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On Some Lacunary Power Series

Krzysztof Barański

1. Introduction

Consider a lacunary power series given by

f(z) =
∞∑

n=0

anz
kn, (1)

where kn+1/kn ≥ b > 1 for every n ≥ 0 and where an ∈ C such that
∑∞

n=0|an| <
∞. Then f is holomorphic in the unit disc D and continuous in D̄.

In 1945, Salem and Zygmund showed in [SZ] that if b > b0 for a constant b0 ≈
45 and if the an satisfy some conditions (so that the convergence of

∑∞
n=0|an| is

slow enough), then the image of the unit circle under f is a Peano curve—that is,
it contains an open set in the plane. In 1963, Kahane, M. Weiss, and G. Weiss in
[KWW] extended the result, showing that for every b > 1 there exists a constant
γ > 0 depending only on b and such that, if

|an| ≤ γ

∞∑
m=n+1

|am| (2)

for every n, then the image of the unit circle under f is a Peano curve. In fact,
they proved that there exist constants K, ξ, ν (depending only on b) such that, if

• inequality (2) is fulfilled and
• E is any Cantor set in the unit circle obtained by taking an arc I of length at

least ξ/k0, removing the middle subarc of I of length K times the length of I

and repeating the procedure inductively, always removing the middle subarc of
length K times the length of the larger one,

then f(E) contains the disc centered at 0 of radius ν
∑∞

n=0|an|.
In [CGP] it was noticed by Cantón, Granados, and Pommerenke that the Kahane–

Weiss–Weiss result implies the following.

CGP Theorem. If f is a map of the form (1) satisfying (2) and if k0 is suffi-
ciently large, then f does not preserve Borel sets on the unit circle.
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We say that a map f defined on a set A preserves Borel sets on A if f(B) is Borel
for every Borel set B. (Recall that the family of Borel sets in a topological space
X is, by definition, the smallest σ -algebra containing open sets in X; here we con-
sider X = Ĉ.) The idea for proving the CGP Theorem is to show that f assumes
every value from an open disc uncountable many times on the unit circle and then
use the following Lusin–Purves Theorem (see e.g. [Ku]), which gives a character-
ization of maps preserving Borel sets.

Lusin–Purves Theorem. Let A ⊂ Ĉ be a Borel set and let f : A → Ĉ. Suppose
that, for every Borel set B ⊂ Ĉ, the set f −1(B) is Borel. Then f preserves Borel
sets on A if and only if the set {w ∈ Ĉ : w = f(z) for uncountable many z∈A} is
countable.

In particular, the Lusin–Purves Theorem can be applied provided f is continuous.
Note that, by holomorphicity, a function of the form (1) preserves Borel sets on
A = D. The interesting case is when A is the unit circle. In [CGP], some crite-
ria were given to characterize holomorphic maps on the unit disc preserving Borel
sets on the unit circle at points, where the radial limits exist.

In 1990, the following result was proved by Belov in [Be].

Belov Theorem. Let f be a map of the form (1). Suppose that b > 2, am �= 0
for some m > 0, and there exist α,β > 0 such that α(1+β) < 1 and the following
conditions are satisfied for sufficiently large n:

(a) |an| ≤ β
∑∞

m=n+1|am|;
(b) 2π b−1

b−2

∑n
m=1|am|bm ≤ α|an+1|bn+1.

Then f assumes every value from a certain disc uncountable many times on the
unit circle, so it does not preserve Borel sets.

In this paper we consider the well-known case

kn = bn (3)

for integers b ≥ 2. We prove the following.

Theorem A. There exists a q ∈ (0,1) with the following property. Let b =
2, 3, . . . and let

f(z) =
∞∑

n=0

anz
bn

, (4)

where an ∈ C, such that
∑∞

n=0|an| < ∞ and

|an+1| > q|an| (5)

for sufficiently large n. Then there exists a disc D ⊂ C such that f assumes every
value from D uncountable many times on the unit circle. Hence, f does not pre-
serve Borel sets on the unit circle.

