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0. Introduction

Let D1,D2 be bounded Reinhardt domains in C2 and let f : D1 → D2 be a proper
holomorphic map. Such maps are often elementary algebraic; that is, have the
“monomial” form

z �→ const zawb,

w �→ const zcwd,

where z,w denote variables in C2 and where a, b, c, d are integers such that
ad − bc �= 0. For brevity we shall call such maps elementary maps. All ele-
mentary maps are well-defined outside I, the union of the coordinate complex
lines, but not necessarily at points in I. The question of the existence of an ele-
mentary proper holomorphic map between two given domains is resolved by pass-
ing to the logarithmic diagrams of the domains. Several classes of domains be-
tween which only elementary proper holomorphic maps are possible have been
described in [S].

The aim of this paper is to identify situations in which f is not elementary and
to explicitly describe all forms that the map f and the domains D1,D2 may have
in such cases. If f is biholomorphic, then it can be represented as the composi-
tion of an elementary biholomorphism between D1 and D2 and automorphisms
of these domains (see [Kr; Sh]). Therefore, nonelementary biholomorphisms can
occur only between domains that are equivalent by means of an elementary map
and having nonelementary automorphisms (and that are hence straightforward to
determine).

Proper maps that are not biholomorphic are harder to deal with. Nonelemen-
tary maps may occur, for example, if each of D1,D2 is a bidisc, in which case
at least one component of f contains a Blaschke product with a zero away from
the origin. In [BeP] and [LS], the problem of describing nonelementary proper
holomorphic maps was studied for complete Reinhardt domains; it turns out that,
apart from the example of bidiscs, such maps can arise only if D1 and D2 are cer-
tain pseudo-ellipsoids. On the other hand, all proper holomorphic maps between
pseudo-ellipsoids in Cn for n ≥ 2 can be found using arguments from [D-SP]. All
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proper holomorphic maps for another special class of domains (a generalization
to higher dimensions of domains of the form (0.2), to follow) were determined in
[L]. Similarly to the case of bidiscs, the only nonelementary maps for this class
are expressed in terms of Blaschke products with at least one zero away from the
origin.

In this paper we describe all nonelementary proper holomorphic maps between
Reinhardt domains in C2, as well as the corresponding pairs of domains. First of
all, the map f can be extended to a proper holomorphic map between the enve-
lopes of holomorphy D̂1 and D̂2 of D1 and D2 , respectively. The passage to the
pseudoconvex domains D̂1, D̂2 is essential for our arguments because we shall
often use the connectedness of the boundaries of D̂1, D̂2 and the convexity of their
logarithmic diagrams. Furthermore, f extends holomorphically to a neighbor-
hood of ∂D̂1\ I. Next, one can show that f can be nonelementary only if ∂D̂1\ I

either consists of two or three Levi-flat pieces or is a connected spherical hyper-
surface (see Section 1).

The Levi-flat and spherical cases are considered in Sections 2 and 3, respec-
tively, and the results are summarized in Theorem 0.1. In the spherical case (see
(iv)–(vi) of Theorem 0.1), the map f can be represented as the composition of
three maps of special forms: two elementary maps and an automorphism of an
intermediate Reinhardt domain. We note that a factorization result of a different
kind for proper maps into the unit ball was obtained in [KLS]. In the case where
D1 is a strongly pseudoconvex smoothly bounded Reinhardt domain in Cn for n ≥
2 that does not intersect the coordinate hyperplanes (while D2 is not necessarily
Reinhardt), another factorization theorem was proved in [BDa]. We also observe
that the nonelementary proper holomorphic map between pseudo-ellipsoids in the
example given in [D-SP] factors as in Theorem 0.1(vi).

Our results immediately imply that, if there exists a proper holomorphic map
between two bounded Reinhardt domains, then there also exists an elementary
proper map between the domains (Corollary 0.2). Another consequence of our
classification is that the domains described in (i)–(iii) of Theorem 0.1 are the only
domains for which there exist nonelementary nonbiholomorphic proper self-maps
(Corollary 0.3).

Theorem 0.1. LetD1,D2 be bounded Reinhardt domains in C2 and let f : D1 →
D2 be a proper holomorphic map. Assume that f is not elementary. Then one of
the following six scenarios obtains.

(i) Up to permutation of the components of f and the variables, the map f has
the form

z �→ const zawbB(A1z
p1wq1),

w �→ constwc,
(0.1)

where a, b, c,p1, q1 ∈ Z , a > 0, c > 0, p1 > 0, q1 ≤ 0, p1 and q1 are relatively
prime, aq1 − bp1 ≤ 0, A1 > 0, and B is a nonconstant Blaschke product in the
unit disc that is nonvanishing at 0. In this case, D1 either has the form
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{(z,w)∈ C2 : A1|z|p1|w|q1 < 1, 0 < |w| < C1} (0.2)

for some C1 > 0 or is a bidisc (in the latter case we have b = 0, p1 = 1, and q1 =
0 in (0.1)). The domain D2 is, respectively, either a domain of the form

{(z,w)∈ C2 : A2|z|p2 |w|q2 < 1, 0 < |w| < C2}
(where p2 , q2 ∈ Z are relatively prime, p2 > 0, q2 ≤ 0, q2/p2 = (aq1 − bp1)/

(cp1), A2 > 0, and C2 > 0) or a bidisc.
(ii) Up to permutation of the components of f and the variables, the map f has

the form (0.1), where a, b, c,p1, q1 ∈ Z , a > 0, c �= 0, p1 > 0, p1 and q1 are rel-
atively prime, A1 > 0, and B is a nonconstant Blaschke product in the unit disc
that is nonvanishing at 0. In this case the domains have the forms

D1 = {(z,w)∈ C2 : A1|z|p1|w|q1 < 1, E1 < |w| < C1},
D2 = {(z,w)∈ C2 : A2|z|p2 |w|q2 < 1, E2 < |w| < C2},

(0.3)

where p2 , q2 ∈ Z are relatively prime, p2 > 0, q2/p2 = (aq1 − bp1)/(cp1), and
C1 > 0, E1 > 0, A2 > 0, C2 > 0, and E2 > 0.

(iii) Up to permutation of the components of f , the map f has the form

z �→ const zaB1(Az),

w �→ constwbB2(Cw),

where a, b ∈ Z , a ≥ 0, b ≥ 0, A > 0, C > 0, and B1,B2 are nonconstant Blaschke
products in the unit disc that are nonvanishing at 0. In this case, D1 and D2 are
bidiscs.

(iv) The map f is a composition f = g � f � h, where h is an elementary map
from D1 into the domain D := {(z,w) ∈ C2 : |w| > exp[|z|2]}, f is an automor-
phism of D, and g is an elementary map from a subdomain of D onto D2. Up to
permutation of the variables, the map h has the form

z �→ const za1w−b1,

w �→ constw−c1,

where a1, b1, c1 ∈ N; the map f has the form

z �→ eit1z + s,

w �→ eit2 exp[2 s̄e it1z + |s|2]w,

where t1, t2 ∈ R and s ∈ C∗; and, up to permutation of its components, the map g
has the form

z �→ const za2w−b2,

w �→ constw−c2,

where a2 , b2 , c2 ∈ N. In this case the domains have the forms
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D1 = {(z,w)∈ C2 : C ′
1 exp[−E1|z|2a1|w|−2b1 ] < |w|

< C1 exp[−E1|z|2a1|w|−2b1 ]},
D2 = {(z,w)∈ C2 : C ′

2 exp[−E2|z|2/a2 |w|−2b2/a2c2 ] < |w|
< C2 exp[−E2|z|2/a2 |w|−2b2/a2c2 ]},

where 0 ≤ C ′
1 < C1, 0 ≤ C ′

2 < C2 , E1 > 0, and E2 > 0.
(v) The map f is a composition f = g � f � h, where h is an elementary map

from D1 into the domain �α := {(z,w) ∈ C2 : |z|2 + |w|α < 1} for some α > 0,
g is an elementary map from a subdomain of �α onto D2 , and f is an automor-
phism of �α. Up to permutation of the variables, the map h has the form

z �→ const za1w−b1,

w �→ constwc1,
(0.4)

where a1, b1, c1 ∈ Z , a1 > 0, b1 ≥ 0, and c1 > 0; the map f has the form

z �→ eit1
z − a

1 − āz
,

w �→ eit2
(1 − |a|2)1/α
(1 − āz)2/α

w,

where |a| < 1, a �= 0, and t1, t2 ∈ R; and, up to permutation of its components,
the map g has the form

z �→ const za2wb2,

w �→ constwc2,
(0.5)

where a2 , b2 , c2 ∈ Z , a2 > 0, b2 ≥ 0, and c2 > 0. In this case the domains have
either the forms

D1 = {(z,w)∈ C2 : C1|z|2a1 + E1|w|αc1 < 1},
D2 = {(z,w)∈ C2 : C2|z|2/a2 + E2|w|α/c2 < 1}

or the forms

D1 = {(z,w)∈ C2 : C1|z|2a1|w|−2b1 < 1,

E ′
1(1 − C1|z|2a1|w|−2b1)1/αc1 < |w|

< E1(1 − C1|z|2a1|w|−2b1)1/αc1},
D2 = {(z,w)∈ C2 : C2|z|2/a2 |w|−2b2/a2c2 < 1,

E ′
2(1 − C2|z|2/a2 |w|−2b2/a2c2)c2/α < |w|

< E2(1 − C2|z|2/a2 |w|−2b2/a2c2)c2/α}
for some C1 > 0, C2 > 0, 0 ≤ E ′

1 < E1, and 0 ≤ E ′
2 < E2. (In the first case of

(0.4) and (0.5) we have b1 = 0 and b2 = 0.)
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(vi) The map f is a composition f = g � f � h, where h is an elementary map
from D1 onto the unit ball B2 := {(z,w)∈ C2 : |z|2 + |w|2 < 1}, f is an automor-
phism of B2, and g is an elementary map from B2 onto D2. Up to permutation of
the variables, the map h has the form

z �→ const za1,

w �→ constwb1,

where a1, b1 ∈ N; the map f is such that f(B2 ∩ Lz) �⊂ B2 ∩ I and f(B2 ∩ Lw) �⊂
B2 ∩ I, where Lz := {z = 0}, Lw := {w = 0}, and I := Lz ∪ Lw; and, up to
permutation of the variables, the map g has the form

z �→ const za2,

w �→ constwb2,

where a2 , b2 ∈ N. In this case the domains have the forms

D1 = {(z,w)∈ C2 : C1|z|2a1 + E1|w|2b1 < 1},
D2 = {(z,w)∈ C2 : C2|z|2/a2 + E2|w|2/b2 < 1},

where C1 > 0, E1 > 0, C2 > 0, and E2 > 0.

We will now state two corollaries of Theorem 0.1, as mentioned previously.

Corollary 0.2. Let D1 and D1 be bounded Reinhardt domains in C2. If there
exists a proper holomorphic map from D1 onto D2 , then there also exists an ele-
mentary proper map from D1 onto D2.

Corollary 0.3. Let D be a bounded Reinhardt domain in C2 that admits a
nonelementary, nonbiholomorphic, proper holomorphic self-map. Then either D

(up to permutation of the variables) has one of the forms (0.2) or (0.3) or D is a
bidisc.

