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On Some Lacunary Power Series

KRZYSZTOF BARANSKI

1. Introduction

Consider a lacunary power series given by

f@) =" ah, (M

n=0

where k,,.1/k, > b > 1 for every n > 0 and where a,, € C such that Z;“;0|a,,| <
oo. Then £ is holomorphic in the unit disc ID and continuous in D.

In 1945, Salem and Zygmund showed in [SZ] that if b > b, for a constant by &
45 and if the a, satisfy some conditions (so that the convergence of > > ;|a,| is
slow enough), then the image of the unit circle under f is a Peano curve—that is,
it contains an open set in the plane. In 1963, Kahane, M. Weiss, and G. Weiss in
[KWW] extended the result, showing that for every b > 1 there exists a constant
y > 0 depending only on b and such that, if

lanl <y Y lanl )

m=n+1

for every n, then the image of the unit circle under f is a Peano curve. In fact,
they proved that there exist constants K, &, v (depending only on b) such that, if

* inequality (2) is fulfilled and

e E is any Cantor set in the unit circle obtained by taking an arc I of length at
least £/kg, removing the middle subarc of I of length K times the length of /
and repeating the procedure inductively, always removing the middle subarc of
length K times the length of the larger one,

then f(E) contains the disc centered at 0 of radius v fozom,,l.
In [CGP] it was noticed by Cantén, Granados, and Pommerenke that the Kahane—
Weiss—Weiss result implies the following.

CGP THEOREM. If f is a map of the form (1) satisfying (2) and if ko is suffi-
ciently large, then f does not preserve Borel sets on the unit circle.
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We say that a map f defined on a set A preserves Borel sets on A if f(B) is Borel
for every Borel set B. (Recall that the family of Borel sets in a topological space
X is, by definition, the smallest o -algebra containing open sets in X; here we con-
sider X = C.) The idea for proving the CGP Theorem is to show that f assumes
every value from an open disc uncountable many times on the unit circle and then
use the following Lusin—Purves Theorem (see e.g. [Ku]), which gives a character-
ization of maps preserving Borel sets.

LUSIN-PURVES THEOREM. Let A C C be a Borel set and let fiA—> C. Suppose
that, for every Borel set B C C, the set f ~'(B) is Borel. Then f preserves Borel

sets on A if and only if the set {w € C:w= f(2) for uncountable many z € A} is
countable.

In particular, the Lusin—Purves Theorem can be applied provided f is continuous.
Note that, by holomorphicity, a function of the form (1) preserves Borel sets on
A = D. The interesting case is when A is the unit circle. In [CGP], some crite-
ria were given to characterize holomorphic maps on the unit disc preserving Borel
sets on the unit circle at points, where the radial limits exist.

In 1990, the following result was proved by Belov in [Be].

BeLOV THEOREM. Let f be a map of the form (1). Suppose thatb > 2, a,, # 0
for some m > 0, and there exist a, B > 0 such that a(1+ B) < 1and the following
conditions are satisfied for sufficiently large n:

@) lanl < B Y m_piilaml;

b—1 n +1
(b) 27 3=5 > ilamlb™ < ala,i|b"F
Then f assumes every value from a certain disc uncountable many times on the
unit circle, so it does not preserve Borel sets.

In this paper we consider the well-known case
k, =b" 3)
for integers b > 2. We prove the following.

THEOREM A. There exists a g € (0,1) with the following property. Let b =
2,3,...and let

f@) =) az", )
n=0

where a, € C, such that )_ . |a,| < oo and

|an+1| > Q|an| (5)

for sufficiently large n. Then there exists a disc D C C such that f assumes every
value from D uncountable many times on the unit circle. Hence, f does not pre-
serve Borel sets on the unit circle.

In comparison with the Belov Theorem, observe that Theorem A has no condi-
tion (b) and that Belov’s (a) is replaced by our simpler condition (5).
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Theorem A immediately implies the next two results.

COROLLARY 1. There exists an ag € (0, 1) such that, for everya € C, |a| € (ag, 1),
and b = 2,3,..., the Weierstrass function

f(Z) — Zanzh"
n=0

does not preserve Borel sets on the unit circle.

COROLLARY2. Ifb=2,3,...,a, G(Csuchthatzzozomnl < ooand |ans1/an| —
1, then the map

f@) =) a2
n=0

does not preserve Borel sets on the unit circle. In particular, this holds for

o0 an
f(2) = ; n_""
where o > 1.