In comparison with the Belov Theorem, observe that Theorem A has no condi-
tion (b) and that Belov’s (a) is replaced by our simpler condition (5).
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Theorem A immediately implies the next two results.

Corollary1. There exists an a0 ∈ (0,1) such that, for every a ∈ C, |a| ∈ (a0,1),
and b = 2, 3, . . . , the Weierstrass function

f(z) =
∞∑

n=0

anzbn

does not preserve Borel sets on the unit circle.

Corollary 2. If b = 2, 3, . . . ,an ∈C such that
∑∞

n=0|an| < ∞ and |an+1/an| →
1, then the map

f(z) =
∞∑

n=0

anz
bn

does not preserve Borel sets on the unit circle. In particular, this holds for

f(z) =
∞∑
n=1

zbn

nα
,

where α > 1.

Note that the CGP Theorem implies that the map

f(z) =
∞∑

n=n0

anzbn

does not preserve Borel sets on the unit circle provided b = 2, 3, . . . , a ∈ C,
and |a| ∈ (a0,1) for a constant 0 < a0 < 1 and sufficiently large n0. The same is
true for

f(z) =
∞∑

n=n0

anz
bn

provided that b = 2, 3, . . . , that an ∈ C with
∑∞

n=0|an| < ∞ and |an+1/an| → 1,
and that n0 is sufficiently large. Similarly, it is easy to check that the Belov The-
orem shows the result for the maps from Corollaries 1 and 2 when b ≥ 9. Here
we were able to extend it to the case b ≥ 2 because of equation (3). The proof of
our theorem, which is contained in Section 3, is based on two technical lemmas
proved in Section 2; these lemmas use ideas from [Ba] and [CGP].

Notation. The open disc in C of radius r centered at z is denoted by Dr (z). For
z∈ C and A ⊂ C, set

dist(z,A) = inf{|z − x| : x ∈A}.
For z ∈ C \ {0} we assume Arg(z) ∈ [0, 2π). By an arithmetic constant we mean
a constant that is independent of all variables appearing in the paper.

Acknowledgment. The author is grateful to Prof. Ch. Pommerenke for intro-
ducing him to the subject and for helpful remarks.
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2. Technical Lemmas

Consider a map f of the form (4) and fulfilling condition (5) for sufficiently large
n and some fixed q ∈ (3/4,1). Let

ζn,k(t) = f(exp[2πi(t + k/bn+1)])

for n ≥ 0, k ∈ Z , and t ∈ R. By definition, for any j ∈ Z we have

ζn,k+j(t) − ζn,k(t) = 2i
n∑

l=0

al sin
πj

bn+1−l
exp

[
πi

(
2tbl + 2k + j

bn+1−l

)]

= 2i
n+1∑
m=1

an+1−m sin
πj

bm
exp

[
πi

(
2tbn+1−m + 2k + j

bm

)]
.

Fix N > 0 such that |an+1| > q|an| for every n ≥ N − 1. In particular, this
implies an �= 0 for every n ≥ N. Then for every n > N + 1 and N < ñ < n − N,

ζn,kbn−ñ+j(t) − ζñ,k(t)

= ζn,kbn−ñ+j − ζn,kbn−ñ

= 2ian exp[2πitbn]
n+1∑
m=1

an+1−m

an

sin
πj

bm
exp

[
πi

(
2t(bn+1−m − bn)

+ 2kbn−ñ + j

bm

)]

= 2ian exp[2πitbn]

( n−ñ∑
m=1

an+1−m

an

sin
πj

bm
exp

[
πi

(
2tbn+1−m(1 − bm−1)

+ j

bm

)]

+
n+1∑

m=n+1−ñ

an+1−m

an

sin
πj

bm
exp

[
πi

(
2tbn+1−m(1 − bm−1)

+ 2kbn−ñ + j

bm

)])
.