On the other hand, if a bounded pseudoconvex Reinhardt domain D admits an
elementary, nonbiholomorphic, proper holomorphic self-map, then either D is a
bidisc or D (up to permutation of the variables) has one of the forms (0.2) or (0.3)
or the form

{(z,w)∈ C2 : A|z|p|w|q < 1, E < |z|p ′|w|q ′
< C},

where A > 0, C > 0, E ≥ 0, and p, q,p ′, q ′ are integers satisfying conditions
similar to those in (0.2) and (0.3). This is easy to see from the following observa-
tion: if the logarithmic diagram of D is unbounded, then the two asymptotes of its
convex boundary define the eigendirections of either the linear part of the affine
transformation of the logarithmic diagram corresponding to the elementary map
or the square of this operator.
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1. Preliminaries

As we pointed out in the Introduction, f can be extended to a proper holomor-
phic map (that we also denote by f ) between the envelopes of holomorphy D̂1, D̂2

of D1,D2 , respectively (see [Ke]). Moreover, it follows from [Ba] (see also [L])
that f extends holomorphically to a neighborhood of ∂D̂1\ I, where I := Lz ∪ Lw

with Lz := {z = 0} and Lw := {w = 0}. Since f is proper, f(∂D̂1\ I ) ⊂
∂D̂2. Denote by Jf the zero set of the Jacobian of f in ∂D̂1\ I, and let Cf :=
f −1(f(∂D̂1\ I ) ∩ I ).

For every p = (z,w)∈ C2, let T(p) be the torus {(e iαz, eiβw)∈ C2 : α,β ∈ R}
and let T be the standard torus T((1,1)). We shall think of T as a group acting on
C2. Set

Sf := {p ∈ ∂D̂1\ I : f(T(p)) ⊂ T(f(p))}.
We assume that Sf does not contain three distinct tori that do not lie in a Levi-flat
Reinhardt hypersurface, since otherwise f is elementary by Lemma 4.4 of [S].
Hereafter we refer to this assumption as Condition (∗).

For j = 1, 2 we denote by Hj the union of all locally holomorphically homo-
geneous, connected, real-analytic hypersurfaces lying in ∂D̂j \ I. Hypersurfaces
making up Hj are either strongly pseudoconvex or Levi-flat, and we denote by
H spher

j , H nonspher
j , and H flat

j the unions of all spherical (i.e., locally biholomorphi-
cally equivalent to the unit sphere in C2), strongly pseudoconvex nonspherical,
and Levi-flat hypersurfaces from Hj , respectively, for j = 1, 2.

Note that locally holomorphically homogeneous, nonspherical, Reinhardt hy-
persurfaces do exist, so Lemma 3.3 of [S] stating otherwise is incorrect. Consider,
for example, the nonspherical tube hypersurface

T := {(z,w)∈ C2 : Rew = (Re z)3, Re z > 0}.
The base of T is an affinely homogeneous curve (a complete list of affinely ho-
mogeneous curves in R2 can be found in [NSa]) and hence T is holomorphically
homogeneous. The map " : (z,w) �→ (ez, ew) takes suitable portions of T to lo-
cally holomorphically homogeneous, nonspherical, Reinhardt hypersurfaces.

We will now show that, for nonelementary f , the set H nonspher
1 must be empty.

Proposition 1.1. Condition (∗) implies that H nonspher
1 = ∅.

Proof. A Reinhardt hypersurface N ⊂ C2 \ I is locally biholomorphically equiv-
alent to the tube hypersurface TN := log(N )+ iR2, whose base is the logarithmic
diagram log(N ) ⊂ R2 of N (cf. the foregoing example). If N is real analytic,
strongly pseudoconvex, nonspherical, and locally holomorphically homogeneous,
then infinitesimal CR-transformations of TN form a three-dimensional Lie algebra
gTN (see e.g. [C]). Further, it follows from [Lo] that the curve log(N ) is locally
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affinely homogeneous. Taking into account that translations in the imaginary di-
rections form a two-dimensional subalgebra hTN in gTN , we see that gTN is gen-
erated by hTN and the one-dimensional algebra of local affine transformations of
log(N ). Hence hTN is an ideal in gTN , and it is straightforward to observe that there
are no other ideals in gTN . Let hN be the ideal corresponding to hTN in the Lie al-
gebra gN of all infinitesimal CR-transformations of N. The ideal hN consists of
infinitesimal transformations corresponding to the action of T on N.

Suppose that H nonspher
1 �= ∅ and let M be a hypersurface contained in H nonspher

1 .

Fix p ∈M \ (Cf ∪ Jf). Clearly, f maps a neighborhood of p in M biholomorphi-
cally onto a hypersurface M ′ ⊂ H nonspher

2 . The homomorphism between gM and
gM ′ induced by f maps hM into hM ′ . Hence we have f(T(p)) ⊂ T(f(p)) and
thus M \(Cf ∪Jf) ⊂ Sf , which contradicts Condition (∗). Therefore, H nonspher

1 =
∅ as required.

Assume now that H spher
1 �= ∅. Define S1 := ∂D̂1\ (H1 ∪ I ). We will need the fol-

lowing general lemma (see also [LS] and [S]).

Lemma 1.2. We have S1 ⊂ Sf .

Proof. Assume that f(T(p)) �⊂ T(f(p)) and let p ′ ∈ T(p) be a point close to
p such that p ′ /∈ Cf ∪ Jf and f(T(p ′)) = f(T(p)) is not tangent to T(f(p ′)).
Choose a neighborhood U of p ′ in which f is biholomorphic and let V := f(U).

We may assume that f(T(q)) �⊂ T(f(p ′)) for all q ∈U. Let T := V ∩ T(f(p ′))
and let γ ⊂ f(T(p ′)) be the image of the orbit of p ′ on T(p ′) under the action
of a 1-parameter subgroup of T such that γ is not tangent to T. Consider now the
set * := ⋃

s∈γ T(s). This is clearly a real-analytic hypersurface in ∂D̂2 , which is,
moreover, locally holomorphically homogeneous because we have on it actions
of a two-dimensional torus and a 1-parameter group and the orbits of one action
are transversal to those of the other. Thus, f(p ′) ∈ H2 and therefore p ′ ∈ H1.

This means that p ∈H1, which contradicts the assumptions of the lemma. Hence
f(T(p)) ⊂ T(f(p)), as required.

Let M be a connected component of H spher
1 . Arguing as in a similar situation in

the proof of Proposition 3.2 of [S] and using Lemma 1.2, one sees that if M̄ in-
tersects S1 then M ⊂ Sf , which contradicts Condition (∗). Thus, M̄ ∩ S1 = ∅.
Hence, if there exists another hypersurface N lying in H spher

1 or in H flat
1 such that

M ∩N = ∅ and M̄ ∩ N̄ �= ∅, then M̄ ∩ N̄ ⊂ I. However, passing to the logarith-
mic diagram of D̂1, we immediately see from its convexity that this is impossible.
As a result, if H spher

1 �= ∅ then ∂D̂1\ I is a connected spherical hypersurface. Fi-
nally, if H1 = H flat

1 then Lemma 1.2 implies that S1 contains at most two distinct
tori.

To summarize, nonelementary proper holomorphic maps can exist only in the
following two cases: either H1 = H flat

1 and S1 consists of one or two distinct tori;
or ∂D̂1\ I is a connected spherical hypersurface. These cases are considered in
Sections 2 and 3, respectively. We remark that a related decomposition result in
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the context of biholomorphic maps of not necessarily bounded Reinhardt domains
in C2 was obtained in Theorem 8 of [So].

2. Levi-Flat Case

In this section we assume that H1 = H flat
1 . Note that in this case the logarithmic

diagram of D̂1 is an unbounded polygon with either one or two vertices, depend-
ing on the number (one or two, respectively) of tori in S1.

The Case of a Single Torus. Let f1, f2 be the components of f and assume
first that S1 is a single torus T1. Let log(D̂1) be the logarithmic diagram of D̂1.

The set H1 can be represented as the union of two distinct Levi-flat hypersur-
faces L1

1,L2
1 whose boundaries in C2 \ I coincide with T1. Furthermore, since D̂1

is bounded, log(D̂1) is a sector lying in the interior of a right angle of the form
{(x, y)∈ R2 : x < x0, y < y0} for some (x0, y0)∈ R2. We can describe this sector
as follows:

log(D̂1) = {(x, y)∈ R2 : a1x − y > −lnC, x + d1y < −lnA},
where a1 ≥ 0, d1 ≤ 0, a1d1 > −1, and A,C > 0. Note that D̂1 can contain the
origin only if a1 = d1 = 0.

Each of L1
1 and L2

1 is foliated by complex curves, and every such curve inter-
sects T1 along a real-analytic curve. Hence, we obtain two distinct families of
curves C j

1 (j = 1, 2) on T1. If ψ1 : R2 → T1 is the covering map, then the inverse
images of C j

1 under ψ1 are two distinct families of parallel lines Lj

1 in R2, j = 1, 2.
For p ∈ T1 \ Jf consider the torus T2 := T(f(p)). By Lemma 1.2 we obtain

f(T1) ⊂ T2 and T2 �⊂ I. Clearly, if U is a small neighborhood of p, then in a
neighborhood of f(p) the torus T2 lies in the boundaries of two distinct Levi-flat
hypersurfaces f(L1

1 ∩U) and f(L2
1 ∩U). Hence T2 entirely lies in the boundaries

of two distinct Levi-flat hypersurfaces L
j

2 , j = 1, 2. The hypersurfaces L
j

2 pro-
duce two distinct families of curves C j

2 on T2 , and f(C j

1 ) ⊂ C j

2 , j = 1, 2. Each C j

2
is invariant under the action of T on T2 and thus, if ψ2 : R2 → T2 is the covering
map, then the inverse images of C j

2 under ψ2 are two distinct families of parallel
lines Lj

2 in R2, j = 1, 2. Further, if f̃ = (f̃1, f̃2) : R2 → R2 is a real-analytic cov-
ering map for f |T1 : T1 → T2 , then f̃ (Lj

1 ) ⊂ Lj

2 for j = 1, 2.
Let g be a linear transformation of R2 mapping L1

1 and L2
1 into the families of

horizontal and vertical lines, respectively, and let h be a similar transformation for
the families Lj

2 , j = 1, 2. Consider f̂ = h � f̃ � g−1. Clearly, f̂ = (f̂1, f̂2) is a
real-analytic map such that f̂1 is constant on every vertical line and f̂2 is constant
on every horizontal line in R2. Hence f̂1 is a function of x and f̂2 is a function of
y alone. We choose g to be the linear transformation with the matrix(

a1 −1
1 d1

)
,

and we let the matrix of h be
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(
a2 b2

c2 d2

)
.

Since h � f̃ = f̂ � g, it follows that

a2 f̃1(x, y) + b2 f̃2(x, y) = f̂1(a1x − y),

c2 f̃1(x, y) + d2 f̃2(x, y) = f̂2(x + d1y).

This implies that there exist holomorphic functions of one variable F and G such
that, in a neighborhood U of p ∈ T1, we have

f
a2

1 f
b2

2 = F(za1w−1),

f
c2

1 f
d2

2 = G(zwd1).
(2.1)

We shall consider the case a1, d1 ∈ Q first. Let a1 = a ′
1/a

′′
1 , where a ′

1 ≥ 0 and
a ′′

1 > 0 are relatively prime integers. For a fixed α1 �= 0 consider the curve P
α1
1

with the equation za ′
1w−a ′′

1 = α1. The logarithmic diagram log(P α1
1 ) of P

α1
1 is a

straight line parallel to one side of log(D̂1). We choose α1 so that P α1
1 ∩ D̂1 ∩ U �=

∅. The intersection P
α1
1 ∩ D̂1 is biholomorphically equivalent to either a disc or a

punctured disc, and the equivalence is given by ζ1 �→ (µ1ζ
a ′′

1
1 , ν1ζ

a ′
1

1 ), where ζ1 is
the variable in a disc of a suitable radius and µa ′

1
1 ν−a ′′

1
1 = α1. We note that P α1

1 ∩ D̂1

can be equivalent to a disc only if a ′
1 = 0.

