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Proper Holomorphic Maps between
Reinhardt Domains in C?

A.V. IsaAEv & N. G. KRUZHILIN

0. Introduction

Let Dy, D, be bounded Reinhardt domains in C* and let f: D; — D, bea proper
holomorphic map. Such maps are often elementary algebraic; that is, have the
“monomial” form

z > constz°w?,

w — constz¢w?,

where z,w denote variables in C2 and where a, b, c,d are integers such that
ad — bc # 0. For brevity we shall call such maps elementary maps. All ele-
mentary maps are well-defined outside 7, the union of the coordinate complex
lines, but not necessarily at points in /. The question of the existence of an ele-
mentary proper holomorphic map between two given domains is resolved by pass-
ing to the logarithmic diagrams of the domains. Several classes of domains be-
tween which only elementary proper holomorphic maps are possible have been
described in [S].

The aim of this paper is to identify situations in which f is not elementary and
to explicitly describe all forms that the map f and the domains D, D, may have
in such cases. If f is biholomorphic, then it can be represented as the composi-
tion of an elementary biholomorphism between D; and D, and automorphisms
of these domains (see [Kr; Sh]). Therefore, nonelementary biholomorphisms can
occur only between domains that are equivalent by means of an elementary map
and having nonelementary automorphisms (and that are hence straightforward to
determine).

Proper maps that are not biholomorphic are harder to deal with. Nonelemen-
tary maps may occur, for example, if each of Dy, D, is a bidisc, in which case
at least one component of f contains a Blaschke product with a zero away from
the origin. In [BeP] and [LS], the problem of describing nonelementary proper
holomorphic maps was studied for complete Reinhardt domains; it turns out that,
apart from the example of bidiscs, such maps can arise only if D and D, are cer-
tain pseudo-ellipsoids. On the other hand, all proper holomorphic maps between
pseudo-ellipsoids in C" for n > 2 can be found using arguments from [D-SP]. All
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proper holomorphic maps for another special class of domains (a generalization
to higher dimensions of domains of the form (0.2), to follow) were determined in
[L]. Similarly to the case of bidiscs, the only nonelementary maps for this class
are expressed in terms of Blaschke products with at least one zero away from the
origin.

In this paper we describe all nonelementary proper holomorphic maps between
Reinhardt domains in C2, as well as the corresponding pairs of domains. First of
all, the map f can be extended to a proper holomorphic map between the enve-
lopes of holomorphy D, and D5 of D, and D>, respectively. The passage to the
pseudoconvex domains Dy, D5 is essential for our arguments because we shall
often use the connectedness of the boundaries of 151, 152 and the convexity of their
logarithmic diagrams. Furthermore, f extends holomorphically to a neighbor-
hood of 8D, \ I. Next, one can show that f can be nonelementary only if oD, \ 1
either consists of two or three Levi-flat pieces or is a connected spherical hyper-
surface (see Section 1).

The Levi-flat and spherical cases are considered in Sections 2 and 3, respec-
tively, and the results are summarized in Theorem 0.1. In the spherical case (see
(iv)—(vi) of Theorem 0.1), the map f can be represented as the composition of
three maps of special forms: two elementary maps and an automorphism of an
intermediate Reinhardt domain. We note that a factorization result of a different
kind for proper maps into the unit ball was obtained in [KLS]. In the case where
D, is a strongly pseudoconvex smoothly bounded Reinhardt domain in C” forn >
2 that does not intersect the coordinate hyperplanes (while D, is not necessarily
Reinhardt), another factorization theorem was proved in [BDa]. We also observe
that the nonelementary proper holomorphic map between pseudo-ellipsoids in the
example given in [D-SP] factors as in Theorem 0.1(vi).

Our results immediately imply that, if there exists a proper holomorphic map
between two bounded Reinhardt domains, then there also exists an elementary
proper map between the domains (Corollary 0.2). Another consequence of our
classification is that the domains described in (i)—(iii) of Theorem 0.1 are the only
domains for which there exist nonelementary nonbiholomorphic proper self-maps
(Corollary 0.3).

THEOREMO.1. Let D, D, be bounded Reinhardt domains in C* and let f: Dy —
D, be a proper holomorphic map. Assume that f is not elementary. Then one of
the following six scenarios obtains.

(1) Up to permutation of the components of f and the variables, the map f has
the form

z > const z*w’B(A; 2" w?),
. (0.1)
w — const w¢,

where a,b,c, p1,q1 € Z,a > 0,c > 0, p; > 0,q; <0, p; and q, are relatively
prime, aqy — bp; < 0, Ay > 0, and B is a nonconstant Blaschke product in the
unit disc that is nonvanishing at 0. In this case, D either has the form
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{(z,w) e C?: A|z|Pw|? < 1,0 < |w| < Cy} 0.2)

for some Cy > 0 or is a bidisc (in the latter case we have b =0, py = 1, and q; =
0in (0.1)). The domain D, is, respectively, either a domain of the form

{(z,w) €C?: Ay|z|?|lw|?? < 1,0 < |w| < Cy}

(where p,,qo € Z are relatively prime, py > 0, g2 < 0, g2/p> = (aq1 — bp1)/
(cp1), A2 > 0,and C, > 0) or a bidisc.

(ii) Up to permutation of the components of f and the variables, the map f has
the form (0.1), where a,b,c, p1,q1 € Z,a > 0,c # 0, p; > 0, py and q, are rel-
atively prime, A; > 0, and B is a nonconstant Blaschke product in the unit disc
that is nonvanishing at 0. In this case the domains have the forms

Di = {(z.w) € C?: Aylz|"w|” < 1, Ey < |w| < C1},
0.3)
Dy = {(z,w) € C? 1 Asfz?|w|® < 1, E2 < |w| < Ca,
where p,,q» € Z are relatively prime, p, > 0, g2 /p> = (aq1 — bp1)/(cp1), and
C] >O,E1 >O,A2>O,C2>O,andE2>0.
(iii) Up to permutation of the components of f, the map f has the form

z +— constz“B(Az),
w > constw}’Bz(Cw),

wherea,beZ,a >0,b>0,A > 0,C > 0,and B;, B, are nonconstant Blaschke
products in the unit disc that are nonvanishing at 0. In this case, D1 and D, are
bidiscs.

(iv) The map f is a composition f = g of o h, where h is an elementary map
from Dy into the domain D = {(z,w) € C? : |w| > exp[|z|*1}, f is an automor-
phism of D, and g is an elementary map from a subdomain of D onto D,. Up to
permutation of the variables, the map h has the form

7 > constz% w1,

w — constw ™,

where ay, by, c| € N; the map £ has the form
2> ez +s,
w > e exp[25ez 4 |s|* 1w,

where t|,t; € R and s € C*; and, up to permutation of its components, the map g
has the form

z — constz2w "2,

w > constw ™ “?,

where ay, by, cy € N. In this case the domains have the forms
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Dy = {(z,w) € C* : C{ exp[—Eilz|*'|w|™*"] < |w]
< Crexp[—Ei|z[*w| "]},

Dy = {(z,w) € C* : Chexp[—Ey|z|*/®|w|72b2/022] < |w|

< Crexp[—Es|z|¥/ 2 |w| 22 0]y,

where 0 < C{ < C1,0 < C} < Cy, E; > 0,and E; > 0.

(v) The map f is a composition f = g of oh, where h is an elementary map
from Dy into the domain Q% = {(z,w) € C* : |z|*> + |w|* < 1} for some a > 0,
g is an elementary map from a subdomain of Q% onto D,, and £ is an automor-
phism of Q¢. Up to permutation of the variables, the map h has the form

—b
z — constz4w™",

, 0.4)
w — const w,

where ay,by,c1 €Z,a; > 0,b; > 0, and ¢, > 0; the map f has the form

7> el S
1—az’

i g 0=l
(1 —az)?/«

where |a| < 1,a # 0, and t1,t, € R; and, up to permutation of its components,
the map g has the form

7 > const z2w?2, 0
0.5)
w — const w?,

where ar,by,co €Z,a, > 0,by > 0, and ¢, > 0. In this case the domains have
either the forms

Dy = {(z,w) €C%: C1|z)*™ + Ej|w|* < 1},
D; = {(z,w) € C*: G2z + Exw|¥> < 1)
or the forms
Dy ={(z,w) €C*: Cifz]*w| " < 1,
E{(1 = Cilz " w] 2D < jw)
< Ei(1 — Cy|zPw|2Pyleey,
Dy = {(z,w) € C% : Cy|z|¥/“2|w| 202 a2e2 < 1,
E(1 — Ca| /a2 )|~ 2b2/mexycafa _ |y
< Ey(1 — Cy|z|2/42 || 202 w222 /ey

forsome C; > 0,C, > 0,0 < E| < Ej,and 0 < E, < E,. (In the first case of
(0.4) and (0.5) we have by = 0 and b, = 0.)
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(vi) The map f is a composition f = g of oh, where h is an elementary map
from Dy onto the unit ball B> := {(z,w) € C? : |z]> + |w|? < 1}, f is an automor-
phism of B?, and g is an elementary map from B? onto D,. Up to permutation of
the variables, the map h has the form

Z > constz?,

w — const w”,

where ay, by € N; the map £ is such that §(B> N L.) ¢ B>N 1 and £(B*NL,) ¢
B*N I, where L. :={z =0}, Ly, :={w =0}, and I :== L, U L,; and, up to
permutation of the variables, the map g has the form

Z > constz%?,
w > const w’?,
where ay,b, € N. In this case the domains have the forms
Di = {(z,w) € C? : Cy|z*" + EqJw|*” <1},
D> ={(z,w) € C*: Co|z|*® + E>Jw*” < 1},
where C; >0, Ey > 0,C, > 0,and E, > 0.

