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Tartar Conjecture and Beltrami Operators

Daniel Faraco

1. Introduction

The study of the oscillation of sequences of gradients of Sobolev functions is a
central topic in the calculus of variations and nonlinear partial differential equa-
tions. In this note we examine which subsets of the space of 2 × 2 matrices M2×2

“forbid” the oscillation of sequences of gradients approaching them. In precise
words: Let E be a subset of M2×2 and let 1 ≤ p ≤ ∞. Is the set stable in the
sense that every sequence {fj} such that

distE(Dfj ) → 0 in Lp (1.1)

satisfies that {Dfj} is compact in Lp? The natural tool for studying this problem is
Young measures, which have proved to be an efficient device for capturing prop-
erties of oscillating sequences. In particular, we will need the following type of
Young measures.

Definition 1.1. Let 1 ≤ p ≤ ∞.A probability measure ν ∈ M(M2×2) is a W 1,p

homogeneous gradient Young measure if there exists a sequence {fj}, weakly
convergent in W 1,p(
,R

2), such that for every ϕ ∈C∞
0 (M2×2) we have

ϕ(Dfj )
�
⇀

∫
M2×2

ϕ(λ) dν(λ) in L∞(
).

The set of W 1,p homogeneous gradient Young measures supported in a closed set
E is denoted by Hp(E).

The sequence {Dfj} is called the generating sequence. A standard covering argu-
ment shows that Definition 1.1 does not depend on the domain 
. It follows from
[P, Prop. 6.12] that, if the sequence {|Dfj |p} is known to be weakly convergent in
L1(
), then we are concerned with the following question.

Question 1.2. Which closed sets E ∈ M2×2 satisfy

Hp(E) = {δA : A∈E}? (1.2)
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When (1.2) holds we say that Hp(E) is trivial. Gradient Young measures are
closely related to the so-called quasiconvex hulls. If E is compact then E qc, the
quasiconvex hull of E, is a crucial notion in the study of martensitic phase transi-
tions [BJ; M1]. For unbounded sets, the quasiconvex hull has turned out to be an
important object to be understood in a number of different problems: singular so-
lutions of elliptic systems [Š2], stability of the conformal set [Y; YZh], G-closure
problems and control [F1; P2], linear growth minimizing problems [FoM], and
others. For unbounded sets, the most-used definition of quasiconvex hull is the
following.

Definition 1.3. Let E ∈ M2×2 be a closed set and let 1 ≤ p < ∞. Then Ep,qc,

the p-quasiconvex hull of E, is defined by

Ep,qc = {A∈ M2×2 : Q distpE(A) = 0}.
Definition 1.3 makes sense after recalling that, for a continuous function f, we
have the following.

Definition 1.4. Let f be a continuous function. Then Qf, the quasiconvexifi-
cation of f, is defined by

Qf(A) = inf
ϕ∈C∞

0 (D)

∫
D

f(A + Dϕ(z)) dz.

Thorough discussions on quasiconvexification of functions and their relation with
the lower semicontinuous envelope of the related functionals can be found in [D;
M1; P1].

In our setting, the definition of p-quasiconvex hull immediately yields our next
question.

Question 1.5. Which closed sets E have trivial p-quasiconvex hull?

Let us begin with Question 1.2. It goes back at least to Tartar that a necessary con-
dition on a set E to have trivial Hp(E) is that, for every A and B in E,

det(A − B) �= 0. (1.3)

A set satisfying (1.3) is called a set without rank-1connections. In1982, Tartar [Ta]
conjectured that this condition might be also sufficient. However, Tartar himself
subsequently provided an example of four matrices (independently discovered by
other people) without rank-1 connections but supporting a W 1,∞ homogeneous
gradient Young measure different from a Dirac delta (see [M1, Sec. 2.5] for a de-
tailed description of this example).