We have f
a2

1 f
b2

2 = α2 := F(α1/a ′′
1

1 ) on an open subset of U ∩P
α1
1 in which f

a2
1

and f
b2

2 are defined as single-valued holomorphic functions. Hence f(P
α1
1 ∩ D̂1)

is contained in P
α2
2 ∩ D̂2 , where P

α2
2 is obtained by the analytic continuation of

a connected component of the analytic set defined by the equation za2wb2 = α2

near f(p). Since P
α1
1 ∩D̂1 is closed, so is f(P

α1
1 ∩D̂1); therefore, f(P

α1
1 ∩D̂1) =

P
α2
2 ∩ D̂2 and a2 , b2 are rationally dependent. Changing the function F if neces-

sary, we can assume either that a2 ∈ Q, a2 ≥ 0, and b2 = −1 or that a2 = 1 and
b2 = 0. Clearly, the restriction of f to P

α1
1 ∩D̂1 is proper. Furthermore, P α2

2 ∩D̂2

is equivalent to either a disc or a punctured disc. If b2 = −1 and a2 = a ′
2/a

′′
2 for

some relatively prime integers a ′
2 ≥ 0 and a ′′

2 > 0, then this equivalence has the
form ζ2 �→ (µ2ζ

a ′′
2

2 , ν2ζ
a ′

2
2 ), where ζ2 is the variable in a disc of a suitable radius

and where µ
a ′

2
2 ν−a ′′

2
2 = α

a ′′
2

2 . If a2 = 1 and b2 = 0, the equivalence has the form
ζ2 �→ (α2 , ζ2).

Assume first that, for some α1 such that P α1
1 ∩ D̂1 ∩ U �= ∅, the intersections

P
α1
1 ∩D̂1 andP

α2
2 ∩D̂2 are equivalent to punctured discs r1

◦
8 and r2

◦
8, respectively

(we denote by 8 and
◦
8 the unit disc and the punctured unit disc, respectively). A

proper holomorphic map between r1
◦
8 and r2

◦
8 has the form ζ2 = const ζ k

1 , where
k is a positive integer. Hence, from the second equation in (2.1), we obtain

const ζ σ
1 = G(const ζµ

1 )

for all ζ1 in an open subset of r1
◦
8 and some nonzero σ,µ ∈ R. This means that

G(t) = const t τ for some τ ∈ R.
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Assume next that, for some α1 such that P α1
1 ∩ D̂1 ∩ U �= ∅, the intersections

P
α1
1 ∩ D̂1 and P

α2
2 ∩ D̂2 are equivalent to discs r18 and r28, respectively (in this

case, a ′
1 = 0 and a ′′

1 = 1). A proper holomorphic map between r18 and r28 has
the form ζ2 = r2B(ζ1/r1), where B is a Blaschke product in the unit disc. Hence,
from the second equation in (2.1), we obtain

constB(ζ)τ = G(const ζµ)

for all ζ in an open subset of the unit disc 8 and some nonzero τ,µ ∈ R. This
means that G(t) = constB(const t σ )τ for some σ, τ ∈ R.

In a similar way, considering the curves Q
β1
1 and Q

β2
2 with the equations

zd ′′
1 wd ′

1 = β1 (where d1 = d ′
1/d

′′
1 for some relatively prime integers d ′

1 ≤ 0
and d ′′

1 > 0) and zc2wd2 = β2 := G(β1/d ′′
1

1 ), respectively, we obtain that F(t) =
const tρ if Q

β1
1 ∩D̂1 and Q

β2
2 ∩D̂2 are equivalent to punctured discs and F(t) =

constB(const tη)ρ for some Blaschke product B in the unit disc if Qβ1
1 ∩ D̂1 and

Q
β2
2 ∩D̂2 are equivalent to discs (in the second case d ′

1 = 0 and d ′′
1 = 1), η, ρ ∈ R.

If F(t) = const tρ and G(t) = const t τ, then it follows from (2.1) that f is
elementary.

Let F(t) = const tρ and G(t) = constB(const t σ )τ, where B is a Blaschke
product in the unit disc with a zero away from 0. In this case, a ′

1 = 0 and a ′′
1 = 1.

It now follows from (2.1) that f has either the form

f1(z,w) = const zawbB̃(Ad ′′
1 zd ′′

1 wd ′
1),

f2(z,w) = constwd,
(2.2)

where a, b, d ∈ Z and B̃ is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, or the form

f1(z,w) = const zawbB̂(Ad ′′
1 zd ′′

1 wd ′
1),

f2(z,w) = const zcwdB̃(Ad ′′
1 zd ′′

1 wd ′
1),

(2.3)

where a, b, c, d ∈ Z , B̃ is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, B̂ is either a Blaschke product in the unit disc with the same
zeroes as B̃ or a constant, and a may be nonzero only if B̂ is nonconstant. Forms
(2.2) and (2.3) correspond to the cases a2 = 0 and a2 �= 0, respectively.

We shall now show that form (2.3) can be simplified. Assume first that B̂ is non-
constant. Then D̂2 contains the origin and f −1(0) contains the intersection with
D̂1 of a curve of the form zd ′′

1 wd ′
1 = const. Hence f −1(0) is not compact, which

contradicts the assumption that f is proper. Thus, B̂ ≡ const and therefore a =
0. So (2.3), in fact, differs from (2.2) only by permutation of the components of
the maps.

We shall now study form (2.2) of proper maps and the domains D̂1, D̂2 in more
detail. For every α1 such that |α1| > 1/C we have f(P

α1
1 ∩ D̂1) = P

α2
2 ∩ D̂2 ,

where α2 := F(α1) and where each of the curves P
α1
1 ∩ D̂1 and P

α2
2 ∩ D̂2 is
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equivalent to either a disc or a punctured disc. However, B̃ has a zero away from
0 and therefore P

α2
2 ∩ D̂2 is, in fact, equivalent to a disc; hence so is P

α1
1 ∩ D̂1.

This shows that either

D̂1 = {(z,w)∈ C2 : Ad ′′
1 |z|d ′′

1 |w|d ′
1 < 1, 0 < |w| < C} (2.4)

or
D̂1 = {(z,w)∈ C2 : |z| < 1/A, |w| < C}

(in the second case, we have d ′
1 = 0 and d ′′

1 = 1). Moreover, f of the form (2.2)
is a proper map from D̂1 onto a bounded Reinhardt domain only if d > 0 and
ad ′

1 − bd ′′
1 ≤ 0.

It is straightforward to observe that there exists no proper subdomain of D̂1

mapped properly by f onto a bounded Reinhardt domain and whose envelope
of holomorphy coincides with D̂1. Thus, D1 = D̂1 and hence D2 = D̂2. If (2.4)
holds then

D2 = {(z,w)∈ C2 : Ã|z|d̃ ′′
1 |w|d̃ ′

1 < 1, 0 < |w| < C̃}
for some relatively prime integers d̃ ′

1, d̃ ′′
1 , with d̃ ′

1 ≤ 0 and d̃ ′′
1 > 0, such that

d̃ ′
1/d̃

′′
1 = (ad ′

1 − bd ′′
1 )/(dd ′′

1 ) and Ã, C̃ > 0. If D1 is the bidisc then f can be
proper only if b = 0, and in this case D2 is also a bidisc. We have thus obtained
(i) of Theorem 0.1.

The case F(t) = constB(const tη)ρ and G(t) = const t τ, where B is a Blaschke
product in the unit disc with a zero away from 0, leads to the same description of
f and D1,D2 up to permutation of the components of f and the variables.

Let F(t) = constB1(const tη)ρ and G(t) = constB2(const t σ )τ, where B1,B2

are Blaschke products in the unit disc with zeroes away from 0. In this case, a ′
1 =

d ′
1 = 0 and a ′′

1 = d ′′
1 = 1. From (2.1) we see that either: f has the form

f1(z,w) = const zawbB̃1(Az)B̂1(w/C),

f2(z,w) = constwdB̂2(w/C),
(2.5)

where a, b, d ∈ Z , B̃1, B̂2 are nonconstant Blaschke products in the unit disc that
are nonvanishing at 0, B̂1 is either a Blaschke product in the unit disc with the
same zeroes as B̂2 or a constant, and b can be nonzero only if B̂1 is nonconstant;
or f has the form

f1(z,w) = const zawbB̃1(Az)B̂1(w/C),

f2(z,w) = const zcwdB̃2(Az)B̂2(w/C),
(2.6)

where a, b, c, d ∈ Z , B̂1, B̃2 are nonconstant Blaschke products in the unit disc
that are nonvanishing at 0, B̃1 is either a Blaschke product in the unit disc with
the same zeroes as B̃2 or a constant, B̂2 is either a Blaschke product in the unit
disc with the same zeroes as B̂1 or a constant, a can be nonzero only if B̃1 is non-
constant, and d can be nonzero only if B̂2 is nonconstant. Forms (2.5) and (2.6)
correspond to the cases a2 = 0 and a2 �= 0, respectively.
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We shall now show that forms (2.5) and (2.6) can be simplified. Assume that
in (2.5) B̂1 is nonconstant. Then D̂2 contains the origin and f −1(0) contains the
intersection of a complex line of the form w = const with D̂1. Hence f −1(0) is
not compact, which contradicts the assumption that f is proper. Therefore B̂1 ≡
const and hence b = 0. A similar argument shows that in (2.6) we have B̃1 ≡
const and B̂2 ≡ const, so a = d = 0. Thus (2.5) reduces to

f1(z,w) = const zaB̃1(Az),

f2(z,w) = constwdB̂2(w/C),
(2.7)

where a, d ∈ Z , a ≥ 0, d ≥ 0, B̃1, B̂2 are nonconstant Blaschke products in the
unit disc that are nonvanishing at 0, and (2.6) reduces to (2.7) up to permutation
of the components of the maps.

Furthermore, repeating the argument preceding formula (2.4) shows that, for
every α1,β1 with |α1| > 1/C and |β1| < 1/A, the intersections P

α1
1 ∩ D̂1 and

Q
β1
1 ∩ D̂1 are equivalent to discs and therefore

D̂1 = {(z,w)∈ C2 : |z| < 1/A, |w| < C}.
Again, there exists no proper subdomain of D̂1 mapped properly by f onto a
bounded Reinhardt domain and whose envelope of holomorphy coincides with
D̂1. Thus, D1 = D̂1 and hence D2 = D̂2. Therefore, D1 and D2 are bidiscs and
we have obtained (iii) of Theorem 0.1.

Assume now that a1, d1 /∈ Q. For a suitable α1 �= 0, consider the curve P
α1
1 ob-

tained by the analytic continuation of the curve defined by the equation za1w−1 =
α1 in U. As before, we choose α1 to ensure that P

α1
1 ∩ D̂1 ∩ U �= ∅. The inter-

section P
α1
1 ∩ D̂1 is not closed in D̂1 and is biholomorphically equivalent to a

half-plane; the equivalence is given by σ1 : ζ1 �→ (exp[ζ1 + µ1], exp[a1ζ1 + ν1]),
where ζ1 is the variable in a suitable half-plane R1 := {ζ1 ∈ C : Re ζ1 < s1} and
exp[µ1a1 − ν1] = α1.