Hence, denoting

un,t(j ) =
n+1−N∑
m=1

an+1−m

an

sin
πj

bm
exp

[
πi

(
2tbn+1−m(1 − bm−1) + j

bm

)]
(6)

and

'n,ñ,k,t(j ) =
n+1∑

m=n+1−ñ

an+1−m

an

sin
πj

bm
exp

[
πi

(
2tbn+1−m(1 − bm−1)

+ 2kbn−ñ + j

bm

)]

−
n+1−N∑

m=n+1−ñ

an+1−m

an

sin
πj

bm
exp

[
πi

(
2tbn+1−m(1 − bm−1) + j

bm

)]
,
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we obtain

ζn,kbn−ñ+j(t) − ζñ,k(t) = 2ian exp[2πitbn](un,t(j ) + 'n,ñ,k,t(j )). (7)

Observe that, by assumption, for every m = 2, . . . , n + 1 − N we have∣∣∣∣an+1−m

an

∣∣∣∣ < 1

qm−1
,

so

|'n,ñ,k,t(j )| < 2π|j |q
n+1−N∑

m=n+1−ñ

1

(qb)m
+ π|j |

qn−N|aN |
n+1∑

m=n+2−N

|an+1−m|
bm

< π|j |
(

2

(qb − 1)(qb)n−ñ
+ max(|a0|, . . . , |aN−1|)

|aN |b(b − 1)(qb)n−N

)
.

Since q > 3/4, it follows that 1/qb < 2/3 and so

|'n,ñ,k,t(j )| < π|j |
b

(
8 + max(|a0|, . . . , |aN−1|)

|aN |
(

2

3

)ñ−N)(
2

3

)n−ñ

. (8)

The proof of Theorem A is based on the two following lemmas.

Lemma 1. There exist constants q0 ∈ (0,1) and M0, c1, c2 > 0 such that—for
every q ∈ (q0,1), M ∈ Z , and M > M0 and for every map f of the form (4)—if
|an+1| > q|an| for sufficiently large n then there exist a subsequence nl (l =
0,1, . . . ), numbers σl , σ̃l ∈ [0, 2b3], and integers j0, j1, j2 ∈ [−b, b] (depending
on l ) such that, for every l ≥ 1, the following statements hold.

(a) nl − nl−1 ≥ M.

(b) |anl
| > qM|anl−1|.

(c) |σl − σ̃l| > 3b.
(d) For every t ∈ T , where

T =
{ ∞∑

l=1

rl

bnl+1
: rl ∈ {σl , σ̃l} for l ≥ 1

}
,

the points unl,t(j0), unl,t(j1), unl,t(j2) as defined in (6) are noncollinear and
form a triangle with sides of length L0,L1,L2 and angles α0,α1,α2 such that

1

c1
< L0,L1,L2 < c1, c2 < α0,α1,α2 < π − c2.

Proof. Assume q0 is closer to 1 than some small arithmetic constant: say q0 >

0.9999 and M0 > 10000. First we define inductively a subsequence nl fulfilling
conditions (a) and (b) as well as the additional condition

(e) |anl
| < |anl−2|.

Fix some n0 larger than N. Suppose we have defined n0, . . . , nl such that condi-
tions (a), (b), and (e) hold up through l. Let

nl+1 = min{n ≥ nl + M : |an| < |an−2|}.
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Since the series
∑|an| is convergent and since an �= 0 for large n, we must have

|an| < |an−2| for infinitely many n. Hence the minimum is over a nonempty set,
so it is well-defined. The conditions (a) and (e) for l + 1 are obvious. Moreover,
if nl+1 − nl − M is even then

|anl+1| > q|anl+1−1| ≥ q|anl+M−1| > qM|anl
|,

and if nl+1 − nl − M is odd then

|anl+1| > q|anl+1−1| ≥ q|anl+M−2| > qM−1|anl
| > qM|anl

|.
Hence, condition (b) holds for l + 1, which ends the inductive step.