We will now state two corollaries of Theorem 0.1, as mentioned previously.

COROLLARY 0.2. Let D and D, be bounded Reinhardt domains in C2. If there
exists a proper holomorphic map from Dy onto D,, then there also exists an ele-
mentary proper map from Dy onto D,.

COROLLARY 0.3. Let D be a bounded Reinhardt domain in C* that admits a
nonelementary, nonbiholomorphic, proper holomorphic self-map. Then either D
(up to permutation of the variables) has one of the forms (0.2) or (0.3) or D is a
bidisc.

On the other hand, if a bounded pseudoconvex Reinhardt domain D admits an
elementary, nonbiholomorphic, proper holomorphic self-map, then either D is a
bidisc or D (up to permutation of the variables) has one of the forms (0.2) or (0.3)
or the form

{(z,w)eC?: Alz]P|w|? <1, E < |z]” |w|? < C},

where A > 0,C > 0, E > 0, and p,q, p/,q’ are integers satisfying conditions
similar to those in (0.2) and (0.3). This is easy to see from the following observa-
tion: if the logarithmic diagram of D is unbounded, then the two asymptotes of its
convex boundary define the eigendirections of either the linear part of the affine
transformation of the logarithmic diagram corresponding to the elementary map
or the square of this operator.



38 A.V. IsaAEv & N. G. KRUZHILIN

Before proceeding, we would like to acknowledge that this work began while
the second author was visiting the Department of Mathematics at Australian Na-
tional University.

1. Preliminaries

As we pointed out in the Introduction, f can be extended to a proper holomor-
phic map (that we also denote by f) between the envelopes of holomorphy Dy, D,
of Dy, D,, respectively (see [Ke]). Moreover, it follows from [Ba] (see also [L])
that f extends holomorphically to a neighborhood of aD, \ I,wherel := L, UL,
with £ := {z = 0} and £,, := {w = O}. Since f is proper, f(E)D] \I) C
aD;. Denote by Jy the zero set of the Jacobian of f in aD, \ /1, and let Cy :=
@D DN D).

For every p = (z,w) € C2 let T( p) be the torus {(e"*z,ePw) e C? : a, B € R}
and let T be the standard torus T((1, 1)). We shall think of T as a group acting on
C2 Set

Sy :={pedDi\ I : f(T(p)) C T(f(p))}.

We assume that Sy does not contain three distinct tori that do not lie in a Levi-flat
Reinhardt hypersurface, since otherwise f is elementary by Lemma 4.4 of [S].
Hereafter we refer to this assumption as Condition ().

For j = 1,2 we denote by H; the union of all locally holomorphically homo-
geneous, connected, real-analytic hypersurfaces lying in Bﬁj \ 1. Hypersurfaces
making up H; are either strongly pseudoconvex or Levi-flat, and we denote by
H Pher, Hponseher and H™ the unions of all spherical (i.e., locally biholomorphi-
cally equivalent to the unit sphere in C?), strongly pseudoconvex nonspherical,
and Levi-flat hypersurfaces from H;, respectively, for j =1,2.

Note that locally holomorphically homogeneous, nonspherical, Reinhardt hy-
persurfaces do exist, so Lemma 3.3 of [S] stating otherwise is incorrect. Consider,
for example, the nonspherical tube hypersurface

T:={(z,w) eC?:Rew = (Rez)’, Rez > 0}.

The base of T is an affinely homogeneous curve (a complete list of affinely ho-
mogeneous curves in R? can be found in [NSa]) and hence T is holomorphically
homogeneous. The map IT: (z, w) — (e%, e") takes suitable portions of T to lo-
cally holomorphically homogeneous, nonspherical, Reinhardt hypersurfaces.

We will now show that, for nonelementary f, the set H{"P"" must be empty.

PRrOPOSITION 1.1.  Condition (x) implies that HM"PhT = ().

Proof. A Reinhardt hypersurface N C C?\ I is locally biholomorphically equiv-
alent to the tube hypersurface Ty := log(N) + iR?, whose base is the logarithmic
diagram log(N) C R? of N (cf. the foregoing example). If N is real analytic,
strongly pseudoconvex, nonspherical, and locally holomorphically homogeneous,
then infinitesimal CR-transformations of 7y form a three-dimensional Lie algebra
g1y (see e.g. [C]). Further, it follows from [Lo] that the curve log(XN) is locally



Proper Holomorphic Maps between Reinhardt Domains in C? 39

affinely homogeneous. Taking into account that translations in the imaginary di-
rections form a two-dimensional subalgebra h7, in gr,, we see that gr, is gen-
erated by bz, and the one-dimensional algebra of local affine transformations of
log(N). Hence b7, is anideal in g, , and itis straightforward to observe that there
are no other ideals in gr, . Let hy be the ideal corresponding to hr, in the Lie al-
gebra gy of all infinitesimal CR-transformations of N. The ideal hy consists of
infinitesimal transformations corresponding to the action of T on N.

Suppose that H[™Pr -£ ¢ and let M be a hypersurface contained in H"sPher,
Fix p e M\ (Cy U Jy). Clearly, f maps a neighborhood of p in M biholomorphi-
cally onto a hypersurface M’ C HI"PhT_ The homomorphism between gy and
gy induced by f maps by, into by. Hence we have f(T(p)) C T(f(p)) and
thus M\ (Cy U Jy) C Sy, which contradicts Condition (). Therefore, H{“’“SPher =
@ as required. O

Assume now that prher # (. Define S := Bﬁl \ (H, U I'). We will need the fol-
lowing general lemma (see also [LS] and [S]).

LEMMA 1.2.  We have S; C Sy.

Proof. Assume that f(T(p)) ¢ T(f(p)) and let p’ € T(p) be a point close to
p such that p" ¢ Cy U Jr and f(T(p’)) = f(T(p)) is not tangent to T(f(p”)).
Choose a neighborhood U of p’ in which f is biholomorphic and let V := f(U).
We may assume that f(T(q)) ¢ T(f(p’)) forallg e U. LetT := VNT(f(p’))
and let y C f(T(p’)) be the image of the orbit of p’ on T(p’) under the action
of a l-parameter subgroup of T such that y is not tangent to 7. Consider now the
setI" := Usey T(s). This is clearly a real-analytic hypersurface in 3D, which is,
moreover, locally holomorphically homogeneous because we have on it actions
of a two-dimensional torus and a 1-parameter group and the orbits of one action
are transversal to those of the other. Thus, f(p’) € H, and therefore p’ € H,.
This means that p € Hj, which contradicts the assumptions of the lemma. Hence

f(T(p)) C T(f(p)), as required. O

Let M be a connected component of H P Arguing as in a similar situation in
the proof of Proposition 3.2 of [S] and using Lemma 1.2, one sees that if M in-
tersects Sy then M C Sy, which contradicts Condition (). Thus, MnNS =0.
Hence, if there exists another hypersurface N lying in HP'f or in H[1® such that
MNN =@and M NN # @, then M N N C I. However, passing to the logarith-
mic diagram of Dy, we immediately see from its convexity that this is impossible.
As aresult, if HP' 2 () then dD;\ 1 is a connected spherical hypersurface. Fi-
nally, if H; = H™ then Lemma 1.2 implies that S; contains at most two distinct
tori.

To summarize, nonelementary proper holomorphic maps can exist only in the
following two cases: either H; = Hlﬂat and S consists of one or two distinct tori;
or 8151\ I is a connected spherical hypersurface. These cases are considered in
Sections 2 and 3, respectively. We remark that a related decomposition result in
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the context of biholomorphic maps of not necessarily bounded Reinhardt domains
in C? was obtained in Theorem 8 of [So].

2. Levi-Flat Case

In this section we assume that Hy = H| flat Note that in this case the logarithmic
diagram of D, is an unbounded polygon with either one or two vertices, depend-
ing on the number (one or two, respectively) of tori in ).

THE CASE OF A SINGLE Torus. Let fi, f> be the components of f and assume
first that S; is a single torus T;. Let log(bl) be the logarithmic diagram of ﬁl
The set H; can be represented as the union of two distinct Levi-flat hypersur-
faces Lll, L2 Whose boundaries in C? \ I coincide with T;. Furthermore, since D1
is bounded, log(Dl) is a sector lying in the interior of a right angle of the form
{(x,y) €eR?: x < x9,y < yo} for some (x¢, yo) € R% We can describe this sector
as follows:

log(ﬁl) ={(x,y) eR?:ax — y>—InC, x +diy < —In A},

where a; > 0,d; <0, a;d; > —1,and A,C > 0. Note that 151 can contain the
origin only if a; = d; = 0.

Each of L} and L% is foliated by complex curves, and every such curve inter-
sects Ty along a real-analytic curve. Hence, we obtain two distinct families of
curves Clj (j=12)onTy. If ¢;: R2 — T is the covering map, then the inverse
images of C 1] under ¥ are two distinct families of parallel lines [,{ inR2, j=12.

For p € T\ Jy consider the torus T, := T(f(p)). By Lemma 1.2 we obtain
f(Ty) € T, and T, ¢ I. Clearly, if U is a small neighborhood of p, then in a
neighborhood of f(p) the torus T lies in the boundaries of two distinct Levi-flat
hypersurfaces f (L1 NU)and f (L2 NU). Hence T, entirely lies in the boundaries
of two distinct Levi-flat hypersurfaces L2, J = 1,2. The hypersurfaces L’ pro-
duce two distinct families of curves C5 on T, and f(C{) C Cj, j = 1,2. Each C’
is invariant under the action of T on T, and thus, if ¥ : R? — T, is the covering
map, then the inverse images of C; under \02 are two distinct families of parallel
lines £} in R?, j = 1,2. Further, if f = (fi, f2): R? — R? is a real-analytic cov-
ering map for f|r,: Ty — T, then f(L]) C £} for j =1,2.