As before, we observe that f(P
α1
1 ∩ D̂1) lies in P

α2
2 ∩ D̂2 , where P

α2
2 for α2 :=

F(α1) is obtained by the analytic continuation of a connected component of the
set given by za2wb2 = α2 near f(p). If a2 and b2 were rationally dependent
then the intersection P

α2
2 ∩ D̂2 would be closed in D̂2. Hence f −1(P

α2
2 ∩ D̂2)

would contain the closure of P
α1
1 ∩ D̂1 in D̂1, which is |P α1

1 | ∩ D̂1, where |P α1
1 |

is the Levi-flat hypersurface with the equation |z|a1|w|−1 = |α1|. Therefore, a2

and b2 are in fact rationally independent, and P
α2
2 ∩ D̂2 is biholomorphically

equivalent to either a half-plane or a strip with the equivalence map σ2 : ζ2 �→
(exp[−b2ζ2 + µ2 ], exp[a2ζ2 + ν2 ]), where ζ2 is the variable in either a suitable
half-plane R2 := {ζ2 ∈ C : Re ζ2 < s2} or a suitable strip R ′

2 := {ζ2 ∈ C :
s ′

2 < Re ζ2 < s2} and where exp[µ2a2 + ν2b2 ] = α2. Changing the function F

if necessary, we can assume that in the first case we have a2 > 0 and b2 < 0.
It is now straightforward to show that f(P

α1
1 ∩ D̂1) = P

α2
2 ∩ D̂2 and that the

restriction of f to P
α1
1 ∩ D̂1 is proper. This restriction gives rise to a proper holo-

morphic map ϕ := σ−1
2 � f � σ1 either between R1 and R2 or between R1 and R ′

2.
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We shall now show that ϕ is one-to-one. Assume the contrary and let l1 be the line
given by the equation Re ζ1 = s1. Since ϕ is not one-to-one, ϕ−1(∞) contains a
point ξ ∈ l1. Observe that σ−1

1 (P
α1
1 ∩ (∂D̂1\ I )) = l1 and therefore σ1(ξ)∈ ∂D̂1\ I.

In particular, f is defined near σ1(ξ) and f(σ1(ξ))∈ ∂D̂2. On the other hand, con-
sider in either R2 or R ′

2 a sequence {ξn} converging to ∞ such that the sequence
{σ2(ξn)} converges to a point in D̂2. Let {ξ ′

n} be a sequence in R1 converging to
ξ such that ϕ(ξ ′

n) = ξn for all n. Then {f(σ1(ξ
′
n))} converges to a point in D̂2 ,

which is impossible. Hence ϕ is one-to-one. This argument also shows that either
ϕ(l1) = l2 or ϕ(l1) = l ′2 , where l2 and l ′2 are the lines given by the equations
Re ζ2 = s2 and Re ζ2 = s ′

2 , respectively. It follows that P α2
2 ∩ D̂2 is in fact equiv-

alent to R2 and that ϕ(l1) = l2 and ϕ(ζ1) = rζ1 + q for r > 0 and q ∈ iR.

Then, from the second equation in (2.1), we obtain

const exp[σζ1] = G(const exp[µζ1])

for all ζ1 in an open subset of R1 and some nonzero σ,µ ∈ R. Hence G(t) =
const t τ for some τ ∈ R. Similarly, F(t) = const tρ for some ρ ∈ R. It thus
follows from (2.1) that f is elementary.

We shall now assume that a1 /∈ Q and d1 ∈ Q. Repeating the preceding argu-
ments, we obtain that G(t) = const t τ for some τ ∈ R and that either F(t) =
const tρ or F(t) = constB(const tη)ρ for some η, ρ ∈ R, where B is a Blaschke
product in the unit disc with a zero away from 0. In the first case we can show
(similarly to our previous demonstration) that f is elementary. In the second case
it is easy to see using (2.1) that f is necessarily a multivalued map. This shows
that the formula for F does not actually contain a Blaschke product with a zero
away from 0 and hence f is elementary. Likewise, if a1 ∈ Q and d1 /∈ Q then f is
elementary.

The Case of Two Tori. Assume now that S1 is a union of two tori. In this case
log(D̂1) has the form

log(D̂1) = {(x, y)∈ R2 : a1x + b1y > −lnC, c1x + d1y < −lnA,

u1x + v1y < −lnE}
for some u1, v1, where a1 ≥ 0, b1 ≤ 0, c1 ≥ 0, d1 ≤ 0, b1c1 ≤ a1d1, and A,C,E >

0. Note that u1 and v1 are not arbitrary: the line u1x + v1y = 0 must intersect the
other two “to the left” of their intersection point.

The logarithmic diagram log(D̂1) has two vertices, and we shall first concen-
trate on the one made by the lines a1x + b1y = −lnC and u1x + v1y = −lnE.

Let T1 be the torus in S1 corresponding to this vertex. As before, we can show that
there exist holomorphic functions of one variable F and G such that, in a neigh-
borhood U of p ∈ T1,

f
a2

1 f
b2

2 = F(za1wb1),

f
u2

1 f
v2
2 = G(zu1wv1)

(2.8)

for some a2 , b2 , u2 , v2 ∈ R.
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Assume first that both pairs a1, b1 and u1, v1 are rationally dependent. As be-
fore, we obtain that either G(t) = const t τ or G(t) = constB(const t σ )τ, where
B is a Blaschke product in the unit disc with a zero away from 0 and where σ, τ ∈
R (in the second case, either a1 = 0 or b1 = 0). Similarly, considering the inter-
sections Q

β1
1 ∩ D̂1, where Q

β1
1 is the curve with the equation zu1wv1 = β1, we

see that F(t) = const tρ for some ρ ∈ R. For the proof one must note that every
connected component of Qβ1

1 ∩ D̂1 is biholomorphically equivalent to an annulus
with nonzero inner radius and that every proper map between two such annuli has
the form ζ �→ const ζ k, where k ∈ Z \ {0}.

For G(t) = const t τ it follows from (2.8) that f is elementary, and we shall
therefore assume that G(t) = constB(const t σ )τ, where B is a Blaschke product
in the unit disc with a zero away from 0 (in this case, either a1 = 0 or b1 = 0).
Now (2.8) implies that, up to permutation of its components, f has either the form

f1(z,w) = const zawbB̃(Eu′
1/u1zu′

1wv ′
1),

f2(z,w) = constwd,
(2.9)

where a, b, d ∈ Z and B̃ is a nonconstant Blaschke product in the unit disc that is
nonvanishing at 0, or the form

f1(z,w) = const zawbB̃(Ev ′
1/v1zu′

1wv ′
1),

f2(z,w) = const zc,

where a, b, c ∈ Z and B̃ is a nonconstant Blaschke product in the unit disc that
is nonvanishing at 0. These forms correspond to the cases a1 = 0 and b1 = 0,
respectively. In the first case u1 > 0, and u′

1 > 0 and v ′
1 are relatively prime in-

tegers such that v1/u1 = v ′
1/u

′
1. In the second case v1 > 0, and u′

1, v ′
1 > 0 are

relatively prime integers such that u1/v1 = u′
1/v

′
1. The preceding forms are ob-

tained from one another by permutation of the variables, and we shall assume that
(2.9) holds.

For a1 = 0, the image of D̂1 under a map of the form (2.9) is a Reinhardt do-
main only if c1 = 0, and we obtain

D̂1 = {(z,w)∈ C2 : Eu′
1/u1|z|u′

1|w|v ′
1 < 1, A−1/d1 < |w| < C−1/b1}.

A map of the form (2.9) is a proper map from D̂1 onto a Reinhardt domain only
if d �= 0 and a ≥ 0. As before, there exists no proper subdomain of D̂1 mapped
properly by f onto a bounded Reinhardt domain and whose envelope of holomor-
phy coincides with D̂1. Thus, D1 = D̂1 and hence D2 = D̂2. Then we have

D2 = {(z,w)∈ C2 : Ẽ|z|ũ′
1|w|ṽ ′

1 < 1, Ã < |w| < C̃}
for some relatively prime integers ũ′

1 and ṽ ′
1, where ũ′

1 > 0 and such that ṽ ′
1/ũ

′
1 =

(av ′
1 − bu′

1)/(du
′
1) and Ã, C̃, Ẽ > 0. We have thus obtained (ii) of Theorem 0.1.

Assume now that a1, b1 are rationally dependent and that u1, v1 are rationally in-
dependent. Then, as before, either G(t) = const t τ or G(t) = constB(const t σ )τ,
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where B is a Blaschke product in the unit disc with a zero away from 0 and where
σ, τ ∈ R. Considering the intersections Q

β1
1 ∩ D̂1, where Q

β1
1 is the curve with

the equation zu1wv1 = β1, we see that F(t) = const tρ for some ρ ∈ R. For the
proof one must note that every connected component ofQβ1

1 ∩ D̂1 is equivalent to a
strip, with the equivalence map of the form ζ �→ (exp[−v1ζ +µ1], exp[u1ζ +ν1])
where exp[µ1u1 + ν1v1] = β1, and every proper map between two strips has the
form ζ �→ rζ + q, where r �= 0 and q ∈ iR. If G(t) = const t τ for some τ ∈
R, then it follows from (2.8) that f is elementary. If G(t) = constB(const t σ )τ,
where B is a Blaschke product in the unit disc with a zero away from 0, then it
is easy to see from (2.8) that f is necessarily a multivalued map. This shows that
the formula for G does not actually contain a Blaschke product with a zero away
from 0, so f is elementary.

If a1 and b1 are rationally independent, we obtain F(t) = const tρ and G(t) =
const t τ with ρ, τ ∈ R. In this case, (2.8) shows that f is elementary.

3. Spherical Case

Assume now that U1 := ∂D̂1\ I is a connected, real-analytic, spherical hypersur-
face. Consider the logarithmic diagram log(D̂1) of D̂1 and the tube domain T1 ⊂
C2 with base log(D̂1) ⊂ R2, that is, T1 = log(D̂1) + iR2. The domain T1 covers
D̂1\ I by means of the map " : (z,w) �→ (ez, ew). Clearly, for every p ∈ D̂1\ I,
the fiber "−1(p) is preserved by the abelian group G of translations of C2 of the
form (z,w) �→ (z + i2πn,w + i2πm), n,m ∈ Z. The group G has two genera-
tors: (z,w) �→ (z + i2π,w) and (z,w) �→ (z,w + i2π). We denote these maps
by Gz and Gw, respectively.

Since L1 := ∂T1 is a closed spherical tube hypersurface, it follows from [DaY]
that there exists an affine transformation F1 of the form(

z

w

)
�→ A

(
z

w

)
+ b, (3.1)

where A ∈ GL2(R) and b ∈ R2, that maps L1 onto one of the four hypersurfaces
defined by the following equations

(1) Rew = (Re z)2,

(2) Rew = exp[2 Re z],

(3) cos(Rew) = exp[Re z], − π/2 < Rew < π/2,

(4) exp[2 Re z] + exp[2 Rew] = 1.

(3.2)

Let T̃1 := F1(T1). Clearly, T̃1 covers D̂1\ I by means of the map "1 := " � F −1
1 ,

and for each p ∈ D̂1\ I the group G1 := F1 � G � F −1
1 preserves the fiber "−1

1 (p).

Further, for each hypersurface listed in (3.2) one can explicitly write a corre-
sponding locally biholomorphic map onto a portion of the unit sphere S3 as follows
(see [DaY]):
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(1) z �→ z√
2

, w �→ w − z2

2
,

(2) z �→ ez, w �→ w,

(3) z �→ exp

[
z + iw

2

]
, w �→ exp[iw],

(4) z �→ ez

ew − 1
, w �→ −ew + 1

ew − 1
.

(3.3)

In formulas (3.3), S3 punctured at a point is realized as the hypersurface with
the equation Rew = |z|2. The deleted point in this realization is at infinity, and
we denote it by p∞.

Let L̃1 := ∂T̃1 and let θ1 be the map from list (3.3) corresponding to L̃1. In case
(1) L̃1 is mapped by θ1 onto S3 \{p∞}, in cases (2) and (3) onto S3 \({p∞}∪Lz),
and in case (4) onto S3 \({p∞}∪Lz ∪ {w = 1}). We also point out that in case (1)
the map θ1 takes T̃1 onto the unit ball B2 realized as {(z,w)∈ C2 : Rew > |z|2},
in cases (2) and (3) onto B2 \ Lz, and in case (4) onto B2 \ (Lz ∪ {w = 1}).

