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Domains in Almost Complex Manifolds with
an Automorphism Orbit Accumulating at a
Strongly Pseudoconvex Boundary Point

KANG-HYURK LEE

1. Introduction

Let (M, J) be an almost complex manifold and let 2 be a domain in M. Call p €
0K a strongly J-pseudoconvex boundary point if there is a C? local defining func-
tion whose Levi form is positive definite for the J-complex tangent vector space
TPJE)Q =T,02 N JT,0Q of 92 at p. For p € Q and a sequence ¢" € Aut(£2, J),
call the sequence {¢"(p) : v = 1,2,...} an automorphism orbit of 2. This paper
pertains to the following problem.

Classify the domains 2 in an almost complex manifold (M, J) that ad-
mit an automorphism orbit accumulating at a strongly J-pseudoconvex
boundary point.

In the complex case, the Wong—Rosay theorem states that such domains are bi-
holomorphically equivalent to the unit ball B,, in C" (see [3; 5; 10; 19; 22]). For
the real 4-dimensional almost complex case, Gaussier and Sukhov [7] have shown
that under a certain restriction such (€2, J) is biholomorphic to the unit ball B, in
C2. But when dim M > 6 it turns out that there are infinitely many biholomorphi-
cally distinct domains, as the following example shows.

ExampLE 1.1. Let z; = x; + iy; be the standard coordinate functions of C3 ~
RS. Setz’ = (z2,z3) and z = (z1,z’). Let p;(z) = Rez; +¢|z'|* and let
0-1 0 0 0 1

1 0 0 0 1x, 0
00 0-1 0 0
=10 01 0 0 o
00 0 0 0 —1
00 0 0 1 0

for t € R. Consider the domain H, = {z € C? : p,(z) < 0} equipped with the
almost complex structure J;. It turns out that (H,, J;) with # > 1/8 has automor-
phisms A (z) = (zl /k, 2k ), which induces an orbit accumulating at O that is
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strongly Ji-pseudoconvex. We show in this paper that (H,, J;) and (Hj, J;) are
biholomorphically distinct whenever ¢ # s.

In fact, our main theorem is that these manifolds constitute the complete list for
n = 3. More precisely, we have the following result.

THEOREM 1.2. Let (M?",J) be an almost complex manifold equipped with the
almost complex structure J of Holder class CY%. Suppose that a domain Q in M
has a strongly J-pseudoconvex boundary point qy € 02 admitting a sequence ¢" €
Aut (2, J) such that ¢*(pg) — qo as v — o0 for some pg € 2. Then (2, J) is
biholomorphic to one of the models (Q, f) in Definition 4.7. Moreover, (2, J) is
biholomorphic to (B,, J;;) when n = 2, and (L2, J) is biholomorphic to one of
(Hy, J;) for0 <t < 8whenn = 3.

We use the scaling technique in Section 4 to show that such a (€2, J) is biholo-
morphic to some model domain (fZ, J ) (see Theorem 4.6) after introducing the
basic terminology and presenting some preparations for the scaling method in Sec-
tions 2 and 3. We then simplify the model structure J (Section 5) and classify the
models in the case of real dimension 6 (Sections 6 and 7).

At the time of this writing, we were informed that Gaussier and Sukhov have ob-
tained a similar result independently. We also have results in all dimensions. How-
ever, identifying the moduli of all such domains in terms of geometric-analytic
invariants remains difficult when n > 4.

ACKNOWLEDGMENT. This work is part of the author’s dissertation for his doc-
toral degree at the Pohang University of Science and Technology. He would like
to express his gratitude to his advisor Kang-Tae Kim for guidance. He also would
like to thank the referee for valuable comments.

2. Preliminaries

A pair (M, J) is called an almost complex manifold if M is a C*°-smooth real
manifold and J is a field of endomorphisms of the tangent bundle TM satisfying
J? = —1d. We call J an almost complex structure on M.

The canonical example of the almost complex manifold is the complex Eu-
clidean space C" with the standard complex structure JS(,”) (or simply J;; when
there is no danger of confusion), which is given by J§,">(a/ 0x;) = 0/dy; for j =
1,...,n. An almost complex manifold (M 21 1Y is said to be integrable if J is in-
duced from the standard complex structure JS(,") of C" in a local coordinate system
about p for each point p € M. The Newlander—Nirenberg theorem [16] says that
an almost complex manifold (M, J) is integrable if and only if N, is vanishing on
M, where the Nijenhuis tensor N; of J is defined by

Ny(X,Y)=[JX,JY]-JJX,Y]-J[X,JY]-[X,Y]

for all X,Y € TM with the same base point.
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2.1. Pseudoholomorphic Mappings between
Almost Complex Manifolds

Given two almost complex manifolds (M, J) and (M, J), a mapping f from M to
M of class C' is said to be (J, J)-holomorphic (or simply pseudoholomorphic) if
its differential df : TM — TM satisfies the condition

Jodf =df olJ

on TM. We denote by O j)(M, M) the space of (J, J)-holomorphic mappings
from M to M. For the standard r-disc D, = {z € C : |z| < r} (simply D; = D),
an element of O, ;)(D,, M) is called a pseudoholomorphic disc in M.

A bijective mapping f: (M, J) — (M, J) is called a biholomorphism if f €
O(‘]’j)(M,M) and f~'e O(Jjj)(M,M). For the case (M, J) = (1\71, f), we call
f an automorphism of (M, J). We denote by Aut(M, J) the set of all automor-
phisms of (M, J).

Sikorav [21, Prop. 2.3.6] gave an estimate for pseudoholomorphic discs in a
small neighborhood of a given point. His theorem gives rise to the following
proposition (see [15]).

PROPOSITION 2.1.  Let J be a C-% almost complex structure of R*" and let J be
a C" almost complex structure of R*™. Then there is a bounded neighborhood U
of 0 in R*>™ with the following property: For a given domain Q in R*" and its
compact subset K, there exists a positive constant C such that

I fllcixy < Cllfllco

whenever f: Q — U is a (J, J)-holomorphic mapping. Moreover, this estimate
holds for sufficiently small C" perturbations of J and J.

Let J and J be almost complex structures of class C' on R*"* and R?>", respec-
tively. Regard J and J as matrix-valued functions expressed by J = (J¢) and
J = (J’\) In this section, we use x = (xy, X2, ...,X2,) as the standard real coor-
dinate in R?",

For a bounded domain € in R*", let f = (f1, f2,..., fam): 2 — R*" be a
pseudoholomorphic mapping of class C'(R2). By [15, Sec. 2], each f; satisfies the
partial differential equation

Hf, = C(JLJ5 ) 2.1
in the weak sense, where H” is the linear partial differential operator expressed by

2n

H' = Zaxﬁxj + Z J ’Bxkaxl

j=1

and C(J, J; f); is defined by
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2n 2m

CT: fr==3 Zaf" )

J k=1 p=1

+ Z Z J] JA(f) (J_va“(f)).
Joi=1 =1 Xk
The coefficients of H’ have the same regularity with J. The symbol of H” is
S+ I o = 1P + 1J¢ ], so HY s strictly elliptic on Q.
Let p > 2n. By the elliptic regularity theorem, the function f; is in Wi (2)
and in the strong solution of (2.1) for each A.

LEMMA 2.2. Let {J'} and {f v} be sequences of C"* almost complex structures
on R?>" and R>™, respectively. Suppose that ||J* —J lc1@ — 0forabounded do-
main 2 in R?" and that ||J" — j||cl(1<) — 0 for any compact subset K of R*". If
a sequence {f" € O jv)(Q,R>™) 1 v =1,2,...} converges to f in the compact-
open topology, then f is (J, J )-holomorphic.