Let g be a linear transformation of R? mapping £} and £2 into the families of
horizontal and vertical lines, respectively, and let & be a similar transformation for
the families £, j = 1,2. Consider f=hofog . Clearly, f= (fl, f>)is a
real-analytic map such that fl is constant on every vertical line and fz is constant
on every horizontal line in R?. Hence fl is a function of x and f2 is a function of
y alone. We choose g to be the linear transformation with the matrix

aq -1
1 d )

and we let the matrix of / be
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(&)

¢y dy )’

Since ho f = f o g, it follows that
ar fi(x,y) + b2 fo(x,y) = filarx — y),
2 filx,y) +da fo(x,y) = falx +dvy).

This implies that there exist holomorphic functions of one variable ' and G such
that, in a neighborhood U of p € T, we have

b —1
1a2 22 = F(z"w™),

(2.1
157 = Gaw™),

We shall consider the case a;,d; € Q first. Let a; = a|/a;, where a; > 0 and

ay > 0 are relatlvely prime integers. For a fixed &y # 0 consider the curve P;"'
w1th the equation z1w™% = «;. The logarithmic diagram log(P{") of P/ is a
straight line parallel to one side of log(Dl) We choose a4 so that P"' N DiNU #=
@. The intersection P{"' N Dy is biholomorphically equ1va1ent to elther adisc or a
punctured disc, and the equivalence is given by & = (uigf ’ ,vigf! 1), where ¢ is
the variable in a disc of a suitable radius and 1¢1v;% = «;. We note that PN D,
can be equivalent to a disc only if a; = 0.

We have £ f}> = ay := F(a}/*) on an open subset of U N P in which f]“
and f2 are defined as single-valued holomorphic functions. Hence f (PN Dy)
is contained in P5? N D, where P5” is obtained by the analytic continuation of
a connected component of the analytlc set defined by the equation z?w?? = a,
near f(p). Since P{"' N D, is closed, so is FPN D)); therefore, fpH ND) =
P3N D, and ay, b, are rationally dependent. Changing the function F if neces-

sary, we can assume either that a; € Q, a; > 0, and b, = —1 or that a; = 1 and
by = 0. Clearly, the restriction of f to P;"' N Dy is proper. Furthermore, Py N D,
is equivalent to either a disc or a punctured disc. If b, = —1 and a, = a} /aj for

some relatively prime integers a; > 0 and aj > 0, then this equivalence has the
form &, — ( ,uzgzél , V285 é) where ¢; is the variable in a disc of a suitable radius
and where ,u 2v; 54 = oz2 If a; = 1 and b, = 0, the equivalence has the form

&2 = (02, 82).
Assume first that, for some «; such that P{"' N DN U # 0, the intersections

PN Dy and Py N D2 are equivalent to punctured discs r; A and ra A, respectively
(we denote by A and A the unit disc and the punctured unit disc, respectively). A

proper holomorphic map between 1A and r, A has the form ¢, = const ¢f, where
k is a positive integer. Hence, from the second equation in (2.1), we obtain

const ¢ = G(const{{)

for all ¢; in an open subset of 7;A and some nonzero o, i € R. This means that
G (t) = const t* for some 7 € R.



42 A.V. IsaAEv & N. G. KRUZHILIN

Assume next that, for some «; such that Pf‘ 'nD 1N U # @, the intersections
PI“ N ﬁl and P;’z N bz are equivalent to discs 71 A and r, A, respectively (in this
case, a; = 0 and a;’ = 1). A proper holomorphic map between 1A and r, A has
the form ¢, = r, B(¢1/r1), where B is a Blaschke product in the unit disc. Hence,
from the second equation in (2.1), we obtain

const B(¢)" = G(const*)

for all ¢ in an open subset of the unit disc A and some nonzero 7, u € R. This
means that G () = const B(const )7 for some o, T € R.

In a similar way, considering the curves Q'f ' and ng with the equations
4w = B (where d; = d]/d] for some relatively prime integers d| < 0
and d' > 0) and z°2w® = B, := G(B}/*), respectively, we obtain that F(r) =
const ¢° if Q{B "N D, and Qf >N D, are equivalent to punctured discs and F(r) =
const B(const t7)” for some Blaschke product B in the unit disc if Qf‘ N D, and

52 ND, are equivalent to discs (in the second case d; = Oand d| =1),n, p € R.

If F(t) = constt” and G(¢) = constt?, then it follows from (2.1) that f is
elementary.

Let F(t) = constt” and G(t) = const B(const#?)*, where B is a Blaschke
product in the unit disc with a zero away from 0. In this case, a; = 0 and a;’ = 1.
It now follows from (2.1) that f has either the form

fi(z,w) = constz*w’B(A% 71 w), 22)
folz,w) = const w¢, .

where a, b, d € 7 and B is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, or the form

fi(z, w) = const z°w?B(A% 74 w),
2.3
Fr(z,w) = constz°w?B (AN 74wy, 23)

where a,b,c,d € Z, B is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, B is either a Blaschke product in the unit disc with the same
zeroes as B or a constant, and a may be nonzero only if B is nonconstant. Forms
(2.2) and (2.3) correspond to the cases a; = 0 and a, # 0, respectively.

‘We shall now show that form (2.3) can be simplified. Assume first that B isnon-
constant. Then D, contains the origin and f~!(0) contains the intersection with
D, of a curve of the form z%{ w? = const. Hence £71(0) is not compact, which
contradicts the assumption that f is proper. Thus, B = const and therefore a =
0. So (2.3), in fact, differs from (2.2) only by permutation of the components of
the maps.

We shall now study form (2.2) of proper maps and the domains Dy, D, in more
detail. For every «; such that || > 1/C we have f(P;"' N D)) = Py N D,,
where o, := F(ay) and where each of the curves P N D; and Py* N D, is
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equivalent to either a disc or a punctured disc. However, B has a zero away from
0 and therefore Pzth N D, is, in fact, equivalent to a disc; hence so is Pf” N Dy.
This shows that either

D= {(z,w) eC?: A4 |z|% w4 < 1,0 < |w| < C} (2.4)
or
D) = {(z,w)eC?: |z| < /A, |w| < C}

(in the second case, we have d{ = 0 and d|’ = 1). Moreover, f of the form (2.2)
is a proper map from D, onto a bounded Reinhardt domain only if d > 0 and
ad] — bd]' <0.

It is stralghtforward to observe that there exists no proper subdomain of Dy
mapped properly by f onto a bounded Reinhardt domain and whose envelope
of holomorphy coincides with ﬁl. Thus, D = 131 and hence D, = ﬁz. If (2.4)
holds then o

D> ={(z,w)eC?: Alz|%|w¥ < 1,0 < |w| < C}

for some relatively prime integers c?l’ ,Jl”, with cil’ < 0 and cil” > 0, such that
d//d! = (ad] — bd]')/(dd]') and A,C > 0. If D; is the bidisc then f can be
proper only if b = 0, and in this case D is also a bidisc. We have thus obtained
(i) of Theorem 0.1.

The case F(t) = const B(const t7)” and G (¢) = const t7, where B is a Blaschke
product in the unit disc with a zero away from 0, leads to the same description of
f and Dy, D, up to permutation of the components of f and the variables.

Let F(t) = const By(const t7)? and G (t) = const B,(const t°)?, where B;, B,
are Blaschke products in the unit disc with zeroes away from 0. In this case, a; =
d{ = 0and a; = d{ = 1. From (2.1) we see that either: f has the form

fi(z,w) = constz*w”B;(Az) By (w/C),

N 2.5)
fa(z, w) = const w?B, (w/C),

where a,b,d € 7, B 1s 1§2 are nonconstant Blaschke products in the unit disc that
are nonvamshlng at 0, B, is either a Blaschke product in the unit disc with the
same zeroes as 32 or a constant, and b can be nonzero only if Bl is nonconstant;
or f has the form

fi(z,w) = const z*w”B,(Az) B;(w/C),

5 R (2.6)
f2(z,w) = const z°wB1(Az) B2 (w/C),

where a,b,c,d € 7Z, é], éz are nonconstant Blaschke products in the unit disc
that are nonvamshlng at 0, B, is either a Blaschke product in the unit disc with
the same zeroes as Bz or a constant, 82 is either a Blaschke product in the unit
disc with the same zeroes as 31 or a constant, a can be nonzero only if 31 is non-
constant, and d can be nonzero only if Bz is nonconstant. Forms (2.5) and (2.6)
correspond to the cases a, = 0 and a, # 0, respectively.
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We shall now show that forms (2 5) and (2.6) can be simpliﬁed Assume that
in (2.5) 31 is nonconstant. Then D2 contains the origin and f 1(0) contains the
intersection of a complex line of the form w = const with Dl Hence f~ (0) is
not compact, which contradicts the assumption that f is proper. Therefore B
const and hence b = 0. A similar argument shows that in (2.6) we have B,
const and éz = const, so a = d = 0. Thus (2.5) reduces to

fi(z, w) = constz°By(Az),
f>(z,w) = constw'B(w/C),

where a,d € Z,a > 0,d > 0, El, éz are nonconstant Blaschke products in the
unit disc that are nonvanishing at 0, and (2.6) reduces to (2.7) up to permutation
of the components of the maps.
Furthermore, repeating the argument preceding formula (2.4) shows that, for
every ozl,,Bl with |o;| > 1/C and |B;| < 1/A, the intersections Pl"‘l N ﬁl and
‘3 "N D are equivalent to discs and therefore

Dy ={(z,w)eC?: |z| < l/A, |w| < C}.