Note that the CGP Theorem implies that the map

o0
f(Z) — Z anzbn
n=ng

does not preserve Borel sets on the unit circle provided b = 2,3,...,a € C,
and |a| € (ayp, 1) for a constant 0 < ay < 1 and sufficiently large ny. The same is

true for
o0
[ =) az’

n=ngo

provided that b = 2,3,..., thata, € C with Y, j|a,| < 0o and |a,41/a,] — 1,
and that ng is sufficiently large. Similarly, it is easy to check that the Belov The-
orem shows the result for the maps from Corollaries 1 and 2 when b > 9. Here
we were able to extend it to the case b > 2 because of equation (3). The proof of
our theorem, which is contained in Section 3, is based on two technical lemmas
proved in Section 2; these lemmas use ideas from [Ba] and [CGP].

NotaTION. The open disc in C of radius r centered at z is denoted by D, (z). For
zeCand A C C, set

dist(z, A) = inf{|z — x| : x € A}

For z € C \ {0} we assume Arg(z) € [0,2). By an arithmetic constant we mean
a constant that is independent of all variables appearing in the paper.

ACKNOWLEDGMENT. The author is grateful to Prof. Ch. Pommerenke for intro-
ducing him to the subject and for helpful remarks.
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2. Technical Lemmas

Consider a map f of the form (4) and fulfilling condition (5) for sufficiently large
n and some fixed g € (3/4,1). Let

En k(1) = flexpl2mi(t + k/b")])
forn > 0,k €Z, and t € R. By definition, for any j € Z we have

~ . T . 2k +j
Cnitj (@) — Cn i (1) =20 Za; sin bTJkl exp|:m <2th + lejl):|
n+l

n m 2k + j
=2i Za”“ msm exp[m (2tb Hl=m g b )i|

Fix N > 0 such that |an+1| > ¢la,| for every n > N — 1. In particular, this
implies a, # O for every n > N. Then foreveryn > N +1land N <n <n — N,

=i j (1) — G e (1)

= Cppn—iigj = Cnkpn-i

n+1

= 2ia, exp[2with" ]Z n+; ™ sin Z—rjn exp|:m' <2t(bn+1m — b
2kb" " 4 j

<5

= 2ia, exp[2mith"] ( Z ntlom in 7 exp [m' <2zb”+1—m(1 —bp™h
a, bm
i b—m)]
n+1 i
n+1 m . n+l—-m m—1
— 2tb 1-b
+ Z ———sin o exp[m( ( )

m=n+1— 3
LU
bm '
n+l1—-N

. a - : Tj : n+l—m m— .
Uni(j) = Z ";lmsmb—iexp[m(th Hlem—p 1)+bim>} (6)

n

m=1

m=1

Hence, denoting

m=1
and
n+1

Apiii(j) = Z Gntlom sin Z—yjn exp|:7ri<2tb”“m(1 —bp™

an
2kb" " 4 j
T )]

n+l1-N a i .
_ Z n+l—m sin _] exp i thn-f-l—m(] _ bm—l) + L ,
. a, bm bm

m=n+1-n
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we obtain
Cn kpn-i4 j (1) — Gk (t) = 2ia, exp[27ith" |(un,(j) + An (7). (1)
Observe that, by assumption, for every m = 2,...,n +1 — N we have

an+l—m

—1
an q”

SO

n+1—-N n+1

. . 1 7T|.]| |an 17m|
|An,ﬁ,k,t(])| < 2ﬂ|]|q Z (qb)m + Z ;m

n—N
m=n+1—n 4 |aN| m=n+2—N

- nm( max(|aol, ..., IaN—1I)>
(gb —D(gb)»=" ~ |an|b(b —1)(gb)"~N
Since ¢ > 3/4, it follows that 1/gb < 2/3 and so

il max(lagl, s lav—i) (2N (2"
|An,n,k,t(])|< b <8+ |aN| <3> ><3> . (8)

The proof of Theorem A is based on the two following lemmas.

LEmMMA 1. There exist constants qo € (0,1) and My, cy,cy > 0 such that—for
every q € (qo,1), M € Z, and M > M and for every map f of the form (4)—if
lans1|l > qla,| for sufficiently large n then there exist a subsequence n; (I =
0,1,...), numbers o;,6; € [0,2b3], and integers jo, j1, j» € [—b, b] (depending
onl) such that, for every l > 1, the following statements hold.