Using �x� to denote the largest integer not greater than x, we now define

σl = �bM−1ϕl/(b − 1)�
bM−3

+ ,lb
2, σ̃l = �bM−1ϕl/(b − 1)�

bM−3
+ ,lb

2 + b3,

where

ϕl = 1

2π
Arg

(
anl−1

anl

)
, ψl = 1

2π
Arg

(
anl−2

anl

)
,

and

,l =




0 if b > 2,

0 if b = 2 and dist(ψl − 3�2M−1ϕl�/2M, Z) ≤ 1/4,

1 if b = 2 and dist(ψl − 3�2M−1ϕl�/2M, Z) > 1/4.

It is clear that σl , σ̃l ∈ [0, 2b3] and, moreover, condition (c) holds. Now we de-
fine the numbers j0, j1, j2 and show condition (d). Take t ∈ T . Note that for all
integers j ∈ [−b, b] we have

|unl,t(j )| <
π|j |
b

∞∑
m=1

1

(qb)m−1
≤ π

1 − 1/2q0
< 3π. (9)

We will consider several cases depending on b. In all cases we set

j0 = 0,

which implies that
unl,t(j0) = 0. (10)

Define

j1 =
{ �b/4� for b ≥ 6,

1 for b = 2, 3, 4, 5,
and j2 = −j1,

where �x� denotes the smallest integer not smaller than x.

First, let b ≥ 4. By (9) and (10), to satisfy condition (d) it is enough to show

Re(unl,t(j1)), Im(unl,t(j1)), Im(unl,t(j2)) > c0, Re(unl,t(j2)) < −c0 (11)

for some arithmetic constant c0 > 0. Let

unl,t(js) = vs + ξs

for s = 1, 2, where
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vs = sin
πjs

b
exp

[
πijs

b

]
and

ξs =
n+1−N∑
m=2

anl+1−m

anl

sin
πjs

bm
exp

[
πi

(
2tbnl+1−m(1 − bm−1) + js

bm

)]
.

Observe that

|ξs | < π|js |
b

∞∑
m=2

1

(qb)m−1
<

π|js |
b(q0b − 1)

. (12)

Since j2 = −j1 we have

Re(v2) = −Re(v1) and Im(v2) = Im(v1);
hence, for (11) to hold it is sufficient that

min(Re(v1), Im(v1)) − max(|ξ1|, |ξ2|) > c0. (13)

For b ≥ 6,
1

4
≤ j1

b
≤ 1

3
;

therefore,

Im(v1) ≥ Re(v1) = 1

2
sin

2πj1

b
≥ 1

2
sin

2π

3
=

√
3

4
and, by (12),

|ξs | < π

3(6q0 − 1)
<

π

14
<

√
3

4
,

so we have (13).
For b = 5,

Re(v1) > Im(v1) = sin2 π

5
and, by (12),

|ξs | < π

5(5q0 − 1)
<

π

19
< sin2 π

5
,

which implies (13).
Finally, for b = 4,

Re(v1) = Im(v1) = 1

2
and then (12) yields

|ξs | < π

4(4q0 − 1)
<

π

11
<

1

2
,

so (13) holds. This ends the proof for b ≥ 4.
We are left with the case b = 2, 3. Write unl

(js) for s = 1, 2 in the form

unl
(js) = vs + ws + zs + ηs ,

where
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vs = sin
πjs

b
exp

[
πijs

b

]
,

ws = anl−1

anl

sin
πjs

b2
exp

[
πi

(
2tbnl−1(1 − b) + js

b2

)]
,

zs = anl−2

anl

sin
πjs

b3
exp

[
πi

(
2tbnl−2(1 − b2) + js

b3

)]
,

ηs =
n+1−N∑
m=4

anl+1−m

anl

sin
πjs

bm
exp

[
πi

(
2tbnl+1−m(1 − bm−1) + js

bm

)]
.