2.7)

Again, there exists no proper subdomain of D, mapped properly by f onto a
bounded Reinhardt domain and whose envelope of holomorphy coincides with
ﬁl. Thus, D, = ﬁl and hence D, = ﬁz. Therefore, D; and D, are bidiscs and
we have obtained (iii) of Theorem 0.1.

Assume now that ay,d; ¢ Q. For a suitable «; # 0, consider the curve PI“ ' ob-
tained by the analytic continuation of the curve defined by the equation z“'w 1=
op in U. As before we choose «; to ensure that PO‘l N Dl N U # (. The inter-
section P"' N Dy is not closed in D; and is blholomorphlcally equivalent to a
half- plane the equivalence is given by o;: ¢ — (exp[&1 + ui1],explai¢ + vil),
where ¢ is the variable in a suitable half-plane R; := {¢; € C : Re¢; < s} and
expluia; — vi] = ay.

As before, we observe that (P N Dy) lies in P> N D, where P32 for o, :=
F(«)) is obtained by the analytic continuation of a connected component of the
set given by z2w?? = a, near f(p). If a, and bz were ratlonally dependent
then the intersection P, N D2 would be closed in D2 Hence f (P"‘2 N Dz)
would contain the closure of P"' N D, in Dy, which is I[P N D, where [P
is the Levi-flat hypersurface W1th the equation |z|“|w|™! = |o|. Therefore, a,
and b, are in fact rationally independent, and P, N D, is biholomorphically
equivalent to either a half-plane or a strip with the equivalence map o;: ¢ >
(exp[—b2¢2 + 2], explaads + val), where ¢ is the variable in either a suitable
half-plane R, := {¢{, € C : Re{, < s3} or a suitable strip R} := {{, € C :
sy < Re ¢, < s,} and where exp[poas + vabs] = ap. Changing the function F
if necessary, we can assume that in the first case we have a, > 0 and b, < 0.

It is now straightforward to show that f(P{"" N D;) = P5*> N D, and that the
restriction of f to P{"' N Dy is proper. This restriction gives rise to a proper holo-
morphic map ¢ =0, s f o oy either between R; and R; or between R and R).
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We shall now show that ¢ is one-to-one. Assume the contrary and let /; be the line
given by the equation Re ¢, = s1. Since ¢ is not one-to-one, ¢ ~'(c0) contains a
point & € [;. Observe that al_l(Pf‘l N (ab, \ 1)) = [; and therefore 0(§) € abl\ 1.
In particular, f is defined near o1(§) and f(01(§)) € abz. On the other hand, con-
sider in either R, or R} a sequence {&,} converging to co such that the sequence
{o2(&,)} converges to a point in 152. Let {£,} be a sequence in R; converging to
& such that ¢(§,) = &, for all n. Then {f(01(£;))} converges to a point in D,
which is impossible. Hence ¢ is one-to-one. This argument also shows that either
o(ly) = I or ¢(l}) = 1}, where [, and [} are the lines given by the equations
Re ¢, = s> and Re ¢, = s5, respectively. It follows that P,* N D, is in fact equiv-
alent to R, and that ¢(l;) = [, and ¢ (1) = ¢ + g forr > 0 and g €iR.
Then, from the second equation in (2.1), we obtain

const exp[o¢;] = G(constexp[&r])

for all ¢ in an open subset of R; and some nonzero o, u € R. Hence G(t) =
const ¢t* for some T € R. Similarly, F(#) = constz” for some p € R. It thus
follows from (2.1) that f is elementary.

We shall now assume that a; ¢ Q and d; € Q. Repeating the preceding argu-
ments, we obtain that G(t) = constt® for some t € R and that either F(t) =
const t” or F(t) = const B(const 7)? for some 1, p € R, where B is a Blaschke
product in the unit disc with a zero away from 0. In the first case we can show
(similarly to our previous demonstration) that f is elementary. In the second case
it is easy to see using (2.1) that f is necessarily a multivalued map. This shows
that the formula for F' does not actually contain a Blaschke product with a zero
away from 0 and hence f is elementary. Likewise, if @) € Q and d; ¢ Q then f is
elementary.

THE CASE oF Two ToRrl. Assume now that S; is a union of two tori. In this case
log(Dy) has the form

log(bl) ={(x,y)eR*:aix+byy > —InC, cix +diy < —In A,
ux + vy < —InE}

for some u;, vy, wherea; > 0,b; <0,c; >0,d; <0,bic; <ajd;,and A,C, E >
0. Note that u; and v; are not arbitrary: the line u;x 4+ v;y = 0 must intersect the
other two “to the left” of their intersection point.

The logarithmic diagram log(ﬁl) has two vertices, and we shall first concen-
trate on the one made by the lines ajx + b1y = —InC and u;x + v;y = —InE.
Let T be the torus in S; corresponding to this vertex. As before, we can show that
there exist holomorphic functions of one variable F' and G such that, in a neigh-
borhood U of p € Ty,

" 2b2 = F(z"w"),

(2.8)
[ =G w™)

for some a5, b,,u;, v, €R.
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Assume first that both pairs a;, b; and u;, v; are rationally dependent. As be-
fore, we obtain that either G(¢) = const t* or G(¢t) = const B(const %)%, where
B is a Blaschke product in the unit disc with a zero away from 0 and where o, 7 €
R (in the second case, either a; = 0 or b; = 0). Similarly, considering the inter-
sections Qf‘ N ﬁl, where Qf‘ is the curve with the equation z"'w’' = B, we
see that F(¢) = const t” for some p € R. For the proof one must note that every
connected component of Qf "N Dy is biholomorphically equivalent to an annulus
with nonzero inner radius and that every proper map between two such annuli has
the form ¢ — const ¢¥, where k € Z \ {0}.

For G(¢) = constt® it follows from (2.8) that f is elementary, and we shall
therefore assume that G(¢) = const B(const t?)*, where B is a Blaschke product
in the unit disc with a zero away from 0 (in this case, either a; = 0 or b; = 0).
Now (2.8) implies that, up to permutation of its components, f has either the form

filz,w) = constzw’B(E"/"z " w"), (2.9)
f(z, w) = const w?, '

where a,b,d € 7 and B is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, or the form

fi(z,w) = constz*w?B(E"/V1 74w,
f>(z, w) = const z,

where a,b,c € 7Z and B is a nonconstant Blaschke product in the unit disc that
is nonvanishing at 0. These forms correspond to the cases a; = 0 and b; = O,
respectively. In the first case u; > 0, and u; > 0 and v] are relatively prime in-
tegers such that vi/u; = v{/u;. In the second case v; > 0, and uj,v] > O are
relatively prime integers such that u; /v, = u|/v]. The preceding forms are ob-
tained from one another by permutation of the variables, and we shall assume that
(2.9) holds.

For a; = 0, the image of Dl under a map of the form (2.9) is a Reinhardt do-
main only if ¢; = 0, and we obtain

Dy = {(z,w) e C: E“/M |z " <1, AV < jw| < C7V0).

A map of the form (2.9) is a proper map from D, onto a Reinhardt domain only
if d # 0 and a > 0. As before, there exists no proper subdomain of D, mapped
properly by f onto a bounded Reinhardt domain and whose envelope of holomor-
phy coincides with ﬁl. Thus, D| = 151 and hence D, = 132. Then we have

Dy = {(z,w)eC2: Elz|"w|" <1, A < |w| < C}

for some relatively prime integers #; and v, where &; > 0 and such that v{/ii; =
(avy — bu})/(du) and A,C, E > 0. We have thus obtained (ii) of Theorem 0.1.

Assume now that a;, b; are rationally dependent and that u, v| are rationally in-
dependent. Then, as before, either G(¢) = const ¢* or G(¢) = const B(constt?)",
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where B is a Blaschke product in the unit disc with a zero away from 0 and where
0,7 € R. Considering the intersections Qf N 51, where Q1] is the curve with
the equation z“'w"' = B, we see that F(¢) = const ¢” for some p € R. For the
proof one must note that every connected component of Q{g "N Dyis equivalentto a
strip, with the equivalence map of the form ¢ +— (exp[—v ¢ + 1], explui¢ +vi])
where exp[uu; + vivi] = Bi, and every proper map between two strips has the
form ¢ +— r¢ + g, where r # 0 and g € iR. If G(¢) = const " for some 7 €
R, then it follows from (2.8) that f is elementary. If G(¢#) = const B(const¢?)°,
where B is a Blaschke product in the unit disc with a zero away from 0, then it
is easy to see from (2.8) that f is necessarily a multivalued map. This shows that
the formula for G does not actually contain a Blaschke product with a zero away
from 0, so f is elementary.

If a; and b, are rationally independent, we obtain F(¢) = const#” and G(¢) =
const t* with p, T € R. In this case, (2.8) shows that f is elementary.

3. Spherical Case

Assume now that U, := 8D1\ I is a connected, real-analytic, spherical hypersur-
face. Consider the logarlthmlc diagram log(Dl) of D1 and the tube domain 77 C
C? with base log(D;) C R that is, T; = log(D;) + iR2. The domain 7} covers
D, \ I by means of the map IT: (z,w) > (€% e"). Clearly, for every p € ﬁl\ 1,
the fiber I[T7!(p) is preserved by the abelian group G of translations of C? of the
form (z,w) — (z 4 i2zn,w + i27wm), n,m € Z. The group G has two genera-
tors: (z,w) — (z +i2m,w) and (z,w) +— (z, w + i2w). We denote these maps
by A® and A”, respectively.

Since L; := 9T is a closed spherical tube hypersurface, it follows from [DaY ]
that there exists an affine transformation F; of the form

<Z)|—>A(Z>+b, G.1)
w w

where A € GL,(R) and b € R?, that maps L; onto one of the four hypersurfaces
defined by the following equations

(1) Rew = (Rez)?