On the other hand, Šverák [Š2] proved that if, instead of (1.3), we have

det(A − B) > 0 for every (A,B)∈E × E, (1.4)

then the weak continuity of the determinant implies that H2(E) is trivial. In the
same work he showed that, for some sets, (1.4) and (1.3) are equivalent. This is
true for connected sets (precisely, we have that the determinant does not change
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sign) and also for the unions of orthogonal wells, which are fundamental in the
study of martensitic phase transitions.

Since a result of Zhang [Z1] states that Hp(E) = H∞(E) for a compact set
E, it follows that Šverák arguments work for each 1 ≤ p ≤ ∞. In addition, the
compactness of E implies that

Ep,qc =
{
A∈ M2×2 : A =

∫
M2×2

λν(λ), ν ∈ Hp(E)

}
. (1.5)

Thus, compact sets satisfying (1.4) have trivial quasiconvex hulls.
In [Z2; Z3] Zhang extended Šverák’s result to unbounded sets. The price to pay

was that the set E must now satisfy condition (1.4) in a stronger way. He consid-
ered sets E such that, in addition to (1.4), satisfy the condition that the quantity

KE = sup

{ ‖A − B‖2

det(A − B)
: (A,B)∈E × E

}
(1.6)

is finite (although Zhang used complex notation; see Section 2). Recall that the
set of K-quasiconformal matrices is defined by

Q(K) = {A∈ M2×2 : ‖A‖2 ≤ K det(A)}. (1.7)

This motivated us to describe a set E such that KE ≤ K as “K-quasiconformal at
every point”. Therefore, K-quasiconformality at every point is the natural quanti-
tative version of (1.4).

An important feature of such sets is that the answers to Questions 1.2 and 1.5
depend on p. Zhang discovered the existence of a certain threshold p(KE) such
that, for p > p(KE), the set Hp(E) is trivial. Unfortunately, in his proof the re-
lation between p and KE depends on the norm of the Beurling Ahlfors transform,
and this norm remains as perhaps the most challenging open problem in planar
quasiconformal geometry.

In this paper we circumvent this difficulty by using the invertibility of the Bel-
trami operators as proved by Astala, Iwaniec, and Saksman [AIS]. We obtain that
p(KE) = 2KE/(KE + 1), the Weyl exponent for quasiregular mappings deter-
mined by Astala [A]. In fact, we present a more general condition than (1.6) that
depends on the complex dilatation of the matrices in E yet still implies the trivial-
ity of Hp(E) (see Remarks 3.7 and 4.4 and condition (3.10)). It is remarkable that
our proofs make no appeal to the weak continuity of the determinant. Therefore,
we recover the previous results of Šverák and Zhang using a new viewpoint to deal
with Questions 1.2 and 1.5. In addition, our method yields a characterization of
the behavior of the distance function and its quasiconvexification, extending the
work of Iqbal [Iq] and Zhang [Z4].

Zhang proved more recently [Z5] that condition (1.4) and certain control on how
the set E behaves near infinity were enough to establish the triviality of H2(E).

We now introduce the notion of sets that are “asympotically” K-quasiconformal.

Definition 1.6. A closed set E ⊂ M2×2 is said to be asymptotically K-quasi-
conformal if
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lim
M→∞ sup

{‖A‖2

det A
, A∈E \ B(0,M)

}
≤ K (1.8)

and

lim
M→∞ inf {det A, A∈E \ B(0,M)} > 0. (1.9)

We prove p(E) = 2K
K+1 for sets E that satisfy (1.4) and are also asymptotically

K-quasiconformal. The basic ingredient is a higher integrability argument. How-
ever, here we need to use the weak continuity of the determinant because we do
not have control of the quasiconformality of the set when det(A − B) is close to
zero. This also prevents us from understanding the relaxation of the distance func-
tion in this case.