By condition (e) we have

q <

∣∣∣∣anl−1

anl

∣∣∣∣ < 1

q
,

so

q0 sin
π

b2
< |ws | < 1

q0
sin

π

b2
. (14)

Moreover, by definition,

t =
∞∑
l=1

(�bM−1ϕl/(b − 1)�
bnl+M−2

+ ,l

bnl−1
+ il

bnl−2

)
(15)

for some il ∈ {0,1}; hence, by condition (a),

exp[2πi(ϕl + tbnl−1(1 − b))]

= exp

[
2πi

(
ϕl − �bM−1ϕl/(b − 1)�

bM−1/(b − 1)

+ (1 − b)

∞∑
p=1

(�bM−1ϕl/(b − 1)�
bnl+p−nl+M−1 + ,l+p

bnl+p−nl
+ il+p

bnl+p−nl−1

))]

= exp[iτ ],

where

− 2πb2

bM − 1
= 2π(1− b)

∞∑
p=1

(
bM−1/(b − 1)

bM(p+1)−1
+ 1

bMp
+ 1

bMp−1

)
≤ τ <

2π(b − 1)

bM−1
,

and so

|τ | ≤ 2πb2

bM0 − 1
< 0.001. (16)

This implies

ws =
∣∣∣∣anl−1

anl

∣∣∣∣ sin
πjs

b2
exp

[
πijs

b2
+ iτ

]
,

so

Arg(w1) = π

b2
+ τ and Arg(w2) = π

(
1 − 1

b2

)
+ τ. (17)

Moreover,
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|ηs | < π|js |
b

∞∑
m=4

1

(qb)m−1
<

π|js |
q2

0b
3(q0b − 1)

. (18)

Consider the case b = 3. Then

v1 =
√

3

4
+ 3

4
i and v2 = −

√
3

4
+ 3

4
i.

By (14), (17), and (16),

Re(w1), Im(w1), Im(w2) > 0 and Re(w2) < 0,

so

Re(v1 + w1) >

√
3

4
, Re(v2 + w2) < −

√
3

4
,

Im(v1 + w1), Im(v2 + w2) >
3

4
.

On the other hand, by (18),

|zs + ηs | < 1

q2
0

sin
π

27
+ π

27q2
0(3q0 − 1)

< 0.2.

This gives

Re(unl
(j1)) >

√
3

4
− 0.2, Re(unl

(j2)) < −
√

3

4
+ 0.2,

Im(unl
(j1)), Im(unl

(j2)) > 0.55,

which together with (9) and (10) show condition (d).
We are left with the case b = 2. In this case

v1 = v2 = i, (19)

and then (14), (17), and (16) yield

Re(w1), Im(w1) > 0.49, Re(w2) < −0.49,

Im(w2)∈ (0.49, 0.51).
(20)

By condition (e),

1 <

∣∣∣∣anl−2

anl

∣∣∣∣ < 1

q2

and so

sin
π

8
< |zs | < 1

q2
0

sin
π

8
. (21)

It is easy to see that the definition of ,l implies

dist

(
ψl − 3�2M−1ϕl�

2M
− 3,l

2
, Z

)
≤ 1

4
,

which together with (15) and condition (a) yields
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exp[2πi(ψl + tbnl−2(1 − b2))]

= exp[2πi(ψl − 3t2nl−2)]

= exp

[
2πi

(
ψl − 3�2M−1ϕl�

2M
− 3,l

2

− 3
∞∑
p=1

( �2M−1ϕl�
2nl+p−nl+M

+ ,l+p

2nl+p−nl+1 + il+p

2nl+p−nl

))]

= exp[iκ],

where

−π

2
− 12π

2M − 1
= −2π

(
1

4
+ 3

∞∑
p=1

(
2M−1

2M(p+1)
+ 1

2Mp+1
+ 1

2Mp

))
≤ κ ≤ π

2
;

therefore,

|κ| ≤ π

2
+ 12π

2M0 − 1
<

π

2
+ 0.001. (22)