(2) Rew =-exp[2Rez],

(3) cos(Rew) =exp[Rez], —n/2 <Rew < /2,

(4) exp[2Rez] +exp[2Rew] = 1.

(3.2)

Let Tl = Fi(Ty). Clearly, Tl covers D1 \ I by means of themap I} :=TIlo F
and for each p € Dl\ I the group Gy := FioGo F|~ ! preserves the fiber Ty (p)

Further, for each hypersurface listed in (3.2) one can explicitly write a corre-
sponding locally biholomorphic map onto a portion of the unit sphere S as follows
(see [DaY]):
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2

Z Z

1 z= —, W w— —,
V2 2

2) z+ €5, w > w,
; 3.3)

3) z|—>exp[z+zlwi|, w — expliw],
Z w 1
4 z+ ¢ , wr—)—e + .
ew_l ew_l

In formulas (3.3), S* punctured at a point is realized as the hypersurface with
the equation Re w = |z|% The deleted point in this realization is at infinity, and
we denote it by poo.

Let L, := 9T, and let 6, be the map from list (3.3) corresponding to L. In case
€))] I:l is mapped by 6, onto s3 \ {Poo}, in cases (2) and (3) onto S3 \{ Pt UL,
and in case (4) onto S> \ ({poo} U L, U{w = 1}). We also point out that in case (1)
the map 6, takes Ty onto the unit ball B2 realized as {(z, w) € C? : Rew > |z|?},
in cases (2) and (3) onto B2\ £, and in case (4) onto BZ\ (L, U {w=1}).

For h € Gy, consider now the locally defined map ¢ o /1 o 9 from S3 into it-
self. It extends to an automorphism h of B2 and hence G, givesrise to a subgroup
G of the group Aut(B?) of holomorphic automorphisms of B2 The group G is
clearly abelian and has at most two generators.

Formulas (3.3) yield the following descriptions of transformations in the group
él in each of the four cases (where the vector («, oy ) varies over a lattice in R2):

(1) z+ z+iay, w > —2i(x1z+w+oc12+ia2,

(2) zr> ey, W W+ i,

(3) z> ety w > e* 2w, (3.4)
2eiiz e+ hw+1—e@

@ e (e + 1)

, . , W , . .

1+e2 4 (1 —e2)w I+e2+ (1 —-e*)w

Next, since f is locally biholomorphic at the points of U, \ Jy, the set H, con-
tains the real-analytic spherical hypersurface U, := f(U;\ (Cy U Jy)). Let T, be
the covering tube domain for D, \ I and let L, := ITI7}(U>) be the portion of
aT, covering U,. By [DaY], there is an affine transformation F, of the form (3.1)
mapping L, onto an open tube subset of one of hypersurfaces (3. 2) Let L, :=
F>(L;). Clearly, L2 covers U, by means of the map I, :=Ilo F2 , and for every
p € U, the group G, := F,0G o preserves the fiber IT; (p) Let 6, be the
map from list (3.3) corresponding to Lz As for the group Gl, from every h € G,
we can (using the map 6,) produce h € Aut(B?); therefore, G, gives rise to an
abelian subgroup G, C Aut(B?) with at most two generators. In each of the four
cases, Gz is described by formulas (3.4).

The map f induces a homomorphism from G 1 into éz as follows. We fix p; €
Ui\ (Cr U Jy) and let py := f(p1). Clearly, p, € U,. For g; € G; we choose
pi. Pl € Hl_l(pl) such that g;(p]) = py (note that g, is fully determined by this
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condition). Now fix a curve y; C I1} (U1\(Cf U Jy)) from pj to p{ and let y; :=
I1y(y1). Itis evident that y; is a closed curve in U\ (Cy U Jy) passing through p;
and that y, := f(y)) is a closed curve in [%; passing through p». For a fixed p) €
Iy (pz) we now consider a curve y; C L2 originating at pj such that [Ty (y,) =
v2. Let p € 1'[2 ( p2) be the other endpoint of 7, and let g, € G, be the map such
that g,(p5) = p5. The correspondence g; > g, defines a map from G, into G»
that induces a map &: G1 — G2 with ®(g;) = g, (we show in the next para-
graph that @ is indeed a well-defined map).

Denote by 1 an analytic element of 6, ! defined near p; := 60;( pi) such that
¥(p1) = py, and denote by 7 an analytic element of 15 ! defined near p5 such that
(p2) = pj. Consider the map 6, o w o f o I} o ¥y mapping biholomorphically
a neighborhood of p; in S3 onto a neighborhood of p, := 0,(p}) in S>. By the
Poincaré theorem this map extends to an automorphism ¢ of B2, and one immedi-
ately observes that ®(g;) = @ o g1o@ ' forall g, € G. This shows, in particular,
that ® is independent of the choice of the curves y; and is single-valued. Clearly,
@ is a homomorphism.

We now require the following result.

LEMMA 3.1. ®(G)) is a finite-index subgroup of Gs.

Proof. Since f isproper, f ~!( p,) consists of finitely many points—say, p1,¢', ...,
qk IS Ul, k > 0. Let Fll,..., Flk be curves in U; \ (Cy U Jy) joining respectively
q',...,q"* with p;. Clearly, T'J := f(I'/), j = 1,...,k, are closed curves in U,
passing through p,. As before each curve sz gives rise to an element g5 of G,
and, consequently, to an element & of Ga.

Fix g2 € G, and let p) := g2(p5). Let I, C L, be a curve from pj to pS and
letI'p ;= Hz(f‘g). Clearly, I'; is a closed curve in U, passing through p,. Consider
the curve I't C U\ (Cy U Jy) originating at p; such that f(I'1) = I'.

If Ty is closed, it gives rise to an element g; of él and so we obviously have
g2 = ®(g1). Hence g, € ®(G) in this case.

Assume now that I'; is not closed, and let ¢* (1 < s < k) be its other endpoint.
Let g; be the element of G| corresponding to the closed curve obtained by joining
'} and T'}’. Then we clearly have ®(g,) = g, + &5 and hence g, € g; +®(Gy).

We have thus shown that, for g, € Gz, we have either g, € CI>(G1) or &2 €
-85+ <I>(G1) for some 1 < s < k. Therefore, <I>(G1) is of finite index in G2

The proof of the lemma is complete. O

The following result imposes constraints on the possible forms of L; and L.

PROPOSITION 3.2.  We have L, C Ly, and the map f is elementary unless L is
either hypersurface (2) or hypersurface (4) of (3.2).

Proof. We begin by provmg the first assertion. Assume that L, ¢ L;. Then we
shall show that the group G, either cannot be con]ugate in Aut(B?) to a subgroup
of G, or can only be conjugate to a subgroup of G, of infinite index. It will then
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follow from Lemma 3.1 that there exists no proper holomorphic map from D, onto
D, contradicting our assumptions. We shall consider all possibilities for G, and
G, (see (3.4)).

Assume that L, is hypersurface (1) and that L, lies in hypersurface (2). In this
case, the only fixed point of each of G, and G, in B? is the point p., € S* at in-
finity. If g o Gl o7l C Gz for some ¢ € Aut(B?), then ?©(Po) = Poo (18-, @ 18
affine). The general form of affine automorphisms of B is

2> ez 4 ¢,
_ (3.5)
w > Aw+ 200z + ¢ +in,

where L > 0, ¢ € C, and #, u € R. It is now straightforward to show that él can-
not be conjugate to a subgroup of G by means of an automorphism of the form
(3.5). The same argument works for the case when Liis hypersurface (2) and L,
lies in hypersurface (1).

Also, if L1 is one of hypersurfaces (1) or (2) and if Lz lles in hypersurface 3),
then the group G cannot be conjugate to a subgroup of G because G has only
one fixed point in S” 3 (the point p.,) whereas G2 has two (0 and py).

Let L, be hypersurface (3) and assume that L, lies in one of hypersurfaces (1)
or (2). Then G1 has two fixed points in §* (0 and p,.) and the only fixed point of
Gz IS Peo. Itis clear from formula (3.4) that éz contains nontrivial elements fixing
a point in S° other than po only if L, lies in hypersurface (2); for such elements
o, = 0. However, a subgroup of G containing only elements satisfying this con-
dition has infinite index in éz. Hence, él cannot be conjugate to a finite-index
subgroup of G».

Next, if L; is one of hypersurfaces (1), (2), or (3) and if L, lies in hypersurface
(4), then the group G cannot be conjugate to a subgroup of G because G does
not have any fixed points in B2 whereas G, fixes the point (0,1) € B>

Finally, let L, be hypersurface (4) and assume that L, lies in one of hypersur-
faces (1), (2), or (3). Then G, has a fixed point in B? and G, fixes no point in B2
It is clear from formula (3.4) that G, contains nontrivial elements fixing a point in
32 only if L, lies in either hypersurface (2) or hypersurface (3); for such elements

= 0. However, a subgroup of G» contalmng only elements satisfying this con-
d1t10n has infinite index in G». Hence, G, cannot be conjugate to a finite-index
subgroup of G>.

We thus have shown that I:z C 1:1. We shall now consider the two possibilities
for L. In what follows we denote the map 6, = 0, by 6.

Let L; be hypersurface (1) and let A“ =00 F oA ok~ 'op~! and A =
OoFjoAo F_1 00 be generators ofG , j =1,2. Since <I>(G1) C Gz, 1t fol-
lows that

go Ao = (A5 o (A5)®,
po AT opT = (A" o (A])"

for some a;,ay, by, by € Z such that a1by — ar by # 0.
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Consider the maps A := 6" ogpoAjop ' ofand A := 0 opo AV o' 08;
they generate a subgroup of the group G,. Let F be the linear map such that
Fo;\ziOFflezandFoj\“l’OFflew.