Proof. Because this problem is local, we shall prove the lemma on a relatively
compact neighborhood Q' of a given point in € whose boundary is of class C*.
For 0 < B < 1 — 2n/p, the Sobolev space W>?(Q') is compactly embedded
in C1A(Q') (see [8, Thm. 7.26]). Since f” e W>P(Q'), it suffices to show that
Il f¥llw2.rq) is uniformly bounded. Then f has a subsequence converging to f
in C1#(§'); hence the limiting of the equation J* o df” = df" o J* shows that f
is (J,J )-holomorphic on .

The C'-convergence of J implies that the coefficients of H’" converge to those
of H” in C'(R). Let U be a relatively compact neighborhood of Q' in €. By
the L? estimates of an elliptic equation [8, Thm. 9.11], there exists a constant C
such that

I £ w2y < CULF ey + ICUY TV 5 lleew))

for sufficiently large v and for any A. We know that || f"||.»@) is uniformly
bounded. Applying Proposition 2.1, one obtains that the gradient of fV is lo-
cally bounded on € and uniformly bounded on U. Since J” — J in the C' sense,
it follows that [|C(J", J"; S)llcow) is uniformly bounded. We thus have that
Il £V lw2.r(q) is uniformly bounded, which proves the lemma. O

Consider the pseudoholomorphic disc u: (D, J;;) — (R?™, J). Since the operator
1 HJ is the same as the standard Laplacian A, equation (2.1) can be written as

Auy = EC(Jstv J;u)y, (2.2)

where
2m

1 ou ou
—C(Jy, T u); = e - —”—] 2.3
5 Clais I3 )3 Maxax ()Zax8 w. 23
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2.2. Kobayashi—Royden Pseudometric

Let (M, J) be an almost complex manifold and let J be of class C'*. By the
existence theorem of pseudoholomorphic discs (see [17]), we can define the
Kobayashi—Royden pseudometric Fy, ;) that is the same as the one for the in-
tegrable case (Royden [20]) as

1
F(MJ)(p, v) = 1nf{ﬂ ‘ue O(_]“’J)(D, M) with I/L(O) =p, du(e) = av},
a

where e is the unit vector in ToD and where p € M and v € T, M. Because Fy, )
is upper semicontinuous on TM (see [9]), the Kobayashi pseudodistance dy, )
may be defined as

1
dw,n(p.q) = inf/ Fou,n(y (@), y'(1)) dt,
0

where the infimum is taken over all piecewise smooth paths y : [0,1] — M with
y(0) = p and y (1) = g. Since Fy, ) is locally bounded on TM, its integrated
pseudodistance d(y, ;) is continuous on M x M. As in the integrable case (see
[12; 20]), this metric and distance have the usual distance-decreasing property for
pseudoholomorphic mappings.

We say that (M, J) is (Kobayashi) hyperbolic if the Kobayashi pseudodistance
d(m, sy is a proper distance. When the Kobayashi ball B(M np.r) ={qgeM:
dwm, 1(p,q) < r} is always relatively compact in M for any p € M and any r >
0, we call (M, J) complete hyperbolic. We present a normal family theorem for
the complete hyperbolic almost complex manifolds (cf. [13, Cor. 5.1.2]).

PROPOSITION 2.3.  Suppose that a manifold M admits a sequence J* of C% al-
most complex structures that converges to J in the C' sense on any compact subset
of M. Let (M, J) be a complete hyperbolic almost complex manifold. Then a se-
quence {fV : f € Oy, H(M, M)} has a subsequence converging to an element
of Ou, iH(M, M) whenever { f'(po)} is relatively compact in Mfor some pg € M.

Proof. Let us assume that f'(pg) converges to gg € M. Tt suffices to show that
f" has a convergent subsequence on any compact subset K of M containing py.
Let V be a relatively compact neighborhood of K in M and let & be a Hermitian
metric on V that is smooth up to V. We denote by d, the distance function on V
induced by & and let B,(p,r) = {g €V : dy(p,q) < r}. By Lemma 2.4 in [4],
there exists a positive constant C such that

Fou, py(p,v) < Cllvllp

for any p € V and any v € T,M and for sufficiently large v. Hence we have
d, vy (p,q) < Cdy(p,q) for any p and g in V, so that

By(p.r) C B, ;) (p.Cr)
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for any r. For given p € V and ¢ > 0, any point ¢ € Bj(p,e/C) satisfies
d g 1 (f"(p), '(q)) < &; thisimplies that { f"} is equicontinuous on V. Choose a
positive constant R with K C Bj(po, R). Then, by the distance-decreasing prop-
erty of the Kobayashi pseudodistance, we conclude that

fU(K) C f'(Bu(po, R)) C f'(Bfy, yv)(P0, CR)) C By 7,(q0,2CR)

for sufficiently large v. From the complete hyperbolicity of (M, J), it follows that
B([;?, j)(qo, 2CR) CC M. Hence, by the Arzela—Ascoli theorem there is a conver-
gent subsequence in the compact-open topology. By Lemma 2.2, this proves the
proposition. U

2.3. J-Pseudoconvexity and J-Plurisubharmonic Functions

For an almost complex manifold (M, J), let p : M — R be an upper semicontin-
uous function. Call p J-plurisubharmonic when, for any u € Oy, (D, M), the
composition p o u is always subharmonic. For any p of class C2, one can deter-
mine the J-plurisubharmonicity of p by the Levi form.

For any 1-form w on M, J*w is defined by J*w(v) = w(Jv). The Levi form of
p at p € M is defined by

Lyp() = —d(J*dp)(v, Jv)

for v e T, M. For the case p € C 2, it is known that p is J-plurisubharmonic on M
if and only if Elfp(v) is nonnegative for any p € M and any v € T, M. When the
Levi form is positive definite, p is said to be strictly J-plurisubharmonic.

Suppose that €2 is strongly J-pseudoconvex at p € 2 with a defining function
p on a neighborhood U of p. Then there exist a positive constant A and a small
neighborhood V of p in U such that p 4+ Ap? is strictly J-plurisubharmonic on V
and Q NV = {p+Ap? < 0}. Therefore  has a local, strictly J-plurisubharmonic
defining function.

3. Boundary Behavior of Pseudoholomorphic Discs

In this section, we investigate the behavior of the pseudoholomorphic discs whose
origins are sufficiently close to the strongly J-pseudoconvex boundary point.
Ivashkovich and Rosay have given a localization lemma for pseudoholomorphic
discs as follows.

LeEmMA 3.1 [9,Lemma2.2]. Let (M, J) be an almost complex manifold with J €
C', and let Q be a domain in M with a strongly J-pseudoconvex boundary point
qo € 0X2. For every rg € [0, 1) there exist positive constants Cy and 8y such that,
for every pseudoholomorphic disc u € Oy, j(D, ) with dist(1(0), qo) < do,

dist(u(0), u(¢)) < Coy/dist(u(0), 9S2)

if |¢| < ro, where dist is the distance induced by a Riemannian metric of M.
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For the scaling technique of Section 4, we need more information about pseudo-
holomorphic discs in a perturbed situation.

Let U be a bounded neighborhood of 0 in R?". We consider the following
situation.

(1) There is a sequence {J"},=12,... 00 Of C I almost complex structures on R?"
such that [|J” — J*| ¢y — 0 as v — oo. Moreover, we have

J®0)=J,; and JY0)= (ng VO ) 3.1
J(2,1) J(Z,Z)

where ‘](]f,l) and J(]é,z) are 2 x 2 and (2n — 2) x (2n — 2) matrices, respec-
tively. When J"(z) = J"(0) + E"(z), there is an A; > O such that |EV(z)| <
Aj|z| for small z and for any v = 1,2,...,00.