This gives

zs =
∣∣∣∣anl−2

anl

∣∣∣∣ sin
πjs

8
exp

[
πijs

8
+ iκ

]
,

so

Arg(z1) = π

8
+ κ and Arg(z2) = 7π

8
+ κ. (23)

Suppose first that κ ≥ 0. Then, by (19)–(23),

Re(v1 + w1 + z1) > 0.49 − 1

q2
0

sin
π

8
sin

(
π

8
+ 0.001

)

> 0.34,

Im(v1 + w1 + z1) > 1.49 + sin2 π

8
> 1.63,

Re(v2 + w2 + z2) < −0.49 − sin
π

8
sin

(
π

8
− 0.001

)

< −0.63,

1 < 1.49 − 1

q2
0

sin
π

8
< Im(v2 + w2 + z2) < 1.51 + 1

q2
0

sin2 π

8
< 1.66.

Moreover, by (18) we have

|ηs | < π

8q2
0(2q0 − 1)

< 0.4,

so

Re(unl,t(j1)) > −0.06, Im(unl,t(j1)) > 1.23,

Re(unl,t(j2)) < −0.23, 0.6 < Im(unl,t(j2)) < 2.06.

This implies
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Arg(unl,t(j2)) − Arg(unl,t(j1)) > arctan
23

206
− arctan

2

41
> 0,

Im(unl,t(j1)), Im(unl,t(j2)) > 0.6,

which together with (9) and (10) give condition (d).
The proof for the remaining case κ < 0 is the same as for κ ≥ 0, because the

points z1 and z2 for given κ are symmetric (with respect to the imaginary axis) to
the points z2 and z1 for −κ.

The following elementary geometric lemma is a more precise version of Lemma
3.3 in [Ba].

Lemma 2. Let δ1, δ2 > 0 and let A be a family of all triangles ' for which

1

δ1
< L0,L1,L2 < δ1 and δ2 < α0,α1,α2 < π − δ2 ,

where L0,L1,L2 are the side lengths and α0,α1,α2 the angles of '. Then there
exist Q ∈ (0,1) and r, ε > 0 such that, for every triangle ' ∈ A with vertices
A,B,C, there exists a point P ∈' such that

Dr (P ) ⊂ DQr(Ã) ∪ DQr(B̃) ∪ DQr(C̃ )

for every Ã∈ Dε(A), B̃ ∈ Dε(B), and C̃ ∈ Dε(C).

Proof. It is easy to check (see the proof of Lemma 3.3 in [Ba]) that, if we take P

as the unique point in the interior of ' such that �APB = �BPC = �CPA =
2π/3, then for Q, r, ε it is sufficient to satisfy the three inequalities

(1 − Q2)r 2 − (X − 2εQ)r + X2 − ε2 < 0 (24)

for X = |AP |, |BP |, |CP |. Take

Q = 1 − inf'∈A min(|AP |, |BP |, |CP |)
100 sup'∈A max(|AP |, |BP |, |CP |) ,

ε = inf'∈A min(|AP |, |BP |, |CP |)
4

.

By the definition of A it follows that 0.99 ≤ Q < 1 and ε > 0. Moreover, for
every '∈ A and for X = |AP |, |BP |, |CP | we have

ε ≤ X

4
,

so

(X − 2εQ)2 − 4(1 − Q2)(X2 − ε2) >
X2

10
> 0

and the quadratic function of r in (24) has two roots, 0 < rmin < rmax, such that

rmin = 2(X2 − ε2)

X − 2εQ +
√
(X − 2εQ)2 − 4(1 − Q2)(X2 − ε2)

<
2X2

X − 2εQ
< 4X ≤ 4 sup

'∈A
max(|AP |, |BP |, |CP |) = r ′
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and

rmax = X − 2εQ + √
(X − 2εQ)2 − 4(1 − Q2)(X2 − ε2)

2(1 − Q2)

>
X − 2εQ

2(1 − Q2)
>

X

8(1 − Q)
≥ inf'∈A min(|AP |, |BP |, |CP |)

8(1 − Q)
= r ′′.