@ n;—n;_1 = M.

(d) lan| > g"lan,_,|.

(C) IO'[ — 5’1| > 3b.

(d) Foreveryt e T, where

o0 r )
T= {ZleH :ry €{oy,07) forl > 1},

=1

the points uy, ((jo), Un,:(j1), Un,:(j2) as defined in (6) are noncollinear and
form a triangle with sides of length L, L1, L, and angles a, o1, oy such that

— < Lo, L,Ly <y, Cc) < W, 01,0 < T — Co.
Cl

Proof. Assume ¢ is closer to 1 than some small arithmetic constant: say gg >
0.9999 and M, > 10000. First we define inductively a subsequence n; fulfilling
conditions (a) and (b) as well as the additional condition

(e) |an1| < |an172|-

Fix some n( larger than N. Suppose we have defined ng, ..., n; such that condi-
tions (a), (b), and (e) hold up through /. Let

nipp=min{n > n; + M : |a,| < |ay-2l}.
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Since the series Y _|a,| is convergent and since a, # O for large n, we must have
|a,| < |a,—»| for infinitely many n. Hence the minimum is over a nonempty set,
so it is well-defined. The conditions (a) and (e) for / 4 1 are obvious. Moreover,
if n;41 —n; — M is even then

M
|an[+1| > Q|an1+171| > Q|Cln,+M71| =>dq |an1|,
and if n;41 — n; — M is odd then
M—1 M
|anl+1| > 5I|an1+171| = Q|an1+M72| >q |an1| >dq |an1|-

Hence, condition (b) holds for / + 1, which ends the inductive step.
Using | x| to denote the largest integer not greater than x, we now define

Mg/ - 1) M /b — 1)
g = o) = —"°

1= ekt & = +ob® + b,
where
1 ap—1 1 ap,—2
¢ = 5 Arg . Y= Arg ;
2 Ay, 2 Ap,
and
0 if b>2,

o1=10 if b=2anddist(y; — 32" ¢, ]/2M,Z) < 1/4,
1 if b =2 and dist(y; — 3[2""g,|/2M,Z) > 1/4.

It is clear that 07,8, € [0,2b3] and, moreover, condition (c) holds. Now we de-
fine the numbers jy, ji, j» and show condition (d). Take ¢ € 7. Note that for all
integers j € [—b, b] we have

=1

7| jl T

n | < —— < < 3m. 9
ltn (D] < = ; @ = T ©)
We will consider several cases depending on b. In all cases we set
Jo=0,
which implies that
ung,i(jo) = 0. (10)

Define
) { [b/4] for b >6,
=0 for b =2,3,4,5,

where [x7] denotes the smallest integer not smaller than x.
First, let b > 4. By (9) and (10), to satisfy condition (d) it is enough to show

Re(up,(j1)), Im(up 1 (j1)), Im(un,,1(j2)) > co, Re(un,,i(j2)) < —co  (11)

for some arithmetic constant c¢q > 0. Let

”n,,t(js) =+ Es

and j, = —ji,

fors = 1,2, where
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. TJs |:77ijsi|
vy = sin exp and

b b
n+l1—-N a i .
£, = m; —]; 1,*’” sin bi exp[ni(zrb"l“’"(l —b"h+ b’—mﬂ
Observe that
7| js| i 1 7| js|
|&s] < < . (12)
b= (qb)y"" " blgob — 1)

Since j, = —j; we have

Re(vy) = —Re(v;) and Im(v;y) = Im(vy);

hence, for (11) to hold it is sufficient that

min(Re(v1), Im(vy)) — max(|&1], |§21) > co. (13)
For b > 6,
4~ b 3
therefore,

1 27j 1 2 3
Im(v;) > Re(v;) = = sin il > — sin—n = £
2 b 2 3 4

and, by (12),

b b4 ﬁ
&1 < T’

—_— < — <
3(6gp—1) 14
so we have (13).