(2) Let {p"}1=12,...,00 be a sequence of C? strictly J'-plurisubharmonic func-
tions defined on a neighborhood of U such that || 0" — p*||c25) — Oasv —
oo. Furthermore, p"(z) = Rez; + O(|z|?) uniformly for v = 1,2,...,00,
where z = (zy,...,2,) is a standard coordinate of C”. This means that
[0"(z) —Rez;| < As|z|? for small z. Let ¥ be a domain in R?” for each v =
1,2,...,00with Q" NU ={z€U : p"(z) < 0}.

(3) For afixed 0 < rg < 1, there are positive constants C and § such that

dist(u(0), u(2)) < Co/dist(u(0),9Q2")

for any |¢| < r¢ and for any u € O(y,,, j»)(D, Q") with [u(0)| < §o.

Define Q(0,6) = {(zl,z’) eCxC" |z <6, 17| < ﬁ} Then we have
the following result (see [7, Lemma 5]).

PROPOSITION 3.2. Let 0 < r < rg. Then there are positive constants C, and §,
such that, ifu € Oy, j»(D, Q¥) and 0 < § < §,, then

u(0) € 0(0,8) = u(D,) C 0(0,C,9)

for sufficiently large v containing oo.

Observe that if w € Q(0,6) for a sufficiently small § < 1, then |w| < +/26§ and
dist(w, 92") < L§ for large v. We thus have that if u € Oy, (D, Q") with
u(0) € 0(0,6) then

()| < [u(0)] + |u(0) — u(?)]
< |u(0)] + C+/dist(u(0), Q")

<25+ CoVLs (let = C\V3) 3.2)
for |¢| < ro. This suggests that we need to study u;, denoting u = (uy, ..., u,) as

the standard complex coordinate of C".
We first look at Re u;.
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LEMMA 3.3.  Suppose that |z|? is strictly J'-plurisubharmonic on U for any v.
Then there are positive constants C| and 8. such that the following statement holds
for sufficiently large v: If a pseudoholomorphic disc u € Oy, v (D, Q") satisfies
u(0) € Q(0,8) with § < &/, then

Reu;(¢) > —C/8
forany |¢| < 7.

Proof. Since || p* — p*lc2(7) — 0, we may assume that 1z|? — ep"(z) is J "-pluri-
subharmonic on U for some positive €. For any u € O, j» (D, ") whose origin
is sufficiently close to 0, it follows that u(D,,) C U and that |u|> — ep” o u is
a positive-valued subharmonic function. Applying the Poisson integral formula
yields a constant C, such that

—ep"(0)) < [u(@)* — ep"u(2))

2w
<G / (1u(roe™)I? — ep(u(roe™))) do
0

for || < r. Since —p” o u is superharmonic, it follows that if #(0) € Q(0, §) and
|¢| < r then 5

—ep"((¢)) < 27C(CP6 — ep"(w(0))). (3.3)
where C; is the constant in (3.2).

Expecting a contradiction, assume that there exist sequences
MUEO(‘]‘”JV)(D,QV) and gy EDr

such that ”(0) € Q(0,45,) and Re uj(¢,)/8, — —o0 as v — oo when §, — 0 as
v — o0. Since

lp"(W"(6,)) — Reuj(G)l _ A (6

8, 3y
2
<A, i
3y
= A,C}
for large v, we conclude that p¥(1"(¢,))/8, — —oo. From (3.3) it follows that
—onV(V ’ V(0
M S 2JTC2(C]2 _SM) — 00 asv — oQ.

But [Reu}(0)|/8, < 1and |p"("(0)) — Reu}(0)|/8, < Azlu"(0)[*/8, < 2A,.

Thus p"(#"(0))/6, is bounded, which is a contradiction. This proves the lemma.
O

Suppose that w € Q(0,8) N Q¥ with Rew; > 0 for sufficiently small . Then

Rew; < |Rew; — p"(w)| < A2|w|2 < 2A,8. Choosing a large C/, we may as-

sume for any v that, if u € Oy, j»)(D, 2") and u(0) € 0(0, §) with § < &, then

IReu;(¢)| < C/8
for |¢] < 7.
From this we obtain the following lemma, which implies Proposition 3.2.
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LEMMA 3.4. There are positive constants C, and §, such that
luillcyp,) < Cr8 and

”uj”Cl(Dr) < v/ Cr8 (] =2,...,7’l)
Sforanyu e O, (D, Q") withu(0) € Q(0,6) and § < §,.
Proof. Given r, choose r| with r < r < rg. Since J¥ converges to J* in the C!
sense, let us assume that there is a neighborhood V of 0 in Proposition 2.1 such

that [[ullcip,,) = Killullcom,,) for any u € O, 71Dy, V) and for any v. Now
we have a constant §’ such that

u(0) € 0(0,8) = u(D,,) C B(0,C1v8) CV
for any u € O(y,,, j»)(D, Q") and for any § < §’. We therefore have
lullci(p,,) < K\C\Vs. 3.4)

From (2.2), Re u; is the solution of the equation A Reu; = %C(]S[, J;u);. We
may assume that ||J/"||c1(y) < K for some K> and for any v. Then from (2.3) and
(3.4) we obtain that |C(Jy, J; u);| < 4nK,(K;C})*8 on D,,. Using the gradient
estimates for Poisson’s equation [8, Thm. 3.9, Thm. 8.32], we may conclude that

IRe sl < Ka(suplRen| +suplCCls I3 101

< Kx(C;, +4nK2(K1C1) )8 (3.5

whenever u(0) € Q(0,§).
It remains to analyze Im u,;. Since u(0) € Q(0, ) implies that [Imu«;(0)| < 8
it suffices to show that [V Imu| < C§ on D, for some C. We can write J; ) i

(3.1) as
oo b,
an = Cy —ay ’

where a, — 0, b, - —l,and ¢, = —(1 + af)/b\, — 1. By this, we can
rewrite the (1, 1)th and (1,2)th elements of the equation du o J’ = J' o du =
J'(0)odu + EV odu as

3IIIlLt1 3RGM1 v
b, @) = @) +a £l(0),
xi
31 BR
- m”‘ ©) = e‘“ @) + £2(0),

where ¢} and ¢} are (respectlvely) the (1, 1Dth and (1, 2)th elements of the matrix
EV o du. Note that a, — 0 and b, — —1 as v — oco. Owing to (3.5), it re-
mains only to establish a bound for |8 | on D,. By our assumption, |E"(u(¢))]| <
Alu(®)] < A;C/8 for [¢] < rif u(O) € (0, $) for sufficiently small §. By the
definition of e] and equation (3.4), we have
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|e}(0)] < 2nA K\ C}6
for j = 1,2 and |¢| < r. This establishes the lemma. OJ

This result leads to the following lemma on complete hyperbolicity; the proof is
based on the methods in [9; 11]. The author would like to express deep thanks to
K. T. Kim for permitting him to use this unpublished result.

LEMMA 3.5. Let Q C (M, J) be adomainwith a strongly J-pseudoconvex bound-
ary point qo, and assume that J is of class CY%. Then the following statements
hold.

(1) For any R > 0, there exists a neighborhood Vi of qo such that B{S{?’J)(p, R)
is relatively compact in 2 for any p € Vg N Q.

(2) If there is a sequence ¢" € Aut(2, J) such that ¢"(po) — qo for some pg €
Q, then (2, J) is complete hyperbolic.

Proof. Take a coordinate system ®: (U,0) — (M, qo). We identify go = 0 and
®(U) = U. We may assume that €2 is strongly J-pseudoconvex at every point in
dQ2NU. By [9, Prop. 2.1], every point g € 92N U is indefinitely far from any point
in Q with respect to the Kobayashi distance. It follows that B(Igz’ np,r)NU CC
Q for any p € Q and any r. It remains to show that if p is sufficiently close to O
then B(f“)(p, R) C U.