We shall now introduce an intermediate domain D through which the map f
can be factored. Let T := F(T)) and D := I1(T). Clearly, D is a Reinhardt do-
main. We define a biholomorphic map f from 151\ I onto D as follows: for p €
Di\ I consider a point p’ € ;' (p) and let f(p) := (TTo F o8~ 0 g 0 0)(p’).
By the construction of F, this definition is independent of the choice of p’. It is
straightforward to prove that f is a biholomorphic map between D, \ I and D.
The domain D is Kobayashi-hyperbolic as a biholomorphic image of the bounded
domain D, \WA

Itis shown in [Kr] that a biholomorphic map between two hyperbolic Reinhardt
domains in C" can be represented as the composition of their automorphisms and
an elementary biholomorphic map between them. Since D, \ I and D do not inter-
sect 1, it follows from [ Kr] that all automorphisms of these domain are elementary.
Therefore, f is an elementary map.

Further, Fz’1 = G o F, where G is an affine transformation of the form (3.1)

with L a by
- aj b2 '

Hence V := I1(F(L,)) is mapped onto U, by an elementary map g of the form
z > const z4w?,

w > constzZ w2,

It is straightforward to verify that f = gof onf~'(V) \ (Cy U Jy), and therefore
f is an elementary map.

Assume now that L is hypersurface (3). Then each of G, and G, has exactly
two fixed points: 0 and p,,. We thus have either that ¢(0) = 0 and ¢(p) =
Poo Or that 9(0) = po, and ¢(ps) = 0. Hence ¢ preserves B> N £, and so can
be lifted to a holomorphic automorphism of 7}; that is, there exists a map ¢ €
Aut(T}) such that 6 o ¢ = ¢ o 6. The map ¢ is also defined on L; and can be cho-
sen to satisfy the condition ¢(p{) = p,, which yields ¢ o G; 0 ¢! C G,. Hence,
as before, we can construct an intermediate hyperbolic domain D, a biholomor-
phic map f from 151\ I onto D (that, as before, turns out to be elementary), and
an elementary map g from a portion of dD into U, such that f = gof on a portion
of U;. Thus, we again obtain that f is elementary.

The proof of the proposition is complete. UJ

REMARK 3.3.  The argument in the last paragraph of the proof of Proposition 3.2
shows that f can be represented as a composition of two elementary maps f and
g (as described there) whenever the corresponding automorphism ¢ of B? can be
lifted to an automorphism of the tube domain 7.

It now remains to consider the cases when 1:2 C 1:1 and f,l is either hypersurface
(2) or hypersurface (4) of (3.2). As in the proof of Proposition 3.2, we denote the
map 6, = 9, by 6.
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Case I

Let Zl be hypersurface (2). Then the only fixed point of each of él and Gz in B2
iS poo and so ¢ has the form (3.5). Assume that the group G contains an element
&1 changing the z-coordinate. Then the only complex line preserved by g; is £,
(see (3.4)). The map ¢ o g; o ¢! also preserves a unique complex line, and it fol-
lows from (3.4) that this line is £,. Therefore, ¢ preserves L, (i.e., we have { =
0). Arguing as in the last paragraph of the proof of Proposition 3.2, we obtain that
f in this case is elementary.

Assume now that none of the elements of Gl changes the z-coordinate—that is,
assume that Gl consists of transformations of the form

>z,
. . (3.6)
wr— w4+ ien+ifym, n,mez,
for some a1, 81 > 0 with oy + B; > 0. If in formula (3.5) we have ¢ = 0, then
¢ preserves L, and we again obtain that f is elementary. Therefore, we shall as-
sume that { # 0. .
We shall show first of all that the group G| has only one generator.

ProposiTION 3.4.  The group G consists of transformations of the form

i 2,

. 3.7
wH— w+iagn, nez,

for some oy > 0.

Proof. Lety := £.NS%and y' := ¢~ '(y). Clearly, y' = {z = —1/Ae "¢} N
S3. Let y, == {z = Ing(—1/re™"¢) + i27k} N L, (k € Z) be the curves in
L, forming the set 6~'(y’) (here Iny denotes the principal branch of the loga-
rithm). For some ko € Z and ¢ € R and for sufficiently small ¢ > 0, the cir-
cle 7 := {lz — (Ing(=1/re™¢) + i27ko)| = e} N Ly N {Imw = c} lies in
L\ (IT;(Cy U Jp) Ugez v4)- Recall that near pj € L\ T1;'(Cy U J;) we have
[lyonogot = folly,

where 7 is some analytic element of 6!, The map on the right-hand side is well-
defined everywhere on L1, so the analytic continuation of the map on the left-hand
side along y produces a single-valued map. Clearly, after the analytic continua-
tion of 1 o ¢ o 6 along y, the value of this map changes by (£2x,0). Hence G,

contains the map A® (defined at the beginning of this section). Transformations in
G, have the form

(2) = ()Gl momem o
w w (%] :32

for some linearly independent vectors (a5, 2), (85, B2) € R% Since the map A*
is contained in G,, for some ng, m( € Z it follows that

ayng + Bymy = 2,
axng + Bamg = 0.

Hence «; and B, are rationally dependent.
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Next, a straightforward calculation shows that the subgroup ¢ o G o ¢! of G
consists of the maps

iz,

- - (3.9
w w4 iMoan+iABim, n,me.

Taking into account that the general form of an element of G, is
z > exp(iayn + ifym)z,
w > w4 ioyn +if,m, n,mez,

we see that o) and B; are rationally dependent; therefore, transformations from Gl
have the form (3.7) for some oy > 0 as required. O

Let D := {(z,w) € C? : |w| > exp[|z|2]} We shall now construct a locally bi-
holomorphic map h from Dl\ Ionto D\ I = D\ L. Obviously, the tube do-
main over the logarithmic diagram of D is precisely T} and 50 T covers D\ [ by
means of the map IT. We now use the map 6 to construct a subgroup GC Aut(B )
from the group G acting on T (in a manner similar to the way the groups G, G
were derived from Gy, G,). Clearly, G consists of the transformations

i3z,

W w+i2nn, nez.
Consider the following automorphism of B?:

Q1: 72 60z, W (Sgw,

where 8¢ := /2m/ap. From (3.7) we obtain ¢, o Gio gal_l c G. For pE bl\ 1
consider a point p’ € l'[l_l(p), let g € 67'((¢1 0 0)(p’)), and set h(p) := T1(q).
Clearly, this definition is independent of the choices of p’ and ¢, and the map so de-
fined is locally biholomorphic. Moreover, since ¢; preserves L., we can show that
h is elementary by arguing as in the last paragraph of the proof of Proposition 3.2.
We shall now pause to describe the general form of a bounded domain whose
complement to / can be mapped onto D \ I by means of an elementary map and
to describe such elementary maps. For ay,by,c|,di € Z,a; > 0,b; > 0,¢; > 0,
and d; > O such that a;d; — b;c; > 0 and for Cy, E; > 0, consider the domain

R(ay, by, c1,d;,Cy, Ey)
= {(z,w) € C*: Cylz|"|w|™" > exp[Ei|z[**|w| "], w # O}

The general form of an elementary map from R(ay,by,c1,d;, Cy, Ey) \ I onto
D\ Iis
z e™/Ciz%w ™,

w > e/ E 7w,
where 11,7, € R. We observe that R(aj, by, cy,d,Ci, E;) N L, # @ only if
c; = 0. It is straightforward to show that a bounded domain whose comple-
ments to / can be mapped onto D \ I by an elementary map, up to permuta-
tion of the variables, is some R(aj, by, c1,d;, C1, E;1) minus a closed subset of

(3.10)
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L. Because Dy is pseudoconvex, up to permutation of the variables we have
either b] = R(al,b],C|,d1, C], Cz) or D] = R(Cl],b],(), d], C], C2) \ /.:Z for some
a],bl,cl,dl,Cl,El.

We shall now construct a biholomorphic map f: D — D?*, where D* :=
{(z,w) e C?: |w|12 > exp[|z|?]}. The tube domain

T* = {(z,w) €eC?: A>Rew > exp[2Rez]}
covers D* \ I by means of IT and is mapped into B? by the map
0% z > €% w > Aw.

Denote by G* c Aut(Bz)Athe subgroup obtained by means of 6 from the group
G acting on T*. Clearly, G* consists of the transformations

2,
W w+ ik22nn, nez.
Let ¢, be the following automorphism of B:
7 Aeflz + 8o¢,
w > 2w+ 280Che’ "z + 8317 + idop.

A straightforward calculation shows that ¢, o Go (pgl =G Let £ = {z =
—1/xe""8¢¢}). For p € D\ (L. U L') consider a point p’ € II7'(p), let g €
6+ ((p2060)(p')), and setf(p) := [1(g). This definition is obviously independent
of the choices of p’ and ¢. It is straightforward to verify that f maps D\ (£, U L")
biholomorphically onto D*\ (£, UL"), where L” := {z = §¢¢}. Since D and D*
have bounded realizations, it follows that f extends to a map (also denoted by f)
from D onto D*. This map is biholomorphic, and we have f(DN L,) = D* N L"
and f(D N L") = D* N L.. Furthermore, f can be represented as f = f| o f,, with

fil:z> Az, w— w
and f, € Aut(D). The map f, has the form (see [Kr; Sh])

Z> ez s,
| | ) (3.11)
w > e exp[25e™z + 5|7 w,
where 71,7, € R and s € C*.
Finally, we define a locally biholomorphic map g from D* \ I = D*\ L. onto
Q := II,(T)); it is constructed similarly to the map h. Consider the following

automorphism of B?:
1 1
I —Z, W —w.
@3 5 83

It follows from (3.7) and (3.9) that ¢3 o G*o (pgl c G,. For peD*\Iletp' e
I~'(p), let ¢ € 07 ((¢3 o 62)(p’)), and set g(p) := TI,(g). As before, this
definition is independent of the choices of p” and g (recall that G, contains the
transformation A?), and the map so defined is locally biholomorphic. Since ¢3



Proper Holomorphic Maps between Reinhardt Domains in C? 55

preserves L., we obtain—arguing again as in the last paragraph of the proof of
Proposition 3.2—that g is elementary.