For h ∈ G1, consider now the locally defined map θ1 � h � θ−1
1 from S3 into it-

self. It extends to an automorphism ĥ of B2, and hence G1 gives rise to a subgroup
Ĝ1 of the group Aut(B2) of holomorphic automorphisms of B2. The group Ĝ1 is
clearly abelian and has at most two generators.

Formulas (3.3) yield the following descriptions of transformations in the group
Ĝ1 in each of the four cases (where the vector (α1,α2) varies over a lattice in R2):

(1) z �→ z + iα1, w �→ −2iα1z + w + α2
1 + iα2 ,

(2) z �→ eiα1z, w �→ w + iα2 ,

(3) z �→ eiα1+α2z, w �→ e2α2w,

(4) z �→ 2eiα1z

1 + eiα2 + (1 − eiα2)w
, w �→ (e iα2 + 1)w + 1 − eiα2

1 + eiα2 + (1 − eiα2)w
.

(3.4)

Next, since f is locally biholomorphic at the points of U1\ Jf , the set H2 con-
tains the real-analytic spherical hypersurface U2 := f(U1\ (Cf ∪ Jf)). Let T2 be
the covering tube domain for D̂2 \ I and let L2 := "−1(U2) be the portion of
∂T2 covering U2. By [DaY], there is an affine transformation F2 of the form (3.1)
mapping L2 onto an open tube subset of one of hypersurfaces (3.2). Let L̃2 :=
F2(L2). Clearly, L̃2 covers U2 by means of the map "2 := "�F −1

2 , and for every
p ∈ U2 the group G2 := F2 � G � F −1

2 preserves the fiber "−1
2 (p). Let θ2 be the

map from list (3.3) corresponding to L̃2. As for the group G1, from every h∈G2

we can (using the map θ2) produce ĥ∈Aut(B2); therefore, G2 gives rise to an
abelian subgroup Ĝ2 ⊂ Aut(B2) with at most two generators. In each of the four
cases, Ĝ2 is described by formulas (3.4).

The map f induces a homomorphism from Ĝ1 into Ĝ2 as follows. We fix p1 ∈
U1 \ (Cf ∪ Jf) and let p2 := f(p1). Clearly, p2 ∈ U2. For g1 ∈ G1 we choose
p ′

1,p ′′
1 ∈ "−1

1 (p1) such that g1(p
′
1) = p ′′

1 (note that g1 is fully determined by this
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condition). Now fix a curve γ̃1 ⊂ "−1
1 (U1\(Cf ∪ Jf)) from p ′

1 to p ′′
1 and let γ1 :=

"1(γ̃1). It is evident that γ1 is a closed curve in U1\ (Cf ∪ Jf) passing through p1

and that γ2 := f(γ1) is a closed curve in U2 passing through p2. For a fixed p ′
2 ∈

"−1
2 (p2) we now consider a curve γ̃2 ⊂ L̃2 originating at p ′

2 such that "2(γ̃2) =
γ2. Let p ′′

2 ∈"−1
2 (p2) be the other endpoint of γ̃2 and let g2 ∈G2 be the map such

that g2(p
′
2) = p ′′

2. The correspondence g1 �→ g2 defines a map from G1 into G2

that induces a map I : Ĝ1 → Ĝ2 with I(ĝ1) = ĝ2 (we show in the next para-
graph that I is indeed a well-defined map).

Denote by ψ an analytic element of θ−1
1 defined near p̂1 := θ1(p

′
1) such that

ψ(p̂1) = p ′
1, and denote by π an analytic element of "−1

2 defined near p2 such that
π(p2) = p ′

2. Consider the map θ2 � π � f � "1 � ψ mapping biholomorphically
a neighborhood of p̂1 in S3 onto a neighborhood of p̂2 := θ2(p

′
2) in S3. By the

Poincaré theorem this map extends to an automorphism ϕ of B2, and one immedi-
ately observes that I(ĝ1) = ϕ � ĝ1 �ϕ−1 for all ĝ1 ∈ Ĝ1. This shows, in particular,
that I is independent of the choice of the curves γ̃1 and is single-valued. Clearly,
I is a homomorphism.

We now require the following result.

Lemma 3.1. I(Ĝ1) is a finite-index subgroup of Ĝ2.

Proof. Sincef is proper, f −1(p2) consists of finitely many points—say,p1, q1, . . . ,
qk ∈ U1, k ≥ 0. Let *1

1, . . . ,*k
1 be curves in U1 \ (Cf ∪ Jf) joining respectively

q1, . . . , qk with p1. Clearly, *j

2 := f(*
j

1 ), j = 1, . . . , k, are closed curves in U2

passing through p2. As before, each curve *
j

2 gives rise to an element gj

2 of G2

and, consequently, to an element ĝ j

2 of Ĝ2.

Fix g2 ∈ G2 and let p ′′
2 := g2(p

′
2). Let *̃2 ⊂ L̃2 be a curve from p ′

2 to p ′′
2 and

let *2 := "2(*̃2). Clearly, *2 is a closed curve in U2 passing through p2. Consider
the curve *1 ⊂ U1\ (Cf ∪ Jf) originating at p1 such that f(*1) = *2.

If *1 is closed, it gives rise to an element ĝ1 of Ĝ1 and so we obviously have
ĝ2 = I(ĝ1). Hence ĝ2 ∈I(Ĝ1) in this case.

Assume now that *1 is not closed, and let q s (1 ≤ s ≤ k) be its other endpoint.
Let g1 be the element of G1 corresponding to the closed curve obtained by joining
*1 and *s

1 . Then we clearly have I(ĝ1) = ĝ2 + ĝ s
2 and hence ĝ2 ∈ −ĝ s

2 +I(Ĝ1).

We have thus shown that, for ĝ2 ∈ Ĝ2 , we have either ĝ2 ∈ I(Ĝ1) or ĝ2 ∈
−ĝ s

2 + I(Ĝ1) for some 1 ≤ s ≤ k. Therefore, I(Ĝ1) is of finite index in Ĝ2.

The proof of the lemma is complete.

The following result imposes constraints on the possible forms of L̃1 and L̃2.

Proposition 3.2. We have L̃2 ⊂ L̃1, and the map f is elementary unless L̃1 is
either hypersurface (2) or hypersurface (4) of (3.2).

Proof. We begin by proving the first assertion. Assume that L̃2 �⊂ L̃1. Then we
shall show that the group Ĝ1 either cannot be conjugate in Aut(B2) to a subgroup
of Ĝ2 or can only be conjugate to a subgroup of Ĝ2 of infinite index. It will then
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follow from Lemma 3.1 that there exists no proper holomorphic map from D̂1 onto
D̂2 , contradicting our assumptions. We shall consider all possibilities for Ĝ1 and
Ĝ2 (see (3.4)).

Assume that L̃1 is hypersurface (1) and that L̃2 lies in hypersurface (2). In this
case, the only fixed point of each of Ĝ1 and Ĝ2 in B2 is the point p∞ ∈ S3 at in-
finity. If ϕ � Ĝ1 � ϕ−1 ⊂ Ĝ2 for some ϕ ∈ Aut(B2), then ϕ(p∞) = p∞ (i.e., ϕ is
affine). The general form of affine automorphisms of B2 is

z �→ λeitz + ζ,

w �→ λ2w + 2ζ̄λe itz + |ζ|2 + iµ,
(3.5)

where λ > 0, ζ ∈ C, and t,µ ∈ R. It is now straightforward to show that Ĝ1 can-
not be conjugate to a subgroup of Ĝ2 by means of an automorphism of the form
(3.5). The same argument works for the case when L̃1 is hypersurface (2) and L̃2

lies in hypersurface (1).
Also, if L̃1 is one of hypersurfaces (1) or (2) and if L̃2 lies in hypersurface (3),

then the group Ĝ1 cannot be conjugate to a subgroup of Ĝ2 because Ĝ1 has only
one fixed point in S3 (the point p∞) whereas Ĝ2 has two (0 and p∞).

Let L̃1 be hypersurface (3) and assume that L̃2 lies in one of hypersurfaces (1)
or (2). Then Ĝ1 has two fixed points in S3 (0 and p∞) and the only fixed point of
Ĝ2 is p∞. It is clear from formula (3.4) that Ĝ2 contains nontrivial elements fixing
a point in S3 other than p∞ only if L̃2 lies in hypersurface (2); for such elements
α2 = 0. However, a subgroup of Ĝ2 containing only elements satisfying this con-
dition has infinite index in Ĝ2. Hence, Ĝ1 cannot be conjugate to a finite-index
subgroup of Ĝ2.

Next, if L̃1 is one of hypersurfaces (1), (2), or (3) and if L̃2 lies in hypersurface
(4), then the group Ĝ1 cannot be conjugate to a subgroup of Ĝ2 because Ĝ1 does
not have any fixed points in B2 whereas Ĝ2 fixes the point (0,1)∈B2.

Finally, let L̃1 be hypersurface (4) and assume that L̃2 lies in one of hypersur-
faces (1), (2), or (3). Then Ĝ1 has a fixed point in B2 and Ĝ2 fixes no point in B2.

It is clear from formula (3.4) that Ĝ2 contains nontrivial elements fixing a point in
B2 only if L̃2 lies in either hypersurface (2) or hypersurface (3); for such elements
α2 = 0. However, a subgroup of Ĝ2 containing only elements satisfying this con-
dition has infinite index in Ĝ2. Hence, Ĝ1 cannot be conjugate to a finite-index
subgroup of Ĝ2.

We thus have shown that L̃2 ⊂ L̃1. We shall now consider the two possibilities
for L̃1. In what follows we denote the map θ1 = θ2 by θ.

Let L̃1 be hypersurface (1) and let Gz
j := θ � Fj � Gz � F −1

j � θ−1 and Gw
j :=

θ � Fj � Gw � F −1
j � θ−1 be generators of Ĝj , j = 1, 2. Since I(Ĝ1) ⊂ Ĝ2 , it fol-

lows that

ϕ � Gz
1 � ϕ−1 = (Gz

2)
a1 � (Gw

2 )
a2,

ϕ � Gw
1 � ϕ−1 = (Gz

2)
b1 � (Gw

2 )
b2

for some a1, a2 , b1, b2 ∈ Z such that a1b2 − a2b1 �= 0.
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Consider the maps G̃z
1 := θ−1 �ϕ �Gz

1 �ϕ−1 � θ and G̃w
1 := θ−1 �ϕ �Gw

1 �ϕ−1 � θ;
they generate a subgroup of the group G2. Let F be the linear map such that
F � G̃z

1 � F −1 = Gz and F � G̃w
1 � F −1 = Gw.

We shall now introduce an intermediate domain D through which the map f

can be factored. Let T := F(T̃1) and D := "(T ). Clearly, D is a Reinhardt do-
main. We define a biholomorphic map f from D̂1\ I onto D as follows: for p ∈
D̂1\ I consider a point p ′ ∈ "−1

1 (p) and let f(p) := (" � F � θ−1 � ϕ � θ)(p ′).
By the construction of F, this definition is independent of the choice of p ′. It is

straightforward to prove that f is a biholomorphic map between ¯̂
D1 \ I and D̄.

The domain D is Kobayashi-hyperbolic as a biholomorphic image of the bounded
domain D̂1\ I.

It is shown in [Kr] that a biholomorphic map between two hyperbolic Reinhardt
domains in Cn can be represented as the composition of their automorphisms and
an elementary biholomorphic map between them. Since D̂1\ I and D do not inter-
sect I, it follows from [Kr] that all automorphisms of these domain are elementary.
Therefore, f is an elementary map.