We estimate the Kobayashi metric in a small neighborhood of 0. Let us define
the C*°-smooth function x by

x(2) = |zi)* + 12*

on U. Itfollows that z € Q(0,/x(z) ) forany z. Fix ro and r with0 < r < rg < 1.
Applying Lemma 3.1 for 7y and Lemma 3.4 for r, we have thatifu € Oy, ;)(D, 2)
and u(0) is sufficiently close to O then

luillcip,y < Crv/(x cu)(0) and lujllcin,) </ Crv/(x cu)(0)

for j =2,...,n. Setu; = g,j_1 + igy; for each j. It follows that if #(0) is close
to 0 then

2 2n
IV(x o)) <2 Ig;(O)]|Vg;(0)] +4 > 1g;(0)*|Vg;(0)|

j=1 j=3
< 8C,(x o u)(0) + 16(n — 1)y/C,(x © u)(0)
< C(x ou)(0)

for some constant C. Let B, (r) = {z € R?* : x(z) < r} and let R, be a constant
with B, (Ry) C B(0, §y). For a piecewise smooth path y : [0,1] — € with y(0) €
B,(Ry) and y (1) € Q\ B,(Ry) for R; < Ry, there is a segment [a, b] such that
x(y(a)) = Ry, x(y (b)) = Ro, and y([a,b]) C B(0,4o). Then

b Ro

1 1
Forn(r @,y @) dr = 3 / Lo

1
/0 F(M,n(y(t),y’(t))dtz/ . Cr

a
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by the proof of Lemma 1.1 in [9]. It follows that

Ry

1
d s — log —
w,n(p1, p2) > oC o8 R,

forany p; € B, (R;)NU and p, € U \ B, (Ry). Given R, we have a small R; such
that log(Ro/R;) > 2CR. Hence B(’g’”(p, R) C By(Ry) CUforpe B, (R))NU.
This proves (1).

In order to prove (2), choose any point p € Q and any positive real number R.
For R' = d(q, j)(po, p) there exists a vy such that ¢*°(pg) € Vgi2x. Since ¢* €
Aut (€2, J), the distance-decreasing property of the Kobayashi distance means that
d, n(@"(po), 9" (p)) = dq,1)(po. p) = R and

9" (B{g, ;(P- R) C B ;) (@™ (po). R+ 2R") CC Q.

Therefore, B(’é’ 1(p, R) is relatively compact in €2 and so (€2, J) is complete in
the sense of Kobayashi.

4. Scaling Method

The scaling method used in this section was initiated by Pinchuk [18].

Let (M, J) be an almost complex manifold with J € C L@ and let  be a domain
in M. Suppose that, for some point pg € €2, there is a sequence of automorphisms
@' € Aut(€2, J) such that ¢"( po) converges to the strongly J-pseudoconvex bound-
ary point go € 9S2.

Choosing a coordinate system ®: U — M about g with ®(0) = g, we make
the following identifications: gg = 0; ®(U) = U, a bounded domain in R2": and
®*J = J, an induced almost complex structure on U. For a suitable @, we may
assume that:
< JO) = I
s UNQ=1{zeC": p(z) < 0} for some C? strictly J-plurisubharmonic func-

tion p on U and 702 = {Re z; = 0}; and
* the defining function p can be expressed as

p(2) =Rezi+ ) (Repjizjze) + ) £ i2iZk + pe(2),
Jk Jok
where p; x and p; ; are constants with pjx = pi,; and p; = p ; and where
pe(2) = o(|z]).
We shall consider only ¢ with ¢"(pg) € U. For each p, = ¢"(py), there is a
point p} € U N 9$2 with
dist(p,,92) = dist(p,, p}) =1,

as well as a rigid motion L": R?" — R?" with the following properties.

(1) L*(py) =0and L"(py) = (—7,,0,...,0).

(2) Ifwelet R’ = L"(UN)and J® = dL" o J o (dL")~", then the tangent space
of 3Q" at 0 is {Rez; = 0} and each J¥(0) carries {0} x C"~!, the complex
tangent space at 0, into itself. This means that J"(0) satisfies (3.1).
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(3) L’ converges to the identity mapping on any compact subset of R>" in the C?
topology.

It then follows that p” = p o (L")~! — p in the C? sense and that J” — J in the
C! sense. Multiplying each p" by a suitable positive number, we can replace p"
with
p"(z) =Rez; + Z(Re P} kZjZK) + Z P;2iZk + Pe(2)s 4.1)
Jk Jk

where pi} = p} ; = pjrand pj ;= p] ; — p;p as v — oo and where p;(z) =
o0(|z|?) uniformly for v.

By Lemma 3.1, for a fixed Ry with 0 < Ry < 1 we have that u(Dg,) C U N Q2
if u € O, 1H(D, ) and if u(0) is sufficiently close to 0. Now we regard u only
as its restriction on Dg,. For this u, L” o u|p,, € O(y,,, s»)(Dg,, 2").

ProrosiTION 4.1.  For a fixed 0 < ro < Ry, there are positive constants Cy and

8o such that
dist(1(0), u(2)) < Co+/dist(u(0), 92")
Sfor any |t| < ro and for any u € Oy,,, j»\(Dg,, V) with [u(0)| < 8.

Proof. By Lemma 3.1, we have constants C; and §; such that dist(u(0), u(¢)) <

C/dist(u(0), 9R2) forany |¢| < ro andforany u € Oy,,, ;)(Dg,, 2) with [u(0)| <
81. Choose a small §y and a positive integer N; such that

(LY N2)] <8 and dist((L")7'(z),9Q) < 2dist(z, 9Q")
for z € B(0,8p) N QY and v > N;. We also have that
dist(p.q) < 2dist(L") ™' (p), (L") "' (q))

forany p,gq e U and v > N,. If u € O(y,,, jv)(Dg,, Q") with [u(0)| < §¢ for v >
max{N, N2}, then (L") ' ou € O, 1)(Dg,, Q) and [(L") ! o u(0)| < &;. Hence
it follows that

dist(u(0), u(¢)) < 2dist(L") " o u(0), (L") o u(?))

< 2C/dist((L") 1 o u(0), 92)

< 2420, /dist(u(0), 9Q")

for |¢| < rg. This proves the proposition. UJ

We can choose a small neighborhood V of 0 in U such that V N Q" = {p” < 0}
and |z|? is strictly J-plurisubharmonic on V for sufficiently large v. Now we can
rewrite Proposition 3.2 and Lemma 3.4 for pseudoholomorphic discs defined on
Dg,. Thus there are positive constants C, and §, for each 0 < r < rg such that

u(D,) C Q(0,C,d),
u(0) € 0(0,8) = 1 llmllcyp, <G4, 4.2)

”uj”Cl(Dr) < 4/ C,(S (] = 2,...,7’1)
for any u € O(y,,, jv)(Dg,, ") and for any § < §,.
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PrOPOSITION 4.2.  For each compact subset K of 2, there is a constant Ck such
that

L0 ¢"(K) C Q(0,Ckty)

for large v.