By the definition of Q we have 0 < r ′ < r ′′, so the three inequalities (24) hold for
any r ∈ (r ′, r ′′).

3. Proof of Theorem A

Consider the constants q0,M0, c1, c2 from Lemma 1 and let Q, r, ε be the constants
from Lemma 2 applied for δ1 = c1 and δ2 = c2. Take M > M0 such that M >

N and

9π

(
2

3

)M

< ε. (25)

Fix q ∈ (0,1) such that q > q0 and

q > Q1/M, (26)

and now consider the set T , the subsequence nl , and j0, j1, j2 from Lemma 1 ap-
plied for M, q and the function f. Let t ∈ T and

Al,t = unl,t(j0) = 0, Bl,t = unl,t(j1), Cl,t = unl,t(j2)

for l ≥ 1. Then, by Lemmas 1 and 2, there exists a point Pl,t in the triangle of
vertices Al,t ,Bl,t ,Cl,t such that

Dr (Pl,t ) ⊂ DQr(Ã) ∪ DQr(B̃) ∪ DQr(C̃ ) (27)

for every Ã∈ Dε(Al,t ), B̃ ∈ Dε(Bl,t ), and C̃ ∈ Dε(Cl,t ). Take l0 such that

max(|a0|, . . . , |aN−1|)
|aN |

(
2

3

)nl0 −N

< 1.

Then—using (8), (25), and Lemma 1—for n = nl and ñ = nl−1 we have

|'nl,nl−1,k,t(js)| < ε

for s = 0,1, 2 and for every l ≥ l0, k ∈ Z , and t ∈ T . This together with (27) yields

Dr (Pl,t ) ⊂
2⋃

s=0

DQr(unl,t(js) + 'nl,nl−1,k,t(js))

for every l ≥ l0 and so, by (7),

D2|anl |r (ζnl−1,k(t) + 2ianl
exp[2πitbnl ]Pl,t ) ⊂

2⋃
s=0

D2Q|anl |r (ζnl,kb
nl−nl−1+js(t)).
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By (26) and Lemma 1 we have

2Q|anl−1|r < 2|anl
|r,

so

D2Q|anl−1|r (ζnl−1,k(t) + 2ianl
exp[2πitbnl ]Pl,t )

⊂
2⋃

s=0

D2Q|anl |r (ζnl,kb
nl−nl−1+js (t)) (28)

for every l ≥ l0, k ∈ Z , and t ∈ T . Starting from l = l0 and k = 0 and then apply-
ing (28) inductively, we obtain

D2Q|anl0−1|r
(
ζnl0−1,0(t) + 2i

m∑
l=l0

anl
exp[2πitbnl ]Pl,t

)

⊂
⋃

s1,...,sm∈{0,1,2}
D2Q|anm |r (ζnm,bnm

∑m

l=l0
jsl/b

nl
(t)) (29)

for every m ≥ l0. Observe that ζnl0−1,0(t) = ζ0,0(t) = f(e2πit ). Let

Ct =
{

exp

[
2πi

(
t +

∞∑
l=1

jsl

bnl+1

)]
: sl ∈ {0,1, 2} for l ≥ 1

}
.

Then Ct are Cantor sets in the unit circle and

ζ
nm,bnm

∑m

l=l0
jsl/b

nl
(t)∈ f(Ct )

for every m ≥ l0, so (29) gives

D2Q|anl0−1|r
(
f(e2πit ) + 2i

m∑
l=l0

anl
exp[2πitbnl ]Pl,t

)

⊂ {w ∈ C : dist(w, f(Ct )) < 2Q|anm
|r}. (30)

Note that by (9) we have

sup{|Pl,t | : l ≥ 1, t ∈ T } < 3π,

so the series
∑∞

l=l0
anl

exp[2πitbnl ]Pl,t is convergent to some Pt ∈ C such that

sup{|Pt | : t ∈ T } < ∞. (31)

Moreover, anm
→ 0 as m → ∞, so (30) and the compactness of f(Ct ) yield

D2Q|anl0−1|r (f(e2πit ) + 2iPt ) ⊂ f(Ct ). (32)

It is clear that the set T is uncountable. Moreover, by (31),

sup{|f(e2πit ) + 2iPt | : t ∈ T } < ∞.