Further, F −1
2 = G � F, where G is an affine transformation of the form (3.1)

with
A =

(
a1 b1

a2 b2

)
.

Hence V := "(F(L̃2)) is mapped onto U2 by an elementary map g of the form

z �→ const za1wb1,

w �→ const za2wb2.

It is straightforward to verify that f = g � f on f−1(V ) \ (Cf ∪ Jf), and therefore
f is an elementary map.

Assume now that L̃1 is hypersurface (3). Then each of Ĝ1 and Ĝ2 has exactly
two fixed points: 0 and p∞. We thus have either that ϕ(0) = 0 and ϕ(p∞) =
p∞ or that ϕ(0) = p∞ and ϕ(p∞) = 0. Hence ϕ preserves B2 ∩ Lz and so can
be lifted to a holomorphic automorphism of T̃1; that is, there exists a map ϕ̃ ∈
Aut(T̃1) such that θ � ϕ̃ = ϕ � θ. The map ϕ̃ is also defined on L̃1 and can be cho-
sen to satisfy the condition ϕ̃(p ′

1) = p ′
2 , which yields ϕ̃ �G1 � ϕ̃−1 ⊂ G2. Hence,

as before, we can construct an intermediate hyperbolic domain D, a biholomor-
phic map f from D̂1\ I onto D (that, as before, turns out to be elementary), and
an elementary map g from a portion of ∂D into U2 such that f = g � f on a portion
of U1. Thus, we again obtain that f is elementary.

The proof of the proposition is complete.

Remark 3.3. The argument in the last paragraph of the proof of Proposition 3.2
shows that f can be represented as a composition of two elementary maps f and
g (as described there) whenever the corresponding automorphism ϕ of B2 can be
lifted to an automorphism of the tube domain T̃1.

It now remains to consider the cases when L̃2 ⊂ L̃1 and L̃1 is either hypersurface
(2) or hypersurface (4) of (3.2). As in the proof of Proposition 3.2, we denote the
map θ1 = θ2 by θ.
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Case I

Let L̃1 be hypersurface (2). Then the only fixed point of each of Ĝ1 and Ĝ2 in B2

is p∞ and so ϕ has the form (3.5). Assume that the group Ĝ1 contains an element
ĝ1 changing the z-coordinate. Then the only complex line preserved by ĝ1 is Lz

(see (3.4)). The map ϕ � ĝ1 � ϕ−1 also preserves a unique complex line, and it fol-
lows from (3.4) that this line is Lz. Therefore, ϕ preserves Lz (i.e., we have ζ =
0). Arguing as in the last paragraph of the proof of Proposition 3.2, we obtain that
f in this case is elementary.

Assume now that none of the elements of Ĝ1 changes the z-coordinate—that is,
assume that Ĝ1 consists of transformations of the form

z �→ z,

w �→ w + iα1n + iβ1m, n,m∈ Z ,
(3.6)

for some α1,β1 ≥ 0 with α1 + β1 > 0. If in formula (3.5) we have ζ = 0, then
ϕ preserves Lz and we again obtain that f is elementary. Therefore, we shall as-
sume that ζ �= 0.

We shall show first of all that the group Ĝ1 has only one generator.

Proposition 3.4. The group Ĝ1 consists of transformations of the form

z �→ z,

w �→ w + iα0n, n∈ Z ,
(3.7)

for some α0 > 0.

Proof. Let γ := Lz ∩ S3 and γ ′ := ϕ−1(γ ). Clearly, γ ′ = {z = −1/λe−itζ} ∩
S3. Let γ ′

k := {z = ln0(−1/λe−itζ) + i2πk} ∩ L̃1 (k ∈ Z) be the curves in
L̃1 forming the set θ−1(γ ′) (here ln0 denotes the principal branch of the loga-
rithm). For some k0 ∈ Z and c ∈ R and for sufficiently small ε > 0, the cir-
cle γ̃ := {|z − (ln0(−1/λe−itζ) + i2πk0)| = ε} ∩ L̃1 ∩ {Imw = c} lies in
L̃1\ ("−1

1 (Cf ∪ Jf) ∪k∈Z γ ′
k ). Recall that near p ′

1 ∈ L̃1\ "−1
1 (Cf ∪ Jf) we have

"2 � η � ϕ � θ = f � "1,

where η is some analytic element of θ−1. The map on the right-hand side is well-
defined everywhere on L̃1, so the analytic continuation of the map on the left-hand
side along γ̃ produces a single-valued map. Clearly, after the analytic continua-
tion of η � ϕ � θ along γ̃, the value of this map changes by (±2π, 0). Hence G2

contains the map Gz (defined at the beginning of this section). Transformations in
G2 have the form(

z

w

)
�→

(
z

w

)
+ i

(
α ′

2

α2

)
n + i

(
β ′

2

β2

)
m, n,m∈ Z , (3.8)

for some linearly independent vectors (α ′
2 ,α2), (β ′

2 ,β2) ∈ R2. Since the map Gz

is contained in G2 , for some n0,m0 ∈ Z it follows that

α ′
2n0 + β ′

2m0 = 2π,

α2n0 + β2m0 = 0.

Hence α2 and β2 are rationally dependent.
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Next, a straightforward calculation shows that the subgroup ϕ � Ĝ1 � ϕ−1 of Ĝ2

consists of the maps

z �→ z,

w �→ w + iλ2α1n + iλ2β1m, n,m∈ Z.
(3.9)

Taking into account that the general form of an element of Ĝ2 is

z �→ exp(iα ′
2n + iβ ′

2m)z,

w �→ w + iα2n + iβ2m, n,m∈ Z ,

we see that α1 and β1 are rationally dependent; therefore, transformations from Ĝ1

have the form (3.7) for some α0 > 0 as required.

Let D := {(z,w) ∈ C2 : |w| > exp[|z|2]}. We shall now construct a locally bi-
holomorphic map h from D̂1\ I onto D \ I = D \ Lz. Obviously, the tube do-
main over the logarithmic diagram of D is precisely T̃1 and so T̃1 covers D \ I by
means of the map ". We now use the map θ to construct a subgroup Ĝ ⊂ Aut(B2)

from the group G acting on T̃1 (in a manner similar to the way the groups Ĝ1, Ĝ2

were derived from G1,G2). Clearly, Ĝ consists of the transformations

z �→ z,

w �→ w + i2πn, n∈ Z.

Consider the following automorphism of B2:

ϕ1 : z �→ δ0 z, w �→ δ2
0w,

where δ0 := √
2π/α0. From (3.7) we obtain ϕ1 � Ĝ1 � ϕ−1

1 ⊂ Ĝ. For p ∈ D̂1\ I

consider a point p ′ ∈ "−1
1 (p), let q ∈ θ−1((ϕ1 � θ)(p ′)), and set h(p) := "(q).

Clearly, this definition is independent of the choices of p ′ and q, and the map so de-
fined is locally biholomorphic. Moreover, since ϕ1 preserves Lz, we can show that
h is elementary by arguing as in the last paragraph of the proof of Proposition 3.2.

We shall now pause to describe the general form of a bounded domain whose
complement to I can be mapped onto D \ I by means of an elementary map and
to describe such elementary maps. For a1, b1, c1, d1 ∈ Z , a1 > 0, b1 > 0, c1 ≥ 0,
and d1 > 0 such that a1d1 − b1c1 > 0 and for C1,E1 > 0, consider the domain

R(a1, b1, c1, d1,C1,E1)

:= {(z,w)∈ C2 : C1|z|c1|w|−d1 > exp[E1|z|2a1|w|−2b1 ], w �= 0}.
The general form of an elementary map from R(a1, b1, c1, d1,C1,E1) \ I onto
D \ I is

z �→ eiτ1
√
C1z

a1w−b1,

w �→ eiτ2
√
E1z

c1w−d1,
(3.10)

where τ1, τ2 ∈ R. We observe that R(a1, b1, c1, d1,C1,E1) ∩ Lz �= ∅ only if
c1 = 0. It is straightforward to show that a bounded domain whose comple-
ments to I can be mapped onto D \ I by an elementary map, up to permuta-
tion of the variables, is some R(a1, b1, c1, d1,C1,E1) minus a closed subset of
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Lz. Because D̂1 is pseudoconvex, up to permutation of the variables we have
either D̂1 = R(a1, b1, c1, d1,C1,C2) or D̂1 = R(a1, b1, 0, d1,C1,C2) \ Lz for some
a1, b1, c1, d1,C1,E1.

We shall now construct a biholomorphic map f : D → Dλ, where Dλ :=
{(z,w)∈ C2 : |w|λ2

> exp[|z|2]}. The tube domain

T λ := {(z,w)∈ C2 : λ2 Rew > exp[2 Re z]}
covers Dλ \ I by means of " and is mapped into B2 by the map

θ λ : z �→ ez, w �→ λ2w.

Denote by Ĝλ ⊂ Aut(B2) the subgroup obtained by means of θ λ from the group
G acting on T λ. Clearly, Ĝλ consists of the transformations

z �→ z,

w �→ w + iλ2 2πn, n∈ Z.

Let ϕ2 be the following automorphism of B2:

z �→ λeitz + δ0ζ,

w �→ λ2w + 2δ0 ζ̄λe
itz + δ2

0 |ζ|2 + iδ0µ.

A straightforward calculation shows that ϕ2 � Ĝ � ϕ−1
2 = Ĝλ. Let L′ := {z =

−1/λe−it δ0ζ}. For p ∈ D \ (Lz ∪ L′) consider a point p ′ ∈ "−1(p), let q ∈
θλ−1

((ϕ2 � θ)(p ′)), and set f(p) := "(q). This definition is obviously independent
of the choices of p ′ and q. It is straightforward to verify that f maps D \(Lz ∪L′)
biholomorphically onto Dλ \(Lz ∪L′′), where L′′ := {z = δ0ζ}. Since D and Dλ

have bounded realizations, it follows that f extends to a map (also denoted by f )
from D onto Dλ. This map is biholomorphic, and we have f(D ∩ Lz) = Dλ ∩ L′′
and f(D ∩ L′) = Dλ ∩ Lz. Furthermore, f can be represented as f = f1 � f2 , with

f1 : z �→ λz, w �→ w

and f2 ∈Aut(D). The map f2 has the form (see [Kr; Sh])

z �→ eiτ1z + s,

w �→ eiτ2 exp[2 s̄e iτ1z + |s|2]w,
(3.11)

where τ1, τ2 ∈ R and s ∈ C∗.
Finally, we define a locally biholomorphic map g from Dλ \ I = Dλ \ Lz onto

� := "2(T̃1); it is constructed similarly to the map h. Consider the following
automorphism of B2:

ϕ3 : z �→ 1

δ0
z, w �→ 1

δ2
0

w.

It follows from (3.7) and (3.9) that ϕ3 � Ĝλ � ϕ−1
3 ⊂ Ĝ2. For p ∈ Dλ \ I let p ′ ∈

"−1(p), let q ∈ θ−1((ϕ3 � θ λ)(p ′)), and set g(p) := "2(q). As before, this
definition is independent of the choices of p ′ and q (recall that G2 contains the
transformation Gz), and the map so defined is locally biholomorphic. Since ϕ3
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preserves Lz, we obtain—arguing again as in the last paragraph of the proof of
Proposition 3.2—that g is elementary.

The composition g � f � h maps V := h−1((g � f )−1(U2) \ I ) into U2 ⊂ ∂�.