Proof. Foreachpoint p € €2, there exista neighborhood U, of p and a family F,, of
pseudoholomorphic discs passing p at the origin such that U, C |, 5 u(Dy(p)),
where r(p) < ro (see [2; 9; 14]). Hence there is a finite covering {U,; : j =
0,...,k} of K with related constants r(q;) such that go = po and Uy, NU,;,, # .
Let r = max{r(g;)} < ro. Since L" o ¢"(qo) € Q(0, 7,), Proposition 3.2 implies
that LY o@”ou(D,) C Q(0,C,1,) forany u € F;,. Hence we have L" 0 ¢"(U,,) C
0(0,C,t,). For some u € F,, there is a w € D, such that u(w) € U,y N U,,.
The new pseudoholomorphic disc g(¢) = u(%) satisfies both g(0) = u(w) €
0(0,C,1,) and g(—w) = u(0). Now we have L" o ¢"(q1) € Q(O0, Crztv), so that
L” o ¢"(Ug) C 0(0, Cfru). Inductively, then, L" o ¢"(U,,) C Q(0, Crzk“r\,).
This proves the proposition. O

Now we introduce Pinchuk’s scaling mapping. For a positive real number 7, de-
fine the biholomorphism A, of C" by

21 22 Zn
At(z)_<f,ﬁ,...,ﬁ>. 4.3)
For simplicity we use A" to denote A;,. Let F* = A" o L o ¢". It follows that
FY(po) = (—1,0,...) = —1. For any compact subset K of 2, we already know
that L' o ¢"(K) C Q(0,Ckrt,). Since A(Q(0,Ckt,)) = Q(0, Ck), the family
{F"} is uniformly bounded on K. In order to obtain a convergence of F’ on €2,
we need the following result.

ProrosITION 4.3.  Let h be a J-Hermitian metric on M. Then, for each compact
subset K C 2, there exists a constant Cy, such that

[dF" ()| < Cxllvlln
for each v e T2 based on K.

Proof. For any u € Oy, (D, Q) with u(0) € K, it follows from Proposition 4.2
that LY o ¢” o u(0) € Q(0, Cgt,). Hence, by (4.2) we have

LY o@” oullcip,) < C,Ckty and |IL] o ¢" culcip,) < vVCrCkTy

for j =2,...,n. Therefore,

ld(F" ou)(e)| < C = max{C,Ck,/C,Ck]}.

By [17, 5.4a] there is a positive number R such that, for any v € T2 based on
K with [[v]l, < R, there exists a pseudoholomorphic disc u € O, (D, 2) sat-
isfying du(e) = v. Hence, for any v € T2 based on K, we can take u such that
du(e) = (R/||v||x)v. Then
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|dF"(v)| = wld(p ou)(e)]
<—= )
=% vl
The proposition follows. UJ
Let J' =dAN o J' o (dA”)~' and " = A’(R2V). Notice, for each compact subset
K of Q, that FV: K — A"(R2") is (J, JV)-holomorphic for large v.

Now we go to the limits of J” and Q. Write J and J¥ as the matrix-valued
functions on V:

Js(fl) + A(Z) B(Z)
= E(z) =
J(2) = J(0) + E(2) ( C(2) Ji +D(z)>’
I+ A2) B'(z)
1) = 7'0) + E'(z) = (0 ’
(2) 0) + E(2) (‘,(E,l) + C'(2) _](‘22) + DU(Z)>

where A — A, B” — B, C" — C, and D’ — D in the C! sense. Then JV can
be expressed as

~ I/t, 0 _ i 0
7@ =< " Wf—)”(“) ‘(@)(’O ﬁl)
_ < Jiy + A((A)(2) (BY/J/T ) (&) (2)) >
VIS + VTCA) TN TS + DA (=) )

Since (A”)~!(z) converges uniformly to 0 on any compact subset of C” and since
JV converges uniformly to J on V, it follows that

Jiy+ A 2) = Iy
VT Jhy + VT CY((A)(2)) = 0, and
142 + DY) @) = a0
on any compact subset of R?" in the C! sense. Write B"(z) and B(z) as
B'(2) = Z(B;j—lxj + By;y;) + Bl(2),
j=1

n

B(x) =Y (Byj-1x; + Byjy)) + Be(2),
j=1
where Bj‘f is a sequence of constant matrices that converges to B; as v — o0,
B! — B; inthe C! sense, and B!(z) = o(|z|). Then we have

B((A")'(2)) = /7o (B} x1 + B3 y1)

NG

+ En (B; + B3 yj) + :
2j-1%j 2jYi) T =
=2 Vi

B}(tvz1,4/702))

n
— Z(sz,lxj + Bijj) as v — OoQ.
j=2
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Now we obtain that J" converges to

2 Jx(ll) B(Z,) D / .
Jo=("y jon) where BE)= Z(sz_lxj + Byjy)  (44)
st =2

on any compact subset of R?" in the C' sense.
After scaling p”, we have

p' = p" o (A (2)

n n
= rU<Rezl + Z(Repﬁkzjzk) + Z p;kzj2k>
k=2 k=2

2 2 =
+ 7, (Re oy 27 + P} 12121)
+ 7,4/T, X remaining terms in the summation of (4.1)
+,0:(Tu21, T\JZ/)~

Therefore the sequence 5"/ 1, converges to p defined by

p(2) =Rezi+ ) (Repuz;ze) + ) 0%k 45)
J,k=2 Jok=2

and " converges to Q= {z€R? : 5(z) < 0} in the sense of local Hausdorff set
convergence.

PROPOSITION 4.4 (see [6]). The domain 2 is strongly f—pseudoconvex at 0.

Proof. Let p* = p o (A) ' and JY = dA’ o J o (dA”)~". By the same reasons
as given for 5" and JV, the sequence 5"/, converges to p in the C? sense and J"
converges to J in the C' sense. Hence

L3t — Ll pw)

for any vector v. Note that the Levi form is invariant under the pseudoholomor-
phic mappings. Since each A" is (J, J")-holomorphic, £} p(v) = L} p"(d A (v)).
From J(0) = Jy, it follows that every complex tangent vector of the domain de-
fined by 4" is of the form v = (0, v") and so dA"(v) = v//7,. For this v, we have
.C{;,é”(dA"(v)) = ,c{)";sv(u/ﬁ ) = L£{ "/, (v). After limiting, one obtains that
L) p(v) > 0 for any v € T;/dS2. This proves the proposition. O

Now we finish the limiting procedure of F”. For each compact subset K of €2,
Propositions 4.2 and 4.3 imply that F"|gx has a convergent subsequence in the
compact-open topology. By the convergence of J” and Lemma 2.2, the limit of
this subsequence is a (J, J )-holomorphic mapping from the interior of K to the
closure of Q. Using a compact exhaustion of 2 yields the following result.
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PropoSITION 4.5.  The sequence FY has a subsequence that convergesto a (J, J )-
holomorphic mapping F from 2 to the closure of 2.

We now prove our main theorem.
THEOREM 4.6. (2, J) is biholomorphic to (2, J).

Proof. By Lemma 3.5, (€2, J) is complete hyperbolic. Since A, € Aut(€2, J) and
A.(—1) — 0 as T — oo, the domain (fZ, f) is also complete hyperbolic.

Consider the (JV, J )-holomorphic mapping G” = (F")~': Q" — Q. For each
relatively compact neighborhood €’ of —1 in 2, we have Q' C Q" for sufficiently
large v. Since G'(—1) = py, it follows from Proposition 2.3 that G"|q’ has a sub-
sequence converging to an element of O j,(22/, 2) in the compact-open topology.
Thus we have a pseudoholomorphic mapping G : (,J) — (2, J) that is a sub-
sequential limit of G" on each compact exhaustion of Q.

Itiseasytoseethat F o G =Idgand G o F| g = Id -1 4. Hence itremains
only to show that F'~ 1(SZ) Q. Take any point xo € ﬂ oF~ 1(SZ) C F~ 1(852)
and a sequence x” € F~ l(Q) such that x¥ — xg. Since lim,_, o, F(x") € BQ, we
obtain that lim,_, o d(@, j)(—1, F(x")) = oo. However, then

d@, H(—1, F(x")) < de,n(po,x") = de,1n(po,x0) < 00

as v — oo. This is a contradiction, hence F"(fZ) is closed in 2. The set Q2 is
connected and so F () = Q, proving the theorem. UJ

DEFINITION 4.7. Let & C C”" be a domain defined by 6 in the form (4.5) and
let J be an almost complex structure on C" as in (4.4). A pair (€2, J) is called a
model domain if € is strongly J-pseudoconvex at 0.