In [Z5] it is asked if (1.4) together with the asymptotic K-quasiconformality
for some K implies the triviality of H1(E). We shall describe sets E such that
KE < ∞ but for which Hq(E) is not trivial when q < p(KE). Because they con-
tain zero, our sets are trivially asymptotically K-quasiconformal. Hence the ques-
tion is solved in negative. In a future project we plan to investigate how some
version of the method of convex integration applied to our examples gives new,
very weak quasiregular mappings.

Viewing our results as a whole, we see two things. First, regularity results for
elliptic PDEs establish restrictions on the kind of sets that can support nontriv-
ial gradient Young measures. Second, if we examine unbounded sets E, the scale
of exponents for which the p-quasiconvex hull behaves naturally coincides with
the range of the exponents for which the associated PDE can be solved. If we are
below these exponents, then very weak solutions give surprising p-quasiconvex
hulls and surprising p-quasiconvex hulls give very weak solutions.

Since sharp results for elliptic PDEs in the plane are available owing to Astala’s
theorem [A], we could obtain sharp results when studying sets that grow linearly
at infinity. In order to understand sets that grow nonlinearly at infinity, we should
look for and/or prove regularity results for the associated nonlinear elliptic PDE.

The paper is organized as follows. Section 2 reviews some basic notation and
facts on Beltrami operators. We will prove a corollary of the Astala–Iwaniec–
Saksman theorem on the invertibility of Beltrami operators and so obtain the most
general conditions possible (on complex dilatations of matrices in a set E) guaran-
teeing the triviality of Hp(E). In Section 3 we deal with sets that are asymptotically
K-quasiconformal. We present coercivity results for the distance function as well
as higher integrability results for homogeneous gradientYoung measures supported
in such a set E. We also show that, for asymptotically K-quasiconformal sets, the
characterization by equation (1.5) of the p-quasiconvex hull holds—provided p

stays in a certain range.
In Section 4 we analyze sets without rank-1 connections: first when they are

quasiconformal at every point and then when we have control of their quasicon-
formality at infinity only. We also present a result that characterizes sequences of
gradients approaching to unions of these sets. In Section 5 we construct examples
of sets that are K-quasiconformal at every point and such that Eq,qc = co(E) for
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every 1 ≤ q < 2K
K+1. These examples will show the optimality of our results and

answer the questions raised by Zhang.

Acknowledgments. It is pleasure to thank Kari Astala for useful discussions
and also to thank Bernd Kirchheim, Jan Kristensen, and Gaven Martin for enlight-
ening comments.

2. Notation and Preliminaries

In this paper we will be living in two different worlds: the domain of the functions
under consideration (i.e., the complex plane C) and the range of their derivatives
(i.e., the space M2×2 of 2 ×2 matrices). In C we let D be the unit disc and D(a, r)

the disc centered at a with radius r. The supports of a function f and of a mea-
sure ν will be denoted by spt(f ) and spt(ν), respectively. For pre-images of Borel
sets we will make the standard abuse of notation; for example, if P is a measurable
function then the set {z ∈ D : P(z) ≥ M} will be denoted by {P(z) ≥ M}. The
hyperbolic distance between two points {z1, z2} in D is denoted by disth(z1, z2).

The length element in the hyperbolic distance is

ds = 2

1 − |z|2 |dz|.

Let A∈ M2×2. Then ‖A‖ will stand for the operator norm of A and |A| for the
Hilbert–Schmidt norm. The set

CO+ = {A∈ M2×2 : A = ρR, ρ > 0, R ∈ SO(2)}
is called the set of conformal matrices. Similarly,

CO− = {
A∈ M2×2 : A = CH, H = ( 1 0

0 −1

)
, C ∈ CO+

}
is the set of anticonformal matrices. The function 'CO± : M2×2 → CO± will de-
note the orthogonal projections on CO±. By means of the natural identification
between matrices in SO(2) and complex numbers with modulus 1,(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= cos(θ) + i sin(θ), (2.1)

the projections 'CO± induce complex coordinates for matrices: A = (A+, A−) :
A+, A− ∈ C (see [Ah]). Since the A± are complex numbers we use |A±| to de-
note their absolute values. Observe that (2.1) implies that |'CO±(A)| = √

2|A±|.
In complex coordinates we have the identities

det(A) = |A+|2 − |A−|2,
‖A‖ = |A+| + |A−|,
|A|2 = 2(|A+|2 + |A−|2).