The composition g o f c h maps V := h™!((g o £)~'(U,) \ I) into U, C 3.
Since ¢ = @30 ¢, 0 ¢y, it follows that f =gof ohon V \ (Cy U Jy). Therefore,
f=gofohon D, \ h='(£"). Clearly, f maps D1\ h~'(£’) onto a set of the form
€\ U, where either U = @GED NI £ orU =g(L"ND* ) Gf Dy N 1T = ).

IfU # @,then f (D 1) is not a Reinhardt domain because s % 0 in formula (3.11).
This shows that U = # (i.e., D; N I # (), which implies that, up to permutation
of the variables, ﬁl = R(ay, b1,0,d,, Cy, Ey) for some ay, by, c1,d;, Cy, E; and that
h has the form (3.10).

Further, €2 is a bounded Reinhardt domain not intersecting I, and DM\ I is
mapped onto €2 by an elementary map. It is not difficult to describe all such do-
mains and the corresponding elementary maps. A domain of this kind has the form

{(z,w) € C*: Calz|?Aw]™/® > exp[Ea|z* /A |w]**2/2], z # 0, w # 0},

where A := ayd, — bycyr, A # 0, a>,by,cr,dr €Z,a, > 0,by > 0,c, <0,
d> < 0, and C,, E; > 0. The general form of an elementary map from D* \ [
onto this domain is

7 > const z2 w2,

(3.12)
w > constz 2w,
In particular, €2 and g must have these forms.

Since U = ¥, we obtain D, = QU g(L. N D*). If a, > 0 and ¢» < 0, then it
follows from (3.12) that g(£. N D*) = {0}. However, Q U {0} is not an open set
in this case, and therefore either a, = 0 or ¢, = 0. If a, = 0, then ¢, < 0 and we
have

Dy = {(z,w) € C? : Calz| < exp[—Ej|z|~24/P22|w|~2/e2], 7 £ 0}
for some E} > 0; if ¢, = 0, then a, > 0 and we have
Dy = {(z,w) € C? : Calw| < exp[—Ej|z[>/2|w[?2/®%] w # 0}

for some E} > 0. These two classes of domains are obtained from one another
by permutation of the variables.

It is clear that every subdomain of D, mapped properly by f onto a bounded
Reinhardt domain—and whose envelope of holomorphy coincides with D, up to
permutation of the variables—has the form

o E
{(Z w) eC?: (1/d1)exp|:_d_1|z|2a1|w|2b1i|
1

E
< |w| < Cll/d] exp[—d—:|z|2“‘|w|2b‘“

for some 0 < C;* < Cy, and hence D; is of this form. We thus have obtained (iv)
of Theorem 0.1.
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Case Il

Let Zl be hypersurface (4) of (3.2). For the purposes of this case we realize S 3 as
{(z,w) € C?: [z + |w|* = 1} and B? as {(z,w) € C : |z* + |w|* < 1}. Then
we have 6 = IT and G(Tl) = B2\ I and that each of Gl, G2 consists of transfor-
mations of the form

iog

it>e 'z,

w > e W,

where the vector (c, ) varies over a lattice in RZ. We shall now consider three
subcases.

CaseIl.A. Assume first that (B> N 1) = B? ﬂ 1. In this case ¢ can be lifted to
an automorphism @ of 7} such that ¢ o G; o ¢! C G,. Then, arguing as in the
last paragraph of the proof of Proposition 3.2, we see that f is elementary.

Cast I1.B.  Assume now that ¢(B> N 1) # B> NI and that ¢ maps a coordi-
nate complex line into a coordinate complex line. Suppose that o(B> N L,) =
B?>N L,,. Then ¢ has the form

zr—>e”‘z_a

1—az’
- S1=[al?
w > e’”#w,
1—az
where |a| < 1,a # 0,and 1, t; € R. Itis now clear from the inclusion ¢ o e op~lC
G2 that none of the elements of G1 changes the z-coordinate.
Consider the tube domain
T :={(z,w)eC?:Rez > exp[2Re w]}.

This domain covers B2 \ £,, by means of the map

n z—1 2e%
O:z~> —, W — s
z+1 z+1
and T, covers T \ {z = 1} by means of the map
et +1

O: 72—~ —

. , wH— w—Ing(e® —1).

er —1

Clearly, 6 = 0 o 6. Since the groups Gl, 6}2 preserve L, their elements can be
lifted to automorphisms of 7. Similarly, ¢ can be lifted to an automorphism of 7.
The general form of a lift of ¢ is
eM"l—a)+1—a)z—e"(l+a)+1+a
(e(l—a)—l14+a)yz—e(l+a)—1—a’

—2e"2,/1 — |a|?
(en(l—a)—14+a)z—en(l+a)—1-a’
where In is a branch of the logarithm.

T =
(3.13)

w— w—+In
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For arbitrary g, € G, consider the locally defined self-map g; = 6o g10 6!
of T. Clearly, it coincides with a lift of g| € Gl and hence extends to an automor-
phism of 7. Let Gl = {g1,81 € Gy}, and let Gz be the group constructed from
G, in the same way. The groups G\, G, are abelian and have at most two gener-
ators. Observe that a lift ¢ of ¢ to an automorphism of 7' can be chosen so that
@0610@71 C Gz.

The group G| consist of transformations of the form

()= ) )reel ) mmeze s
w w o] ,31

for some linearly independent vectors («, o), (81, B1) € R2. Then él consists of
the maps

z > explion + ifjmlz,

w — explion +ifimlw, n,meZ.

Since no map in G changes the z-coordinate, it follows that o), € 27 - Z.
Therefore, elements of Gl have the form (3.6). By (3.13) we then have that every
element of G| commutes with every lift of ¢ to an automorphism of 7. Hence
Gl C Gz.

Next, if the group G is given by (3.8) then, arguing as in the proof of Proposi-
tion 3.4, we obtain that G, contains the map A®. As before, this yields that o and
B, are rationally dependent. Furthermore, transformations from G » have the form

1+Cn,m)z+1—-C(n,m)

(1—-Cm,m)z+1+Cn,m)’

2
wH— w—+In 0= Clnm)z + 1+ Clnm) + iapn +ifom, n,mez,

where C(n, m) := expliajyn+if5m]. For elements of G\, the corresponding con-
stants C(n,m) are necessarily equal to 1, which implies that «; and 8; are also
rationally dependent. Therefore, transformations from G, have the form (3.7) for
some oy > 0.

Let D% := {(z,w) € C? : |z|2 + |w|*/™ < 1}. We shall now construct a lo-
cally biholomorphic map h from Dl\ I onto D \ I. Clearly, T} covers D \ [
by means of the map

I1%°: z > €% w +— exp[Q2n/ag)w].

The group G*° constructed from D, in the same way as G, and G, were con-
structed from D1 and D2, consists of the following transformations:

Z+ z+i27mn,

wH— w4+ iegm, n,meZ.

For p € D\ 1, consider a point p’ € Hfl(p) and set h(p) := I1*°(p’). Clearly,
this definition is independent of the choice of p’, and the map so defined is locally
biholomorphic. The automorphism of B that corresponds to h is the identity and
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therefore preserves I. Arguing as in the last paragraph of the proof of Proposi-
tion 3.2, we see that h is elementary.

It is straightforward to describe the general form of a bounded domain not inter-
secting / that can be mapped onto D*° \ I by an elementary map and to describe
such elementary maps. Such a domain must have the form

{(z,w) € C?: Ci|z)*“Yw |’ + Ey|z|%V ™ |w|*N/™ < 1,7 £ 0, w # 0}, (3.15)

where ay, by, c1,d; € Z, with either a;dy — bic; > 0,a; > 0,b; <0,c; <0, and
dy >0orady—bic; <0,a1<0,by >0,¢c; >0,dy <0,and C, E; > 0. An
elementary map that takes domain (3.15) onto D*° \ I has the form

7 e/ Cizw",
w > ei‘EZElﬂ/aOZC] wd]

where 11, 7, € R. Thus, bl\ I and h must have these forms. Since bl is pseudo-
convex, it is either domain (3.15) or, up to permutation of the variables, one of the
following domains:

{(z,w) €C?: Crlw* + Eyz]*/T|w] /7 < 1, w # 0}
(herea; = 0,b; > 0,c; > 0,and d;, < 0);
{(z,w) € C*: C1lzP“|w]*' + EfJw|*™ <1, w # 0} (3.16)
(herea; > 0,b; <0,c; =0,and d; > 0); or
{(z,w) € C?: C1|z|*" + Ey|w|¥9/™ < 1) (3.17)

(herea; > 0,b; =0, c; =0, and d; > 0) for some ay, by, c1,d;, Cy, Ej.

We shall now construct f € Aut(D*°). Let £’ := {z = a}and L" = {z =
—ea}. Ttis straightforward to observe that G¥° = G. In particular, elements of
G2 commute with @, which yields ¢ o G 0 g~ = G%. For p e D* \ (I U L)
consider a point p’ € H“Ofl(p), letg € 9v*1((<[> o é)(p’)), and set f(p) := [1*°(q);
this definition is independent of the choices of p’ and ¢q. It is straightforward to ver-
ify that f maps D*°\ (I U L") biholomorphically onto D*\ (I UL"). Since D% is
bounded, f extends to a map (that we also denote by f) from D*° onto itself. This
map is biholomorphic, and we have f(D* N L") C D* N[ and f(D* NTI) C
DY N (I UL"). Itis now clear that f has the form

s ein Z 2 a
1—az’
4 (1= a7 G189
(l _ &2)271/0«)

where 1 € R.