For b =5,
Re(vy) > Im(vy) = sin? %
and, by (12),
b4 b4 L
€| < =—————= < — <sin” —,
58g0—1) 19 5
which implies (13).
Finally, for b = 4,
1
Re(vy) = Im(vy) = 3
and then (12) yields
T T 1
5] < ————— < — < 7,
4(4go—1) 11 2

so (13) holds. This ends the proof for b > 4.
We are left with the case b = 2,3. Write u,,,(j;) for s = 1,2 in the form

unl(js) =V, +ws + 25+ Ns»
where
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7TJs |:m'jx :|
Vg sin 7 exp N

b

w, = 2= gin % exp|:7ti<2tb”’_](1 — b+ #)}

[

7, = Im=2 sm’ziexp[m (th'” 21— p?) + z%)]

ap,

n+1—-N . .
Ani+1—m . TJs . n+l—m m—1 Js
= Gnitiom o 79 ol i 266 =m(1 — b S|
=2 7, 7 p[ ( ( >+bm)}

m=4 m b

By condition (e) we have

Ap;—1 1
q — _?
A, q
SO
in = < Jwy| < —sin~ (14)
SIin — < (W < — SIn —.
q0 b2 s % b2

Moreover, by definition,

tzi(Lleqoz/(b—l)J o i )
=1

bn1+M—2 bn[—l bn[—Z

(15)

for some i; € {0, 1}; hence, by condition (a),

exp[27i(p; + th" (1 — b))]

o [27”( M/~ 1)
—TT\ T e -

LbM /(b = 1)) Ql+p ii4p
+ (1 - b) Z( bli+p— nj+M-—1 + bi+p—n + bn1+pn11>>:|

= explit],
where
27h? bM=b —1) 1 1 27 (b —1)
oy =27 <1—b>2(w+m+bml> STS T
and so
276° 4 001 16
7l < o3 < 0.00L (16)
This implies
w, = |t s1n@exp s 1 i
’ an, b2 b2 '
SO
b4 1
Arg(w;) = » + 17 and Arg(wy)=mnm(1- 7 + 7. 17)

Moreover,



On Some Lacunary Power Series 73

mljsl o= 1 7l jsl
s . 18
sl ==, Z(qb)m*“qéb%qob—l) (1%

m=4
Consider the case b = 3. Then

3 3 3 3
v1:§+zi and vzz—\/T——i—Zi.

By (14), (17), and (16),
Re(w), Im(w;), Im(w,) >0 and Re(w;) <O,
)

3 3
Re(v; + wy) > i Re(vy +ws) < -
3
Im(v; + wy), Im(vy + wy) > 7
On the other hand, by (18),

1 . T
|zs + 15| < — sin 0.2.

_ + _ <
95 27 27953q0—1)
This gives
V3 . V3
Re(u,,(j1)) > - =02, Re(uy,(ja)) < == +0.2,

Im(up, (j1)), Im(up, (j2)) > 0.55,

which together with (9) and (10) show condition (d).
We are left with the case b = 2. In this case

V) =V = i, (19)
and then (14), (17), and (16) yield
Re(wy), Im(w;) > 0.49, Re(w;) < —0.49,

(20)
Im(w;) € (0.49,0.51).
By condition (e),
1 Ap;—2 i
an, q*
and so
T 1 . =
sm§ < |zs] < q—gsm 3 21)

It is easy to see that the definition of o; implies

302" el 301,
oM 2

<

1
dist<¢1 - =7

which together with (15) and condition (a) yields
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exp[2mi(y; + th™ (1 — b*))]
= exp[27i(Y; — 32" %))

3[2M-t 3
= exp|:2m'<1/f1 _32 el X el _ %

[2M~ 1§01J Ol+p iitp
-3 Z<2n1+p n+M 2n1+p*n1+1 + Dnip—1 >>:|

= explix],

where

b4 127 1 M-l 1 1
Ty Tom_1 T _27[( +3Z(2M([J+l) T St 2 Mpt1 + 2_>> =K=

therefore,

El

SRS

b4 12x T
<—4+—— < —+0.001. 22
M=gtom =37 22)
This gives
7, = a;,};lz sin n;s exp[n; S lKi|
SO ;
T T
Arg(z)) = 3 4+« and Arg(zp) = 5 + k. (23)