Hence, there exist z̃∈ C and an uncountable set S ⊂ T such that

|f(e2πit ) + 2iPt − z̃| < |anl0−1|r/2
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for every t ∈ S. This together with (32) gives

D ⊂
⋂
t∈S

f(Ct ) for D = D|anl0−1|r/2(z̃).

Therefore, to use the Lusin–Purves Theorem and finish the proof of Theorem A
it is enough to show that the sets Ct are pairwise disjoint for t ∈ T . In order to do
this, suppose that Ct ∩ Ct ′ �= ∅ for some t, t ′ ∈ T (t �= t ′). Then, for every l ≥ 1,
there exist rl , r ′

l ∈ {σl , σ̃l} for σl , σ̃l from Lemma 1 and sl , s ′
l ∈ {0,1, 2} such that

exp

[
2πi

∞∑
l=1

rl + jsl

bnl+1

]
= exp

[
2πi

∞∑
l=1

r ′
l + js ′

l

bnl+1

]
. (33)

Recall that by Lemma 1 we have σl , σ̃l ∈ [0, 2b3], |σl − σ̃l| > 3b, and jsl , js ′
l
∈

[−b, b] ∩ Z. Therefore,∣∣∣∣2π
∞∑
l=1

rl + jsl

bnl+1
− 2π

∞∑
l=1

r ′
l + js ′

l

bnl+1

∣∣∣∣ ≤ 2π
∞∑
l=1

|rl − r ′
l | + |jsl − js ′

l
|

bnl+1

≤ 4π(b2 + 1)

bn0

∞∑
l=1

1

bMl

= 4π(b2 + 1)

bn0(bM0 − 1)
< 2π,

so (33) yields
∞∑
l=1

rl + jsl

bnl
=

∞∑
l=1

r ′
l + js ′

l

bnl
.

Since t �= t ′, there exists an l1 such that

rl1 �= r ′
l1
.

Then
|rl1 + jsl1 − r ′

l1
− js ′

l1
| ≥ |σl1 − σ̃l1| − |jsl1 − js ′

l1
| > b > 0,

so
rl1 + jsl1 �= r ′

l1
+ js ′

l1
.

Hence, there exists an

l2 = min{l ≥ 1 : rl + jsl �= r ′
l + js ′

l
}.

If rl2 �= r ′
l2

then

|rl2 + jsl2 − r ′
l2

− js ′
l2
| ≥ |σl2 − σ̃l2| − |jsl2 − js ′

l2
| > b,

and if rl2 = r ′
l2

then jsl2 �= js ′
l2

and we have

|rl2 + jsl2 − r ′
l2

− js ′
l2
| = |jsl2 − js ′

l2
| ≥ 1.

This implies
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∣∣∣∣
∞∑
l=1

rl + jsl

bnl
−

∞∑
l=1

r ′
l + js ′

l

bnl

∣∣∣∣ ≥
|rl2 + jsl2 − r ′

l2
− js ′

l2
|

bnl2

−
∞∑

l=l2+1

|rl − r ′
l | + |jsl − j ′

sl
|

bnl

>
1

bnl2
− 2b(b2 + 1)

bnl2

∞∑
l=l2+1

1

bMl

=
(

1 − 2b(b2 + 1)

bM0 − 1

)
1

bnl2
> 0,

which is a contradiction. Hence, the Ct are pairwise disjoint for t ∈ T , which com-
pletes the proof.
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