγ̄ − 2tκ̄γ̄ 2

+ 4tκκ̄γ γ̄ − 2tκ̄ᾱ2 + 1

4
κ̄ ᾱγ̄ − 1

2
κκ̄ᾱγ

)

=
(

1

4ρ2,2̄

)2

(µ+ κκ̄)

(
4tαᾱ + 4tγ γ̄ − 1

2
αγ̄ − 1

2
ᾱγ

)
.

From equation (7.4) it follows that

16ρ2,2̄ρ3,3̄ − κκ̄ = µ.

The left-hand side of this equation is the same as the determinant of the tangential
Levi matrix of ρ at 0 (see (7.1)).
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One may thus conclude that the existence of the solution of (7.2)–(7.5) corre-
sponds to the equivalence of determinants of two tangential Levi matrices. This
proves the theorem.

Now we return to Theorem 4.6. Since the mapping M(z) = (
z1,

√
tz ′) is the bi-

holomorphism from (H t , J1) to (H1, J1/t ), we have the following result.

Corollary 7.4. (�̂, Ĵ ) is biholomorphic to (H1, Jt ) for some 0 ≤ t < 8.

Remark 7.5 (The automorphism group of (H1, Jt )). Since (H1, J0) is biholo-
morphically equivalent to (B3, Jst ), its automorphism group Aut(H1, J0) is the Lie
group of real dimension 15. If t 
= 0, then (H1, Jt ) is biholomorphic to (H1/t , J1).

Let us compute Aut(H t , J1) for t > 1/8. The topological transformation group
Aut(H t , J1) under the compact-open topology can be decomposed as

Aut(H t , J1) = H ⊕ Aut−1(H t , J1),

where

• H is generated by �τ (τ > 0), Ms (s ∈ R), and Dw ′ (w ′ ∈ C
2) as introduced in

Lemma 7.2; this H acts on H1 transitively.
• Aut−1(H t , J1) is the isotropy subgroup at −1 = (−1, 0, 0).

Let D ∈ Aut−1(H t , J1). Then D1 = z1 + f(z ′), f(0) = 0, and df0 = 0. Hence
the differential of D at −1 is complex linear and the corresponding complex ma-
trix must be

〈dD−1〉 =

 1 0 0

0 α β

0 γ δ


, (7.7)

where the Greek letters are the solutions of (7.2)–(7.5) for ρ2,2̄ = ρ3,3̄ = t and
ρ3,2̄ = 0. By the argument of the proof of Theorem 7.3, there exists an automor-
phism (H t , J1) with (7.7). By Cartan’s uniqueness theorem (see [15]), such an
automorphism is unique for each solution of (7.2)–(7.5). It is easy to see that the
solution space of (7.2)–(7.5) is in a one-to-one correspondence with the solution
space of (7.4). Therefore, Aut−1(H t , J1) is of dimension 3.
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