5. Simplification of J

In order to classify the model domains (€2, ), we need to simplify the almost
complex structure J on R?", We shall introduce some notation.

A 2n x 2m real matrix A = (A ) is called anticomplex linear if JY(,") oA =
—Ao Jv(,m) if J?(l") A=Ao J?, ) then we call A complex linear. For a complex
or anticomplex linear matrix A, let (A) = ((A) k) be an x m complex matrix where
(A) = AZZJ,( 1, +1 A2k - The corresponding linear transformation of the complex
(resp. anticomplex) linear 2 x 2 matrix A is z — (A)z (resp. z — (A)z). Itis easy
to see that two complex or two anticomplex linear matrices A and B are same if
and only if (A) = (B). If both A and B are either complex linear or anticomplex
linear, then AB is complex linear. If A is anticomplex linear and B is complex
linear, then AB is anticomplex linear and (AB) = (A)(f).

In this paper, by a shear mapping we mean a mapping ®: C" — C” defined as

®(z) = (z1+ f(2'), 22,05 20), (5.1



Domains in Almost Complex Manifolds 195

where f: C""! — C is a C'-smooth function. If f is holomorphic in z’ then we
call ® complex shear. It is easy to see that the shear mapping ® is a C' diffeo-
morphism of C" and that the Jacobian matrices of ® and its inverse ®~! can be
expressed (respectively) as

d@:(é d{) and d<I>1=<(I) _?f).

Now we move on to the simplification of J (denoted simply by J). For each
model J, let B/(z') = B(z ) in (4.4).
Given J, let BJ (BJ iy ..,B,{j) for each Bk{ - a2 x 2 square matrix. Then

n
B'(Z') = <Z(Bi2j—lx_i + sz,zj)’/ ’ Z(Bn 2j-1% T an,zj)’j))
j=2
Since J o J = —Id, it follows that J.” o B/ + B’ 0 J{"™" = 0. So B is anticom-
plex linear. Hence, for each ) (B ,;_,x; + B[ ,;;) we can write

<Z(Bk],2]'1xf + Bkj,zjyf)> = D (B y-1% + (Bl
j=2 j=2
= Z(a}clyjzj + b,{JZj),
=2
where

aj ; =3B, ) —iBl,) and bl =3By ) +i(Bl,).

Let ®: C" — C" be a shear mapping as in (5.1). Because J o ®~' = J on C”,
the induced structure J’ by @ can be written as

IO B2 = IP odf +df 0 ISP ) 52)

/ —1
J = dCDO J Odq) = ( 0 lv(;l_l)

We shall therefore simplify B/(z) — Js(,1 )od f +df o Js(,"_l), which is anticomplex
linear. Observe that JS(,D odf —df o JS(,"_D is also anticomplex linear and that its
corresponding matrix is

(5.3)

(J odf —df o J'7V) = 2i <3f af).

9z, E
One may thereby obtain that every complex shear mapping is an automorphism of
(R>",J).

Set

1 1
f(z)=- a2 22222 + 4b22 5+ = Z(az % +b2 jZz2 )

then 2i9f/dz, = 3 2(a2 jzj + b3 _;Zj)- Hence the induced J of (5.2) satisfies
szj =0forj=3,.



196 KANG-HYURK LEE

Now we use simply J to denote J'. For this J, let

, (1 I T _

£z = —t(zaiszm +gPaB g D (@t bijzj)m)-
j=4

This f has no term containing z, or zZ,, so it follows that df/dz, = 0 and

2idf/9z3 = Y. s(a3 ;z; + b} ;Z;). Hence for newly induced J' we have B ; =
Oforj=3,...,2n andBij =0forj=>5,...,2n.

Inductively we have that the first J is diffeomorphically equivalent to the J’
satisfying Bk],lj = 0 for j > 2k — 1. More precisely,

n—1

B’ (7)) = (0 B{yx2+ Bi,ys -+ Z(anfzjflxj + B,{:zjyj))
j=2

By this procedure, we conclude that (R*, J ) is biholomorphic to (C?, J). In
fact, the Nijenhuis tensor N; is always vanishing on R*. We thus have the fol-
lowing generalization of the Wong—Rosay theorem for the case of real dimen-
sion 4.

PROPOSITION 5.1.  If a domain Q in an almost complex manifold (M*,J) ad-
mits an automorphism orbit accumulating at a strongly J-pseudoconvex boundary
point, then (2, J) is biholomorphic to (B,, Jy;).

In R, we have more simplification of J to Jy (as in Example 1.1 for the noninte-
grable case).

PROPOSITION 5.2. (]R6, f) is biholomorphic to ((C3, Js1) or (RG, Ji).

Proof. We already know that (RS, J ) is biholomorphic to (R®, J) with B/(z) =
(0, B3J,3x2 + Bi4y2). Suppose there is a shear mapping ® as in (5.1) such that
f is holomorphic in z, and Re(2idf/dz3) = Re(aizZz + bé,zzz). Then the J’
induced by @ satisfies

B/( " = 0 0 0 ax; + by,
97 0 0 axy+ by, 0

by (5.2) and (5.3). Let g = Re(aj ,22 + b3 ,22); this is a linear function in x, and
v2. There is a harmonic conjugate 4 of g on all of the z,-plane such that & — ig is
holomorphic in z,. Then the function f = (h — ig)z3/2 satisfies our condition.
Let w = a — bi. It follows that J' = J;, when w = 0. Suppose that w # 0.
Setting ®(z) = (21, wz2,23), we obtain d® o J o d®~! = J;. O

Note that the shear mappings used in this section change our model defining func-
tions. But the induced defining functions are always in the form (4.5).
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6. Nijenhuis Tensor and Pseudoholomorphic Mappings
in (R®, J1)

Computing the Nijenhuis tensor N,,, we have

d a0 d d d
N][ U :_NJ] P R = T
8x2 BX3 Byz 8)73 8)61
a 0 a 0 d
N]] P =N]1 o )
dxy dys dx3 dy2 ay1

ad a
Ny, P =Ny Fo =

Hence Nj, (X,Y) € (9/0x;,9/9dy;) forany X,Y € TR® with the same base point.
Let D3 be the polydisc in C* and let ® € Oy, ;,,(D? R®); this ® satisfies

dO(Ny(X,Y)) = Njy(dP(X),dd(Y))
for any X and Y. Now d® (N, (3/0x2, 3/0x3)) = d(3/dx) € (3/x, 8/dy;) and
d® (N, (3/0x2,9/dy3)) = d®(—d/dy;) € (3/dx1,0/dy;). Then dd'(9/dx;) =

dd’'(d/dy) = 0, where ® = (P, ®’). This means that &’ is independent of the
variable z; (precisely x; and y;). Let

_(dDy s doy
dq)‘( 0 de’ )’

where ®; ./(¢) = ®(¢,z') and & ,,(¢") = P1(z1,¢’). The (1, 1)th and (2,2)th
parts of the equation J; o d® = d® o J; are

P od®, y=do, 0J and JP 0d® =dd oIy,

respectively. As a result, ®;,: D — C and ®': D? — C? are (standard)
holomorphic.

Let @ = {p < 0} and Q" = {p’ < 0} be our model domains. We define the
slice of Q at 7€ C2 by Q.- = {z; € C : p(z1,2’) < 0}, which is connected.

PROPOSITION 6.1.  Suppose there is a biholomorphism ®: (2, J,) — (/,J}).
Then ®' is an automorphism of (C2%, J;), and @ ,1: Q — Q. is a biholo-
morphism for each 7' € C2.