(2.2)

Given two matrices A,B, we say that [A,B] = {tA + (1 − t)B : t ∈ [0,1]} is a
rank-1 segment if det(A − B) = 0. In conformal coordinates the latter condition
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is equivalent to |A+ − B+| = |A− − B−|. Complex coordinates give rise to the
concept of complex dilatation of a matrix A: µA = A−/A+ ∈ C. Let k = K−1

K+1; it

then follows from (2.2) that A ∈ Q(K) if and only if |µA| ≤ k. Let E ⊂ M2×2.

Then co(E) denotes the closed convex hull of E.

Let us now turn our attention to mappings. The space C∞
0 (D) is the space of in-

finitely differentiable functions with compact support. The space of vector-valued
Sobolev mappings may be denoted either by W 1,p(D,C) or by W 1,p(D,R

2). If
f ∈ W 1,2(D,C) and Df ∈ Q(K) almost everywhere in D, then f is said to
be K-quasiregular. If, in addition, f is a homeomorphism then it is said to be
K-quasiconformal. We will also use complex coordinates to study the Jacobian
derivative of a Sobolev mapping f :

Df(z) = (∂zf(z), ∂z̄f(z)), µf = ∂z̄f(z)

∂zf(z)
, Jf (z) = det(Df(z)).

For functions that are supported in the whole space, the complex derivatives of a
(nonhomogeneous) Sobolev function are related by the Beurling–Ahlfors trans-
form

S(∂z̄f ) = ∂zf,

where S is a Calderon–Zygmund operator with Fourier multiplier equal to ξ̄/ξ.

Hence, the general theory of these operators states that S is bounded from Lp(C)

to Lp(C) if 1 < p < ∞. One can interpret the boundedness of S as a coercivity
result for the PDE

∂z̄f(z) = h,

where h ∈ Lp(C). This is the simplest example of the so-called Beltrami equa-
tions. In general, each function µ∈L∞(C) with ‖µ‖∞ < 1 determines an elliptic
equation. The function µ is called a Beltrami coefficient and the equation is known
as the Beltrami equation. For a given µ, the associated Beltrami equation is

∂z̄f − µ∂zf = h for h∈Lp(C).

These equations are well understood thanks to [AIS], whose key result is the co-
ercivity of the Beltrami operator I − µS (see [AIS, Lemma 14]).

Theorem 2.1. Let g ∈ Lp(C,C) and µ ∈ L∞(C, B(0, k)). Let 1 + k < p <

1 + 1/k. Then∫
C

|g(z)|p dz ≤ C(k, p)

∫
C

|g(z) − µ(z)S(g(z))|p dz.

Theorem 2.1 will be the main tool used in this paper. However, in some places
we will need more general versions. The main ingredient in the proof of Proposi-
tion 4.5 is the analogous result to Theorem 2.1 where the associated equation is
nonlinear. Astala, Iwaniec, and Saksman [AIS, Thm. 1] also established the fol-
lowing invertibility result for nonlinear Beltrami operators.

Theorem 2.2. Let H be a measurable function H : C × C → C such that H is
k-Lipschitz (k < 1) in the second variable and H(w, 0) = 0 for almost every w.
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Let B(g) = g − H(z, S(g)). Then B : Lp(C) → Lp(C) is an invertible operator
provided that 1 + k < p < 1 + 1/k.

In order to derive optimal answers to the questions studied in this work, it is better
to express Theorem 2.1 in the following more general version.