Since ϕ = ϕ3 � ϕ2 � ϕ1, it follows that f = g � f � h on V \ (Cf ∪ Jf). Therefore,
f = g � f �h on D̂1\ h−1(L′). Clearly, f maps D̂1\ h−1(L′) onto a set of the form
� \U, where either U = ∅ (if D̂1 ∩ I �= ∅) or U = g(L′′ ∩ Dλ) (if D̂1 ∩ I = ∅).

IfU �= ∅, then f(D̂1) is not a Reinhardt domain because s �= 0 in formula (3.11).
This shows that U = ∅ (i.e., D̂1 ∩ I �= ∅), which implies that, up to permutation
of the variables, D̂1 = R(a1, b1, 0, d1,C1,E1) for some a1, b1, c1, d1,C1,E1 and that
h has the form (3.10).

Further, � is a bounded Reinhardt domain not intersecting I, and Dλ \ I is
mapped onto � by an elementary map. It is not difficult to describe all such do-
mains and the corresponding elementary maps. A domain of this kind has the form

{(z,w)∈ C2 : C2|z|c2/8|w|a2/8 > exp[E2|z|2d2/8|w|2b2/8], z �= 0, w �= 0},
where 8 := a2d2 − b2c2 , 8 �= 0, a2 , b2 , c2 , d2 ∈ Z , a2 ≥ 0, b2 > 0, c2 ≤ 0,
d2 < 0, and C2 ,E2 > 0. The general form of an elementary map from Dλ \ I

onto this domain is
z �→ const za2w−b2,

w �→ const z−c2wd2.
(3.12)

In particular, � and g must have these forms.
Since U = ∅, we obtain D̂2 = � ∪ g(Lz ∩ Dλ). If a2 > 0 and c2 < 0, then it

follows from (3.12) that g(Lz ∩ Dλ) = {0}. However, � ∪ {0} is not an open set
in this case, and therefore either a2 = 0 or c2 = 0. If a2 = 0, then c2 < 0 and we
have

D̂2 = {(z,w)∈ C2 : C2|z| < exp[−E ′
2|z|−2d2/b2c2 |w|−2/c2 ], z �= 0}

for some E ′
2 > 0; if c2 = 0, then a2 > 0 and we have

D̂2 = {(z,w)∈ C2 : C2|w| < exp[−E ′′
2 |z|2/a2 |w|2b2/a2d2 ], w �= 0}

for some E ′′
2 > 0. These two classes of domains are obtained from one another

by permutation of the variables.
It is clear that every subdomain of D̂1 mapped properly by f onto a bounded

Reinhardt domain—and whose envelope of holomorphy coincides with D̂1 up to
permutation of the variables—has the form{

(z,w)∈ C2 : C∗(1/d1)

1 exp

[
−E1

d1
|z|2a1|w|−2b1

]

< |w| < C
1/d1
1 exp

[
−E1

d1
|z|2a1|w|−2b1

]}

for some 0 ≤ C∗
1 < C1, and hence D1 is of this form. We thus have obtained (iv)

of Theorem 0.1.
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Case II

Let L̃1 be hypersurface (4) of (3.2). For the purposes of this case we realize S3 as
{(z,w) ∈ C2 : |z|2 + |w|2 = 1} and B2 as {(z,w) ∈ C2 : |z|2 + |w|2 < 1}. Then
we have θ = " and θ(T̃1) = B2 \ I and that each of Ĝ1, Ĝ2 consists of transfor-
mations of the form

z �→ eiα1z,

w �→ eiα2w,

where the vector (α1,α2) varies over a lattice in R2. We shall now consider three
subcases.

Case II.a. Assume first that ϕ(B2 ∩ I ) = B2 ∩ I. In this case ϕ can be lifted to
an automorphism ϕ̃ of T̃1 such that ϕ̃ � G1 � ϕ̃−1 ⊂ G2. Then, arguing as in the
last paragraph of the proof of Proposition 3.2, we see that f is elementary.

Case II.b. Assume now that ϕ(B2 ∩ I ) �= B2 ∩ I and that ϕ maps a coordi-
nate complex line into a coordinate complex line. Suppose that ϕ(B2 ∩ Lw) =
B2 ∩ Lw. Then ϕ has the form

z �→ eit1
z − a

1 − āz
,

w �→ eit2

√
1 − |a|2
1 − āz

w,

where |a| < 1, a �= 0, and t1, t2 ∈R. It is now clear from the inclusionϕ �Ĝ1�ϕ−1 ⊂
Ĝ2 that none of the elements of Ĝ1 changes the z-coordinate.

Consider the tube domain

T := {(z,w)∈ C2 : Re z > exp[2 Rew]}.
This domain covers B2 \ Lw by means of the map

θ̂ : z �→ z − 1

z + 1
, w �→ − 2ew

z + 1
,

and T̃1 covers T \ {z = 1} by means of the map

θ̌ : z �→ −ez + 1

ez − 1
, w �→ w − ln0(e

z − 1).

Clearly, θ = θ̂ � θ̌. Since the groups Ĝ1, Ĝ2 preserve Lw, their elements can be
lifted to automorphisms of T. Similarly, ϕ can be lifted to an automorphism of T.
The general form of a lift of ϕ is

z �→ − (e it1(1 − a) + 1 − ā)z − eit1(1 + a) + 1 + ā

(e it1(1 − a) − 1 + ā)z − eit1(1 + a) − 1 − ā
,

w �→ w + ln
−2eit2

√
1 − |a|2

(e it1(1 − a) − 1 + ā)z − eit1(1 + a) − 1 − ā
,

(3.13)

where ln is a branch of the logarithm.
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For arbitrary g1 ∈ G1, consider the locally defined self-map g̃1 = θ̌ � g1 � θ̌−1

of T. Clearly, it coincides with a lift of ĝ1 ∈ Ĝ1 and hence extends to an automor-
phism of T. Let G̃1 := {g̃1, g1 ∈ G1}, and let G̃2 be the group constructed from
G2 in the same way. The groups G̃1, G̃2 are abelian and have at most two gener-
ators. Observe that a lift ϕ̃ of ϕ to an automorphism of T can be chosen so that
ϕ̃ � G̃1 � ϕ̃−1 ⊂ G̃2.

The group G1 consist of transformations of the form(
z

w

)
�→

(
z

w

)
+ i

(
α ′

1

α1

)
n + i

(
β ′

1

β1

)
m, n,m∈ Z , (3.14)

for some linearly independent vectors (α ′
1,α1), (β ′

1,β1)∈ R2. Then Ĝ1 consists of
the maps

z �→ exp[iα ′
1n + iβ ′

1m]z,

w �→ exp[iα1n + iβ1m]w, n,m∈ Z.

Since no map in Ĝ1 changes the z-coordinate, it follows that α ′
1,β ′

1 ∈ 2π · Z.

Therefore, elements of G̃1 have the form (3.6). By (3.13) we then have that every
element of G̃1 commutes with every lift of ϕ to an automorphism of T. Hence
G̃1 ⊂ G̃2.

Next, if the group G2 is given by (3.8) then, arguing as in the proof of Proposi-
tion 3.4, we obtain that G2 contains the map Gz. As before, this yields that α2 and
β2 are rationally dependent. Furthermore, transformations from G̃2 have the form

z �→ (1 + C(n,m))z + 1 − C(n,m)

(1 − C(n,m))z + 1 + C(n,m)
,

w �→ w + ln
2

(1 − C(n,m))z + 1 + C(n,m)
+ iα2n + iβ2m, n,m∈ Z ,

where C(n,m) := exp[iα ′
2n+ iβ ′

2m]. For elements of G̃1, the corresponding con-
stants C(n,m) are necessarily equal to 1, which implies that α1 and β1 are also
rationally dependent. Therefore, transformations from G̃1 have the form (3.7) for
some α0 > 0.

Let Dα0 := {(z,w) ∈ C2 : |z|2 + |w|α0/π < 1}. We shall now construct a lo-
cally biholomorphic map h from D̂1\ I onto Dα0 \ I. Clearly, T̃1 covers Dα0 \ I

by means of the map

"α0 : z �→ ez, w �→ exp[(2π/α0)w].

The group Gα0 constructed from Dα0 , in the same way as G1 and G2 were con-
structed from D̂1 and D̂2 , consists of the following transformations:

z �→ z + i2πn,

w �→ w + iα0m, n,m∈ Z.

For p ∈ D̂1\ I, consider a point p ′ ∈ "−1
1 (p) and set h(p) := "α0(p ′). Clearly,

this definition is independent of the choice of p ′, and the map so defined is locally
biholomorphic. The automorphism of B2 that corresponds to h is the identity and
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therefore preserves I. Arguing as in the last paragraph of the proof of Proposi-
tion 3.2, we see that h is elementary.

It is straightforward to describe the general form of a bounded domain not inter-
secting I that can be mapped onto Dα0 \ I by an elementary map and to describe
such elementary maps. Such a domain must have the form

{(z,w)∈ C2 : C1|z|2a1|w|2b1 + E1|z|α0c1/π|w|α0d1/π < 1, z �= 0, w �= 0}, (3.15)

where a1, b1, c1, d1 ∈ Z , with either a1d1 − b1c1 > 0, a1 ≥ 0, b1 ≤ 0, c1 ≤ 0, and
d1 ≥ 0 or a1d1 − b1c1 < 0, a1 ≤ 0, b1 ≥ 0, c1 ≥ 0, d1 ≤ 0, and C1,E1 > 0. An
elementary map that takes domain (3.15) onto Dα0 \ I has the form

z �→ eiτ1
√
C1z

a1wb1,

w �→ eiτ2E
π/α0
1 zc1wd1,

where τ1, τ2 ∈ R. Thus, D̂1\ I and h must have these forms. Since D̂1 is pseudo-
convex, it is either domain (3.15) or, up to permutation of the variables, one of the
following domains:

{(z,w)∈ C2 : C1|w|2b1 + E1|z|α0c1/π|w|α0d1/π < 1, w �= 0}
(here a1 = 0, b1 > 0, c1 > 0, and d1 ≤ 0);

{(z,w)∈ C2 : C1|z|2a1|w|2b1 + E1|w|α0d1/π < 1, w �= 0} (3.16)

(here a1 > 0, b1 ≤ 0, c1 = 0, and d1 > 0); or

{(z,w)∈ C2 : C1|z|2a1 + E1|w|α0d1/π < 1} (3.17)

(here a1 > 0, b1 = 0, c1 = 0, and d1 > 0) for some a1, b1, c1, d1,C1,E1.

We shall now construct f ∈ Aut(Dα0). Let L′ := {z = a} and L′′ := {z =
−eit1a}. It is straightforward to observe that G̃α0 = G̃1. In particular, elements of
G̃α0 commute with ϕ̃, which yields ϕ̃ � G̃α0 � ϕ̃−1 = G̃α0. For p ∈Dα0 \ (I ∪ L′)
consider a point p ′ ∈"α0

−1
(p), let q ∈ θ̌−1((ϕ̃ � θ̌ )(p ′)), and set f(p) := "α0(q);

this definition is independent of the choices of p ′ and q. It is straightforward to ver-
ify that f maps Dα0 \(I ∪L′) biholomorphically onto Dα0 \(I ∪L′′). Since Dα0 is
bounded, f extends to a map (that we also denote by f ) from Dα0 onto itself. This
map is biholomorphic, and we have f(Dα0 ∩ L′) ⊂ Dα0 ∩ I and f(Dα0 ∩ I ) ⊂
Dα0 ∩ (I ∪ L′′). It is now clear that f has the form

z �→ eit1
z − a

1 − āz
,

w �→ eit (1 − |a|2)π/α0

(1 − āz)2π/α0
w,

(3.18)

where t ∈ R.