Proof. For each w’ € C? there is a w; € C with (w;,w’) € Q. (This inclusion
holds also for 2.) Hence @’ is defined on C? and is surjective to C2. Now sup-
pose that (®")~!(w’) is not single for some w’ € C2. Then

Q.= |J @
/e(®)1(w’)

Note that this union is disjoint. Foreachz’ € (®’)~!(w"), the holomorphic function
®, .1 @, — Q) isnonconstant. By the open mapping theorem, each ®; ,/(2,/)
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is open; hence 2/, is the disjoint union of open sets. But since €2/, is connected,
this is a contradiction. We conclude that @’ is injective and ®; . : Qp — Qg1

is biholomorphic. U

Let us extend Ny, as complex linear. In this case, Ny, (8/9z2,3/3z3) = 8/9Z;. It
follows that
d 0 0 0P d
322 3Z3 321 821 3Z1

0 d 0P, 0P 0P, P3| 0
Nyldo( — ). do( — )| = —— - ——)—,
022 923 0z2 073 dz3 0zp ) 0z1

and this implies

and

0P dd, 0P 0, 0P
(8_1>__2_3__2_3 ©.1)
21

TS 073 dz3 0z

LEMMA 6.2. Let Q and Q' be model domains. Let p(z) = Rezy + Q(z') and

p'(2) =Rezi + Q'(2') be the defining functions of Q and ', respectively. A C!

mapping ®: (2, J;) — (', Jy) is a biholomorphism if and only if ® satisfies the

following.

(1) @' is an automorphism of C* and det(d®') = r on C? for some positive real
constant r.

(2) ®1(2) =rz1+ f(2)), where fi+if> = f: C> — Cisofclass C*®. Moreover,
fi(z) =rQ(z") — Q'(®'(z")) and

zla_fZ = _28_fl _¢2<&>,

07 07 0
2 2 @ 6.2)
. df2 a1 (3433)
i =2 — - ) trxo
973 973 %2 973 :

where ¢, = Re ®,.

Proof. By Proposition 6.1,
@0 Qy ={Rez; < —0(z)} » Q) = {Rez1 < —Q'(P'(z))}
is a biholomorphism. Equation (6.1) implies that 9®;/0z; = 0P, /0z1 =

det(d®’) and that this is independent in z; and antiholomorphic in z’. Therefore,
@, ,» must be linear in z; for each z’. Hence we can write

0P, ,
,,(0) = 8_ZI(Z )¢+ f(z)

for each z’. Since 2,/ and Q/@/(Z/) are left half-planes in C, (d®;/dz;)(z’) must be
a positive real number r, and also Re f(z') = r,,Q(z') — Q'(®'(z’)) for each z'.
Now the antiholomorphic function d®,/9z; is positive real valued, so it is a posi-
tive real constant r throughout C2. Hence ®; = rz; +rQ(z') — Q'(®'(z)) +if>.
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Since J; is of class C*°, we obtain that ® is C*°-smooth (see [15]); thus f is also
of class C*.

Consider the equation J; od® = d® o J;. Since d® = (r(f ;qf;, ), the (1, 2)th part

of this equation is Js(,l) odf + B(®'(z')) od® =rB(z') +df o Js(,z). We therefore
have

(ISP odf —df o JP) = (rB(z)) — (B(®'(2'))) {dD")

. . 972 973
:(07rx21)_(09¢2l) & &
9z2 9z3

93 8<I>3
—Pai ,IX20 — @l
0z2 dz3
Applying (5.3), one obtains (6.2).

Suppose that &: Q — Q' satisfies conditions (1) and (2) of the lemma. Then
® is a bijective pseudoholomorphic mapping from (2, J;) to (€, J;). In order
to prove that @ is biholomorphic, it suffices to show that d® is nonsingular on
2. From (6.1), we know that (0> /03z2)(0®3/0z3) — (3P2/323)(dP3/0z2) = 1.
The determinant of the Jacobian matrix d® is

r 0 0
rl df rl 0 302 9Dy
det( ,) = det( /> =ldet| 0 3, o,
0 do 0 do 20y s
0z 9z
=t
This proves the sufficiency. O

By a similar argument as in the proof of Lemma 6.2, we also obtain the complete
description of the (J;, J;)-holomorphic mappings as follows.

PROPOSITION 6.3. A mapping ® = (&, Py, ®3): D3 — C3 is (Jy, J1)-holo-
morphic if and only if :

(1) @, and ©3 are holomorphic in z, and z3, independent of z1;

2) ©1(2) =r(z")z1+ f(2'), where

, odb, 03 0D, 0D ,
re)=(—"—-"—="—)1)
0z2 073 073 022

and f:D? — C; and
3) f satisfies

42 =—(d, + <I>2)<
0Z2

) and

]
dz
: (32)+ s

42 = —(Py+ D) —= ) + (22 + 22)r (2).
0Z3 9
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7. Classification of Model Domains (fl, J )
in Real Dimension 6

One can show that every model domain (Q, J ) of real dimension 6 is biholomor-
phic to (€2, Jy) or (2, J5;), where Q2 = {p < 0} and is strongly J;-pseudoconvex
or strongly J,-pseudoconvex at 0 and where p is in the form (4.5). Since (€2, Jy;)
is biholomorphically equivalent to (B3, Jy,), it remains to classify the domains
(2, J1). The complex shear mapping is in Aut(R®, J;); we may assume that

3

p(z) =Rez  + Z ,Oj,lszZk-
k=2

Let us compute the Levi form of p.
Computing J;, one obtains

Iy { idzy 4+ xpidzy if j =1,
Z; =
U idz; if j=2,3;
—idz; — xpidzz if j =1,
Jrdz; =
Y { —id?; if j=2,3.

Now we have
1 - - . - L
Jl*dp = E(idZI —id7z + x2idZ3 — x2idz3) + ij’,;(lzkdzj —iz;dZi).
The Levi form of p is expressed as
—d(Jjdp) = 205 5dz2 NdzZa +2p;3 3dz3 N dZ3
1 _ 1\. _
+ <2p2,§ — Z)idzz ANdZ3 + (2,03@ — Z)ld23 Adzo
i _ _
+ Z(dzz ANdzz —dza ANdz3).

Since J;(0) = J,,, we have TOJ‘E)Q ={z;=0}. Forw = 23 (wji +w; 9 )e

Jj=2 0z E
74109, it follows that

3
1 _ 1 _
Lyp(w) = 4;;;,-,_;|w_,-|2 + (4p2,3 - 5)w2w3 + (4,03,2 - 5)w3w2.

The associated matrix of Eé'p on TOJIBQ is
4pr5  Apri—3
< T T ; (7.1
4p33—3  4p33
we call this the tangential Levi matrix of p at 0. For the domain H; in Example 1.1,

we have our next proposition.

PropoSITION 7.1.  The domain H; is strongly J,-pseudoconvex at 0 if and only if
t>1/8.
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Proof. Forw = Y"7_,(w; 5> + ;52 ) € Tg'0<2, we have
] <J

L3 o:(w) = dt(jwal® + [w3]?) = 5 (w3 + waws)
> 4t(jwal® + [wsl) — Jwal|ws],
where equality holds when w, /w3 is positive real. Hence the last term of the fore-
going inequality is always positive if and only if 1 — 4(4¢)?> < 0. This proves the
proposition. O
Next we address the classification of (€2, J;).

An almost complex manifold (M, J) is called homogeneous if, for any points p
and g in M, there exists an automorphism ¢ € Aut(M, J) with ¢(p) = q.

LEmMA 7.2. (2, Jy) is homogeneous.