Finally, we define a locally biholomorphic map g from D*® \ [ onto Q :=
1'[2(7~"1); ilt is constructed similarly to the map h; For Pe Do \ 1, consider a point
p’ € 1% (p) and set g(p) := [1,(p’). Since G; C G, and since the map A be-
longs to G, the map
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2,
w > w4+ i

belongs to G, as well. Hence, the definition of g is independent of the choice of
p’. The map so defined is locally biholomorphic. The automorphism of B? cor-
responding to g is the identity and therefore preserves /. Arguing as in the last
paragraph of the proof of Proposition 3.2, we see that g is elementary.

The composition gof chmaps V := h='((gof)~'(Uy) \ I) into U, C dQ. Itis
straightforward to verify that f = gofohon V\ (CyU Jy). Thus, f = gofohon
Dy \h~'(£'U L,). Clearly, f maps Dl\h (L£'U L,) onto  \ U, where either
U=0orU =g(D*NL").

If U # 0, then f (D)) is not a Reinhardt domain because a # 0 in formula
(3.18). Hence, in fact, U = (; that is, h(ﬁl) N L, contains the punctured disc
{z =0,0 < |w| < 1} and therefore, up to permutation of the variables, 131 has
one of the forms (3.16) or (3.17).

Next, €2 is a bounded Reinhardt domain not intersecting /, and D*° \ I can be
mapped onto 2 by an elementary map. It is not hard to describe the general form
of such domains and elementary maps. A domain of this kind has the form

{(z.w) €C? 1 ColzP/A w| 72028 4 By g 02/ T8 | 02/ < 1,
2#0, w#0}, (3.19)
where A := ard, — brcy, A ;ﬁ 0,ar,br,cr,dr€Z,a, >0,by >0,cp >0,

dy > 0, and C;, E; > 0. An elementary map taking D*° \ I onto this domain is

of the form
7 — const z2w??,

(3.20)
w > constz2w®.

In particular, €2 and g must have these forms.

Assume now that b] is of the form (3.17). Since U = {, it follows that ﬁz =
QUgD*NI). Ifa; >0andc; > 0orif by > 0and d, > 0, then from (3.20)
we obtain that g(D*° N 1) = {0}. However, 2 U {0} is not an open set in this case,
and hence we have either a, = 0 and d, = 0 or b, = 0 and ¢, = 0. In the first
case, by, c, > 0 and

Dy = {(z,w) € C? : Co|w|>? + E,|z]*/™> < 1). (3.21)
We then have either D; = 151, D, = 152, or
Dy = {(z.w) € C?: O[> < 1, E} 770N (1 — |z |y /eod:
< |w| < E;7N 1 — ¢z Py ody (3.22)

Dy = {(z,w) eC?: Cz|w|2/c2 <1, E*_”bz/ao(l —C, |w|2/cz)7rbz/ozo
< lz| < E;™2/%0(1 — Cyw|¥/e2ymh2/e0)

for some E; < Ef < oo and E, < E; < oo. Similarly, in the second case we
have a,,d, > 0 and
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D; = {(z,w) € C? : 3z + Eafw|*/™ < 1}. (3.23)
We then have either D = bl, D, = bz, or that D has the form (3.22) and
Dy = {(z,w) € C: a2/ < 1, By ™01 = CafgP2)™/0 < Juw]
< E;ndz/ao(l _ C2|Z|2/a2)nd2/ao}

for some E; < E} < oo. The two forms of ﬁz just described are obtained from
one another by permutation of the variables.

Assume now that ﬁl has the form (3.16). Then, as before, we have either a, =
Oand ¢y > Qora,; > 0and ¢, = 0. In the first case, b, > 0 and

Dy = {(z,w) € C? 1 Cy|z|202/P2e2y 212 4 Ey|z]0/7™2 < 1, 7 # 0}
in the second case, d, > 0 and
Dy = {(z,w) € C? : Ca|z/2|w|72P2/9202 4 By |0/ < 1, w # 0).

These two types of domains are obtained from one another by permutation of the
variables. In the first case we obtain

Di = {(z,w) eC*: G|z |w]™™ <1,
El*fn/aodl (1 _ C1|Z|2a1|w|2b])n/aod1 < |w|

< BN = Gz w )TN, (3.24)

Dy = {(z,w) € C? : Cy|z| 202/b22 )y 2e2 < 1,

E;*”bZ/aO(l _ C2|Z|72d2/b25‘2|w|2/62)71b2/0t() < |Z|
< E;T[bZ/aO(l _ C2|Z|72d2/b262|w|2/c‘2)7rb2/0t()}

forsome E| < E{ <ooand E, < EJ < co. Similarly, in the second case D; has
the form (3.24) and

D> = {(z,w) € C2 : Ca|z|2/92|w|2b2/md2 1,

E’z"*”dZ/Cl()(l _ C2|Z|2/a2|w|72b2/a2d2)71d2/a() < |w|
< Ez—ndz/ozo(l _ C2|Z|2/a2|w|—2b2/azd2)nd2/ao}

for some E, < E5 < oo.

Similar considerations in the cases where (B> N 1) # B2 N I and either
oB*NL)=B>NL.oreB>NL.)=B>NLyoreB>NL,) =B>NL,
lead to the same descriptions of D, D,, and f. We thus have obtained (v) of
Theorem 0.1.

Case Il.c.  Assume finally that (B> N £,) ¢ I and 9(B> N L,) ¢ I. Arguing
as in the proof of Proposition 3.4, we can prove that G, contains the map A® as
well as the map A" (see the beginning of this section for definitions). Therefore,
all elements of the inverse of the matrix A corresponding to the map F; (see (3.1))
are integers, and the locally defined map I, o ! from §* \ I into U, extends to
an elementary map g from B2 \ I onto the Reinhardt domain Q := I, (T).
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Let L, =@ ' (B*NL,), L), :=¢ "(B*NLy), L] :=¢@(B*NL.),and L], :=
@(B>N L,). Then the map ¢ := go ¢ o0 takes T{ := T\ 07\ (L. UL,)\ I)
onto 2\ g((£7 U Ly) \ I). Recall that, on an open subset of 9T/, the map ¢
coincides with f o IT; and thus extends to all of 7). Therefore, g extends to
B>N 1 and f o1y maps T} onto (2 U g(B>N 1))\ gL/ UL!). Thus, D, =
(QUgB>NI))\g(LIULL))U f(DyN1). Since D5 is a Reinhardt domain, it
follows that g((L7 U L))\ I) C f(ﬁl N I) and therefore D, =QU g(B*N1I).
In particular, 151 NI #4a@.

Further, €2 is a bounded Reinhardt domain not intersecting / such that there
exists an elementary map from B2 \ I onto €. Hence 2 has the form (3.19) with
oo = 27 and g has the form (3.20). If either a,, ¢y > O or b,,d, > 0, then it fol-
lows from (3.20) that g(B2 N 1) = {0}. However, Q U {0} is not an open set in
this case, and therefore either ap = dy = 0 or by = ¢, = 0. Thus

Dy = {(z,w) € C?: Cjlz¥% + Ejjw|*?2 < 1),

where a}, b} €N, C}, E5 > 0 (cf. (3.21) and (3.23)), and g (up to permutation of
the variables) has the form

a/

Z — constz“2,
A

w > const w”?.

This description shows that transformations in G, have the form (3.8) with o} =
2n/ay, 0y =0, B, =0, and B, = 2x/b),.
It is straightforward to observe that, since ¢ o G; o ¢! C G, and since

e(B*NL) ¢ 1 and @(B>NL,) ¢ I,
every transformation in G has the form

ez,
. (3.25)
w— e“w,
fora € R. Since D, is a bounded Reinhardt domain intersecting I with logarithmic
diagram affinely equivalent to that of B2, it follows that either up to permutation
of the variables D; has the form

{(z,w) € C*: Cilz*|w* + EqJw*' < 1, w # 0} (3.26)
or it has the form
{(z,w) €eC?: Cy|z*M + Ey|Jw]*? < 1}, (3.27)

where a1, b1,c1€R,a; > 0,b; > 0,c; <0, and Cy, E; > 0 (cf. (3.15)).

Assume first that ﬁl is a domain of the form (3.26). Then the group G, con-
sists of transformations (3.14) with oy = 27a;, o) = 0, B = 2mcy, and B =
27b,. Since all transformations in Gl are of the form (3.25), it follows that a; € N.
Therefore, the matrix A corresponding to the map F; (see (3.1)) up to permutation
of the rows is



62 A.V. IsaAEv & N. G. KRUZHILIN

a;
(o &)

For an appropriate choice of an element of # !, the locally defined map ¢ o F 067!
from ﬁl \ I into 132 coincides with f and hence extends to all of bl. It then fol-
lows from this representation of f that either f (Dinl) = g(L))or f (DinI) =
g(L,) and thus g((L7 U L)\ I) ¢ f(D;NI),in contradiction to what we have
already established. This shows that 151 does have the form (3.27).

Since all transformations in Gl are of the form (3.25), it follows that a;, b; € N.
Hence the locally defined map 6 o Hfl from 151\ I into B2\ I extends to an ele-
mentary map h from Dy onto B2. Clearly, up to permutation of its components,
the map h has the form

Z > constz”,
w — const w” !

and we have f = g o ¢ o h. It is straightforward to see that there exists no proper
subdomain of D, mapped properly by f onto a bounded Reinhardt domain and
whose envelope of holomorphy coincides with D,. Therefore, D; = D, and hence
D, =D,.

We thus have obtained (vi) of Theorem 0.1, and the proof of the theorem is now
complete. UJ
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