Suppose first that ¥ > 0. Then, by (19)—-(23),

1
Re(v; + wy +21) > 049 — — sin = sin(z + 0.001)
490 8 8
> 0.34,

Im(u; + wi +21) > 1.49 + sin’ % > 1.63,

Re(vy + ) + 22) < —0.49 — sin % sin(% - 0.001)
< —0.63,

| 4 I  ,7
1 <149 — —sin— < Im(vy + wz + 22) < 151+ — sin” — < 1.66.
90 8 90 8

Moreover, by (18) we have

T
nsl < o5 <04,
845(2q0 — 1)
SO

Re(it,,,,(j1)) > —0.06, Im (i, (j1) > 1.23,
Re(un, (j2)) < —0.23, 0.6 < Im(uy,(j2)) < 2.06.
This implies
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23 2
Arg(uy, (j2)) — Arg(uy,, (ji1)) > arctan — — arctan — > 0,

206 41
Im (1 (1)), Ity (j2)) > 0.6,

which together with (9) and (10) give condition (d).

The proof for the remaining case x < 0 is the same as for k > 0, because the
points z; and z, for given « are symmetric (with respect to the imaginary axis) to
the points z, and z; for —«. O

The following elementary geometric lemma is a more precise version of Lemma
3.3 in [Ba].

LEMMA 2. Let 81,82 > 0 and let A be a family of all triangles A for which

1
8—<L0,L1,L2<81 and 8, < g, a1,y < T — 82,
1

where L, Ly, L are the side lengths and o, a1, ar the angles of A. Then there
exist Q € (0,1) and r,e > 0 such that, for every triangle A € A with vertices
A, B, C, there exists a point P € A such that

D, (P) C Dg,(A) UDg,(B) UDg,(C)
for every Ae D.(A), Be D.(B), and Ce D.(C).
Proof. Ttis easy to check (see the proof of Lemma 3.3 in [Ba]) that, if we take P

as the unique point in the interior of A such that {APB = ABPC = {CPA =
27/ 3, then for Q, r, ¢ it is sufficient to satisfy the three inequalities

1-=0Hr*— (X —2e0)r+X>—¢62<0 (24)
for X = |AP|,|BP|,|CP|. Take
infc 4 min(|AP|,|BP|,|CP))

= 1 —_ — P— P 1)
Q 100 supac4 max(|AP|,|BP|,|CP])

__infac4min(|AP|,|BP|,|CP))

= 2 .

By the definition of A it follows that 0.99 < Q < 1 and ¢ > 0. Moreover, for
every A € Aand for X = |AP|,|BP|,|CP| we have

X
&< —,
— 4
SO
X2
(X —20)> =41 — 0H)(X?* — ) > o 0
and the quadratic function of r in (24) has two roots, 0 < rpin < 7max, such that
2(X2 —&?)
Imin =
X =260 + V(X —260)? —4(1 — 0¥ (X? — £?)

2X? .
< ——— <4X <4 sup max(|AP|,|BP|,|CP|) =+’
X —2eQ AcA
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and
X =200+ /(X —2e0)2 —4(1 — Q)(X? — e?)
Fmax = 20— 0?)
X —2¢Q X infac4 min(|AP|,|BP|,|CP]) _
T20-0Y)  81-0) - 81— 0) -
By the definition of Q we have 0 < r’ < r”, so the three inequalities (24) hold for
any r € (r',r"). O

3. Proof of Theorem A

Consider the constants g, My, c1, c» from Lemma 1 and let Q, r, ¢ be the constants
from Lemma 2 applied for §; = ¢; and §, = ¢,. Take M > M such that M >

N and
N\M
9n<§> < e. (25)

Fix g € (0,1) such that g > g¢ and
g> 0", (26)

and now consider the set 7, the subsequence n;, and jy, ji, j» from Lemma 1 ap-
plied for M, g and the function f. Lett € 7 and

Al,t = Mn,,r(jo) =0, Bl,t = un[,t(jl)7 Cl,t = unl,t(jZ)

for [ > 1. Then, by Lemmas 1 and 2, there exists a point P;, in the triangle of
vertices A;;, By ¢, C; ; such that

D (P1) C Do, (A) UDg, (B) UDg,(C) 27)
for every A € D,(A;,), B € D,(By,), and C € D,(C;,). Take [y such that
max(|dol, .., |ay—i]) <2>’”0N
— < 1.

lay| 3

Then—using (8), (25), and Lemma 1—for n = n; and 7 = n;_; we have

|An/,n/_1,k,l(js)| <é&
fors = 0,1,2 and forevery ! > Iy, k € Z, and t € T. This together with (27) yields