Finally, we define a locally biholomorphic map g from Dα0 \ I onto � :=
"2(T̃1); it is constructed similarly to the map h. For p ∈ D̂α0 \ I, consider a point
p ′ ∈"α−1

0 (p) and set g(p) := "2(p
′). Since G̃1 ⊂ G̃2 and since the map Gz be-

longs to G2 , the map
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z �→ z,

w �→ w + iα0

belongs to G2 as well. Hence, the definition of g is independent of the choice of
p ′. The map so defined is locally biholomorphic. The automorphism of B2 cor-
responding to g is the identity and therefore preserves I. Arguing as in the last
paragraph of the proof of Proposition 3.2, we see that g is elementary.

The composition g � f �h maps V := h−1((g � f )−1(U2)\ I ) into U2 ⊂ ∂�. It is
straightforward to verify that f = g � f �h on V \(Cf ∪Jf). Thus, f = g � f �h on
D̂1\ h−1(L′ ∪ Lw). Clearly, f maps D̂1\ h−1(L′ ∪ Lw) onto � \U, where either
U = ∅ or U = g(Dα0 ∩ L′′).

If U �= ∅, then f(D̂1) is not a Reinhardt domain because a �= 0 in formula
(3.18). Hence, in fact, U = ∅; that is, h(D̂1) ∩ Lz contains the punctured disc
{z = 0, 0 < |w| < 1} and therefore, up to permutation of the variables, D̂1 has
one of the forms (3.16) or (3.17).

Next, � is a bounded Reinhardt domain not intersecting I, and Dα0 \ I can be
mapped onto � by an elementary map. It is not hard to describe the general form
of such domains and elementary maps. A domain of this kind has the form

{(z,w)∈ C2 : C2|z|2d2/8|w|−2b2/8 + E2|z|−α0c2/π8|w|α0a2/π8 < 1,

z �= 0, w �= 0}, (3.19)

where 8 := a2d2 − b2c2 , 8 �= 0, a2 , b2 , c2 , d2 ∈ Z , a2 ≥ 0, b2 ≥ 0, c2 ≥ 0,
d2 ≥ 0, and C2 ,E2 > 0. An elementary map taking Dα0 \ I onto this domain is
of the form

z �→ const za2wb2,

w �→ const zc2wd2.
(3.20)

In particular, � and g must have these forms.
Assume now that D̂1 is of the form (3.17). Since U = ∅, it follows that D̂2 =

� ∪ g(Dα0 ∩ I ). If a2 > 0 and c2 > 0 or if b2 > 0 and d2 > 0, then from (3.20)
we obtain that g(Dα0 ∩ I ) = {0}. However, �∪{0} is not an open set in this case,
and hence we have either a2 = 0 and d2 = 0 or b2 = 0 and c2 = 0. In the first
case, b2 , c2 > 0 and

D̂2 = {(z,w)∈ C2 : C2|w|2/c2 + E2|z|α0/πb2 < 1}. (3.21)

We then have either D1 = D̂1, D2 = D̂2 , or

D1 = {(z,w)∈ C2 : C1|z|2a1 < 1,E∗−π/α0d1
1 (1 − C1|z|2a1)π/α0d1

< |w| < E
−π/α0d1
1 (1 − C1|z|2a1)π/α0d1}, (3.22)

D2 = {(z,w)∈ C2 : C2|w|2/c2 < 1,E∗−πb2/α0
2 (1 − C2|w|2/c2)πb2/α0

< |z| < E
−πb2/α0
2 (1 − C2|w|2/c2)πb2/α0}

for some E1 < E∗
1 ≤ ∞ and E2 < E∗

2 ≤ ∞. Similarly, in the second case we
have a2 , d2 > 0 and
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D̂2 = {(z,w)∈ C2 : C2|z|2/a2 + E2|w|α0/πd2 < 1}. (3.23)

We then have either D1 = D̂1, D2 = D̂2 , or that D1 has the form (3.22) and

D2 = {(z,w)∈ C2 : C2|z|2/a2 < 1, E∗−πd2/α0
2 (1 − C2|z|2/a2)πd2/α0 < |w|

< E
−πd2/α0
2 (1 − C2|z|2/a2)πd2/α0}

for some E2 < E∗
2 ≤ ∞. The two forms of D̂2 just described are obtained from

one another by permutation of the variables.
Assume now that D̂1 has the form (3.16). Then, as before, we have either a2 =

0 and c2 > 0 or a2 > 0 and c2 = 0. In the first case, b2 > 0 and

D̂2 = {(z,w)∈ C2 : C2|z|−2d2/b2c2 |w|2/c2 + E2|z|α0/πb2 < 1, z �= 0};
in the second case, d2 > 0 and

D̂2 = {(z,w)∈ C2 : C2|z|2/a2 |w|−2b2/a2d2 + E2|w|α0/πd2 < 1, w �= 0}.
These two types of domains are obtained from one another by permutation of the
variables. In the first case we obtain

D1 = {(z,w)∈ C2 : C1|z|2a1|w|2b1 < 1,

E
∗−π/α0d1
1 (1 − C1|z|2a1|w|2b1)π/α0d1 < |w|

< E
−π/α0d1
1 (1 − C1|z|2a1|w|2b1)π/α0d1}, (3.24)

D2 = {(z,w)∈ C2 : C2|z|−2d2/b2c2 |w|2/c2 < 1,

E
∗−πb2/α0
2 (1 − C2|z|−2d2/b2c2 |w|2/c2)πb2/α0 < |z|

< E
−πb2/α0
2 (1 − C2|z|−2d2/b2c2 |w|2/c2)πb2/α0}

for some E1 < E∗
1 ≤ ∞ and E2 < E∗

2 ≤ ∞. Similarly, in the second case D1 has
the form (3.24) and

D2 = {(z,w)∈ C2 : C2|z|2/a2 |w|−2b2/a2d2 < 1,

E
∗−πd2/α0
2 (1 − C2|z|2/a2 |w|−2b2/a2d2)πd2/α0 < |w|

< E
−πd2/α0
2 (1 − C2|z|2/a2 |w|−2b2/a2d2)πd2/α0}

for some E2 < E∗
2 ≤ ∞.

Similar considerations in the cases where ϕ(B2 ∩ I ) �= B2 ∩ I and either
ϕ(B2 ∩ Lz) = B2 ∩ Lz or ϕ(B2 ∩ Lz) = B2 ∩ Lw or ϕ(B2 ∩ Lw) = B2 ∩ Lz

lead to the same descriptions of D1, D2 , and f. We thus have obtained (v) of
Theorem 0.1.

Case II.c. Assume finally that ϕ(B2 ∩ Lz) �⊂ I and ϕ(B2 ∩ Lw) �⊂ I. Arguing
as in the proof of Proposition 3.4, we can prove that G2 contains the map Gz as
well as the map Gw (see the beginning of this section for definitions). Therefore,
all elements of the inverse of the matrix A corresponding to the map F2 (see (3.1))
are integers, and the locally defined map "2 � θ−1 from S3 \ I into U2 extends to
an elementary map g from B2 \ I onto the Reinhardt domain � := "2(T̃1).
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Let L′
z := ϕ−1(B2 ∩ Lz), L′

w := ϕ−1(B2 ∩ Lw), L′′
z := ϕ(B2 ∩ Lz), and L′′

w :=
ϕ(B2 ∩ Lw). Then the map ϕ̂ := g � ϕ � θ takes T̃ ′

1 := T̃1\ θ−1((L′
z ∪ L′

w) \ I )

onto � \ g((L′′
z ∪ L′′

w) \ I ). Recall that, on an open subset of ∂T̃ ′
1, the map ϕ̂

coincides with f � "1 and thus extends to all of T̃1. Therefore, g extends to
B2 ∩ I and f � "1 maps T̃1 onto (� ∪ g(B2 ∩ I )) \ g(L′′

z ∪ L′′
w). Thus, D̂2 =(

(�∪ g(B2 ∩ I )) \ g(L′′
z ∪ L′′

w)
) ∪ f(D̂1 ∩ I ). Since D̂2 is a Reinhardt domain, it

follows that g((L′′
z ∪ L′′

w) \ I ) ⊂ f(D̂1 ∩ I ) and therefore D̂2 = � ∪ g(B2 ∩ I ).

In particular, D̂1 ∩ I �= ∅.
Further, � is a bounded Reinhardt domain not intersecting I such that there

exists an elementary map from B2 \ I onto �. Hence � has the form (3.19) with
α0 = 2π and g has the form (3.20). If either a2 , c2 > 0 or b2 , d2 > 0, then it fol-
lows from (3.20) that g(B2 ∩ I ) = {0}. However, � ∪ {0} is not an open set in
this case, and therefore either a2 = d2 = 0 or b2 = c2 = 0. Thus

D̂2 = {(z,w)∈ C2 : C ′
2|z|2/a

′
2 + E ′

2|w|2/b ′
2 < 1},

where a ′
2 , b ′

2 ∈ N, C ′
2 ,E ′

2 > 0 (cf. (3.21) and (3.23)), and g (up to permutation of
the variables) has the form

z �→ const za ′
2,

w �→ constwb ′
2 .

This description shows that transformations in G2 have the form (3.8) with α ′
2 =

2π/a ′
2 , α2 = 0, β ′

2 = 0, and β2 = 2π/b ′
2.

It is straightforward to observe that, since ϕ � Ĝ1 � ϕ−1 ⊂ Ĝ2 and since

ϕ(B2 ∩ Lz) �⊂ I and ϕ(B2 ∩ Lw) �⊂ I,

every transformation in Ĝ1 has the form

z �→ eiαz,

w �→ eiαw,
(3.25)

forα ∈ R. Since D̂1 is a bounded Reinhardt domain intersecting I with logarithmic
diagram affinely equivalent to that of B2, it follows that either up to permutation
of the variables D̂1 has the form

{(z,w)∈ C2 : C1|z|2a1|w|2c1 + E1|w|2b1 < 1, w �= 0} (3.26)

or it has the form

{(z,w)∈ C2 : C1|z|2a1 + E1|w|2b1 < 1}, (3.27)

where a1, b1, c1 ∈ R, a1 > 0, b1 > 0, c1 ≤ 0, and C1,E1 > 0 (cf. (3.15)).
Assume first that D̂1 is a domain of the form (3.26). Then the group G1 con-

sists of transformations (3.14) with α ′
1 = 2πa1, α1 = 0, β ′

1 = 2πc1, and β1 =
2πb1. Since all transformations in Ĝ1 are of the form (3.25), it follows that a1 ∈ N.

Therefore, the matrix A corresponding to the map F1 (see (3.1)) up to permutation
of the rows is
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(
a1 c1

0 b1

)
.

For an appropriate choice of an element of θ−1, the locally defined map ϕ̂ �F1�θ−1

from D̂1\ I into D̂2 coincides with f and hence extends to all of D̂1. It then fol-
lows from this representation of f that either f(D̂1 ∩ I ) = g(L′′

z ) or f(D̂1 ∩ I ) =
g(L′′

w) and thus g((L′′
z ∪ L′′

w) \ I ) �⊂ f(D̂1 ∩ I ), in contradiction to what we have
already established. This shows that D̂1 does have the form (3.27).

Since all transformations in Ĝ1 are of the form (3.25), it follows that a1, b1 ∈ N.

Hence the locally defined map θ � "−1
1 from D̂1\ I into B2 \ I extends to an ele-

mentary map h from D̂1 onto B2. Clearly, up to permutation of its components,
the map h has the form

z �→ const za1,

w �→ constwb1,

and we have f = g � ϕ � h. It is straightforward to see that there exists no proper
subdomain of D̂1 mapped properly by f onto a bounded Reinhardt domain and
whose envelope of holomorphy coincides with D̂1. Therefore, D1 = D̂1 and hence
D2 = D̂2.

We thus have obtained (vi) of Theorem 0.1, and the proof of the theorem is now
complete.
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