Proof. We know that A, and W,(z) = (z; + si,z’) for any positive T and any real
s are automorphisms of (€2, Jy). It thus suffices to prove that there exists a &, €
Aut(Q, J;) with @/, =z’ + w’ for any w’ = (w,, w3) € C2. More precisely,

@, (2) = (rzi + f(2), 22+ wa, 23 + w3)

for some f: C> — C. For this ! we have (d®;,/) = Id, so Lemma 6.2 implies
that r =1 and

3 2
fizh) = Z P kZjZk — Z(Zj + w;) (Wi + wy)
Jrk=2 J k=3
3
= Z P; R (=2jWr — Zpw; — wjwy).
k=2

It only remains to find f; satisfying the two equations in (6.2), expressed by

dfa . .
— = —ip, 3wy —ip33w3 and
072
af2 . . i
= = —ip, 3wy — ip3 3w3 + = Rews.
073 2

Observe that d(Re az)/dz = a/2. Let us define the real-valued function f, by

fZ(Z/) = Re(_zip2,§w2 - 2l.p3’i’l,U3)Z2
+ Re(—2ip, 3wz — 2ip; w3 + i Rews)z3.

Then this f> is our desired function. U
Given this lemma, we have our main result as follows.

THEOREM 7.3. (2, J}) is biholomorphic to (', Jy) if and only if the determinant
of the tangential Levi matrix of p at O is the same as that of p’.

Proof. By Lemma 7.2, the existence of this biholomorphism is equivalent to the
existence of a biholomorphism with fixed point —1 = (—1,0,0) € C?.
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Suppose there is a biholomorphism ®: (2, J;) — (R/, J;) with ®(—1) = —1.
Proposition 6.1 implies that ®': C2 — C? and ®; ¢': {Rez; < 0} — {Rez; <
0} are biholomorphisms with ®’(0) = 0 and ®; s(—1) = —1, respectively. This
means that the constant r in Lemma 6.2 is exactly 1. It is easy to see that ®; =
21+ f(2'), £(0) = 0, and dfy = 0. Now we have d®¢(v) = d®;(v") for any com-
plex tangent vector v = (0, v") of 32 at 0. Note that & is the (J}, J;)-holomorphic
mapping defined on all of C* and that p = p’ o ® (Lemma 6.2 and Proposition
6.3). Thusit follows that £]'p(v) = L) p'(d®o(v)) = L)) p'(dD}(v")) forany v =
(0,v") € T;'32. This equation can be expressed as

( 4p23 4/02,3—§> /,( 4p3 5 4P§3_é>—/
| = (d®D,) T ” (dDy).
4p35 — 3 4033 4/03’2 ) 4,033
Applying det{d®’) = 1, one obtains the necessity.

In order to prove the sufficiency, we need only consider the case Q' = H;.
Suppose the tangential Levi matrix of p is the same as that of p,. We will find
complex numbers «, B, v, (“our Greek letters”) such that there exists a biholo-
morphism ®: (2, J;) — (H,, J;) with

®(-1)=—-1 and @'(z) = (@z2 + Bz3, Y22 + 823).

By Lemma 6.2, ®,(z) = z; + f(z’) must hold where f = f| 4+ if, and
3

AGED =" pazize — tlaza + Bzsl* — tlyza + 623
J k=2

It remains to find «, 8, ¥, 8 such that there is a function f>: C?->R satisfying
equation (6.2). It is easy to see that the existence of such an f, is equivalent to the
partial derivatives of (6.2) satisfying

3fHr  f 3fr  0f
0730Z2 872073 0730Z2 922073
3fr  f 3fHr  f
022072 022072 373073 023073

Because the right-hand sides of (6.2) are already determined, we can rewrite the
previous four equations as (respectively)

By —ad = —1, (72)
(41a@ — 37)B + (417 — Ja@)8 = 4p35 — 3, (7.3)
4taa +41yy — zay — say =4p, 5, (7.4)

41BB + 4185 — 1B5 — 18 = 4p; 5. (7.5)

Now our problem is to find the solution of (7.2)—(7.5). It is possible to choose
« and y satisfying (7.4). Then B and § are automatically determined by (7.2) and
(7.3). In particular, (7.2) and (7.3) can be expressed as
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4 —a B\ —1
(46”15 7= 10)(5) = (sm1) (70

The determinant of the square matrix in (7.6) is the same as the left-hand side of
(7.4). Since 2 is strongly Ji-pseudoconvex at 0, the number 4, 5 must be posi-
tive. For chosen « and y, we can find the solution  and § of (7.6) via

(,3)_ 1 <4z;7—2& oe><—1>
8 _4p2j —4t6¢+%)7 y K
1 [ —417 + 30 + Kk«
N 4pz,z< ata — 1y +xy )

where k = 4p; 5 — %
Now our Greek letters satisfy (7.2)—(7.4), so it remains to test (7.5). Before
doing so, we compute that

41 — =8 =

! ! 162+ 1 )y + 4rkea — 2
_ 1 a—Ltes),
2° " 4p,, g )y T kY

418 15— L (167 = Lo v aris - Lia
> —4'022 1 o Ky 2/(01.

[\

Observe that 16¢2 — i is the determinant of the tangential Levi matrix of p, at 0,
and set u = 1612 — i. Then (7.5) can be written as

4ps5 = /3(4;/3 - %a) + 8<4n§ - %,3)

1\ 1
= ( ) <4WV)7 — —pay — kpay —16t%ay + 2tia’
4,02,2 2

1 1
+ dtiicaq + 2ticp? — 2ea7 - EK/EO[)?)

1y 1
+ < ) <4tpwt65 — —pay + kpay +16t%kay — 2ticp?
4p; 3 2

1 1
+ 4tkicyy — 2tica* + ear - EK/E&)/)

1y 1 1
p— K 4t o 4t y — — Yy — —« .
(4:02,i> (,u—l—l(l()( oo +4tyy 2047/ 2ay>

From equation (7.4) it follows that
16053033 — Kk = 1.

The left-hand side of this equation is the same as the determinant of the tangential
Levi matrix of p at 0 (see (7.1)).
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One may thus conclude that the existence of the solution of (7.2)—(7.5) corre-
sponds to the equivalence of determinants of two tangential Levi matrices. This
proves the theorem. UJ

Now we return to Theorem 4.6. Since the mapping W(z) = (z1,+/72) is the bi-
holomorphism from (H,, J;) to (Hj, J1,;), we have the following result.

COROLLARY 7.4. (Q, f) is biholomorphic to (Hy, J;) for some 0 <t < 8.

REMARK 7.5 (The automorphism group of (Hj, J;)). Since (Hj, Jy) is biholo-
morphically equivalent to (B3, Jy;), its automorphism group Aut(Hy, Jy) is the Lie
group of real dimension 15. If ¢ # 0, then (H, J;) is biholomorphic to (H;;, Ji).
Let us compute Aut(H,, J;) for ¢+ > 1/8. The topological transformation group
Aut(H,, J;) under the compact-open topology can be decomposed as

Aut(H,, J,) = H & Aut_;(H,, J)),
where

* H is generated by A, (t > 0), ¥, (s € R), and @, (w'e C?) as introduced in
Lemma 7.2; this H acts on H transitively.
* Aut_;(H,, J,) is the isotropy subgroup at —1 = (—1,0, 0).

Let ® € Aut_{(H,, J;). Then ®; = z1 + f(z’), f(0) = 0, and dfy = 0. Hence
the differential of ® at —1 is complex linear and the corresponding complex ma-
trix must be

1 0 0
(do_1)=|0 o B, (1.7)
0 y ¢

where the Greek letters are the solutions of (7.2)—(7.5) for p, 5 = p33 = ¢ and
P35 = 0. By the argument of the proof of Theorem 7.3, there exists an automor-
phism (H,, J;) with (7.7). By Cartan’s uniqueness theorem (see [15]), such an
automorphism is unique for each solution of (7.2)—(7.5). It is easy to see that the
solution space of (7.2)—(7.5) is in a one-to-one correspondence with the solution
space of (7.4). Therefore, Aut _{(H,, J;) is of dimension 3.
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