2

D (Pre) € | Dor (g, + Anpony ik (Gis)
s=0

for every [ > [y and so, by (7),

2

D214, 1r (Cny_y k(1) + 2iay, exp[2with™ 1Py ;) C U Dogjap 1 (Cny,kpm=ni-i4 (1))
s=0
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By (26) and Lemma 1 we have

2Q|an17||r < 2|an1|r’

SO
DZQlan,,llr(gnl_l,k(t) + 2ian; exp[Znitb"’]Pm)

2
C \UDa0jan1r Cuprinirj, (1)) (28)
s=0

foreveryl > ly, k€ Z,and t € T. Starting from [ = [, and k = 0 and then apply-
ing (28) inductively, we obtain

Dleanlulr<§nlul,0(l) + 2i Zam eXp[Znitb”@P;y;)

I=lo

C U D2Q|anm|r(gnm,b"’“zlm,l jx;/hn/(t)) (29)
S1y---8m€{0,1,2} -

for every m > ly. Observe that ¢, _, o(¢) = Zo,0(f) = f(ez””). Let

o0 .
C, = {exp|:2m'<t + Z%)} 15, €{0,1,2} for [ > 1}.
I=1

Then C, are Cantor sets in the unit circle and
Cumbrn S, o € €

for every m > Iy, so (29) gives

Dlean,o,lr(f (€™™") +2i Y " ay, exp[2mith™] p,y,)
1=ly

C {w e C : dist(w, f(C;)) < 2Q|ay,|r}. (30)
Note that by (9) we have
sup{|P;,|:1>1,teT} < 3m,
so the series Zfi,o an, exp[2mith™]P; ; is convergent to some P; € C such that
sup{|P,| : t €T} < o0. 3D
Moreover, a,,, — 0 as m — 00, so (30) and the compactness of f(C,) yield
D2gla, ,ir(f(€™") +2iP)) C f(C)). (32)
It is clear that the set 7 is uncountable. Moreover, by (31),
sup{| f(e¥™") +2iP;| 1t € T} < 0.
Hence, there exist Z € C and an uncountable set S C 7 such that

| f(e>™") +2iP, — 7| < lan,_,|r/2
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for every ¢ € S. This together with (32) gives

Dc()fC) for D=Dy, 120

teS

Therefore, to use the Lusin—Purves Theorem and finish the proof of Theorem A
it is enough to show that the sets C, are pairwise disjoint for # € 7. In order to do
this, suppose that C, N C,» # @ for some t,¢t' € T (t # t'). Then, for every [ > 1,
there exist r;, 7/ € {0y, 6} for 0;, 6, from Lemma 1 and s, s/ € {0, 1, 2} such that

[o¢] . o0 / .
. rr+Js . ry + Uy
exp|:2m Z b"l+11:| = eXpI:Z?Tl Z bTJrl[ . (33)

=1 =1

Recall that by Lemma 1 we have o;,6; € [0,2b%], |o; — 6;| > 3b, and j:pjsl/ €
[=b,b] N Z. Therefore,

i |rl_r1/|+|js1 _jx]’|

bn[+l

oo . o0 I .
rr+ s, rpt s,
‘2” Z pu+l 27 Z puiHl

=1 =1

=1

2 o0
S47‘L’(b +1)Z 1

Ml
b"o P b
4w (b? +1)
=~ < 2m,
bro(bMo — 1)
s0 (33) yields
=1 b =1 b
Since ¢t # t’, there exists an /; such that
i, # rl’l.
Then
|7, + Js, — 11, — Js; 1 = oy, = onl —ljs, — Js1 > b >0,
SO

ri A Js, # 0l s
Hence, there exists an
Lh=min{l >1:r,+ j, #r] + jsl/}.
If 11, # r], then
171, + s, = 11y = g | = 101, = Gl = Lo, = Ji | > b,
and if r;, = r;, then j;, # j% and we have
1712+ oy = 1y = g | = Loy = | 2 1.

This implies
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irl-l—jx, irl+]s |rlz+js12_r[/2_jsl’2|
b b | = i
=1 =
_ Z |rl_rl|+|Jsz js/1|
I=l2+1 b
1 2b@®? >
- _260°+ ) Z RS
b b le

1=lr+1

_(j_@ Dy 1
=\ T w1 ) pm T

which is a contradiction. Hence, the C, are pairwise disjoint for ¢ € 7, which com-
pletes the proof.
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