Corollary 2.3. Let K > 1 and let µ∈L∞(C) be such that there exists a com-
plex number µ0 ∈ D with disth(µ(z), µ0) ≤ log(K). Let 2K

K+1 < p < 2K
K−1. Then

the operator (I − µS)−1 is bounded from Lp(C) into itself.

Notice that if K = k+1
1−k

and µ0 = 0 then the corollary simply rephrases Theo-
rem 2.1.

Proof of Corollary 2.3. The proof of Theorem 2.1 in [AIS] uses |µ(z)| ≤ k only
to obtain that, for every K-quasiconformal homeomorphic solution to the homo-
geneous Beltrami equation

∂z̄f = µ∂zf,

w = |Jf |1−p/2 is an Ap-weight for 2 ≤ p < 1 + 1/k (see [AIS, Lemma 6]). It is
therefore enough to prove that, if µ is as in Corollary 2.3, then every quasiconfor-
mal solution to

∂z̄F = µ∂zF

gives rise to the corresponding Ap-weights. This is a consequence of the appro-
priate linear change of variables. Consider the linear mapping A0(z) = z + µ0 z̄.

Then the chain rule gives that

µF �A−1
0
(A0(z)) = µF (z) − µ0

1 − µF (z)µ0
1.

The point is that T(z) = (z − µ0)/(1 − zµ0) is a Möbius transformation
from the disc to the disc mapping µ0 to 0. Hence, it is an isometry with re-
spect to the hyperbolic metric of the disc. Thus, for every w ∈ C, it follows that
disth(µF �A1

0
(w), 0) ≤ logK and hence

‖µF �A−1
0
‖∞ ≤ k;

that is, F � A−1
0 is K-quasiconformal. So by setting f = F � A−1

0 we have shown
that F(z) = f(A0(z)), where f is K-quasiconformal. Since Ap properties are not
affected by a linear change of variables, |JF |1−p/2 is also an Ap-weight. Similarly,
|JF −1|1−p/2 is an Ap-weight because |Jf −1|1−p/2 is an Ap- weight.

Theorem 2.2 is almost sharp if we look at the regularity of the solutions to the
Beltrami equations in terms of the range of the Beltrami coefficient µ. Take two
complex numbers w1, w2 ∈ D such that disth(w1, w2) = 2 log(K). Pick the point
w0 in the hyperbolic geodesic γ joining w1 and w2 such that disth(w0, w1) =
disth(w0, w2) = log(K). Consider the Möbius transformation Tw0 from the disc
into itself such that Tw0(w0) = 0. Because Tw0(γ ) is a hyperbolic geodesic
passing through zero, it must be a straight line. Moreover, disth(Tw0(w1), 0) =
disth(Tw0(w2), 0) = log(K). Hence, if composing with a rotation we can assume
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there is a Möbious transformation T mapping w1 and w2 to k and −k, respec-
tively. It follows from the ideas in [F2] that one can saturate the bounds for the
integrability of the gradient of quasiregular mappings with mappings f such that
µf ∈ {k,−k} almost everywhere. Let f be one of these mappings.

Now, if A is a linear mapping then the chain rule gives

µf �A−1(A(z)) = µf (z) − µA

1 − µf (z)µA

A+
Ā+

.

This implies that we can find a matrix A0 such that µf �A−1
0

= T −1(µf (z)).

Therefore, the mappingF(z) = f(A−1
0 z) satisfiesµF (z) = {w1, w2} almost every-

where and F behaves as badly as f.

3. Quasiconvex Hulls and Quasiconformality of Sets

Quasiconvex hulls have arisen as an appropriate analogy to convex hulls in the
vectorial calculus of variations. After proper interpretation, the quasiconvex hull
of a closed set E expresses the possible macroscopic effects of a system con-
strained by the set E at the microscopic level. There are several definitions of
quasiconvex hulls in use [Y; Z5]. Definition 1.3 is the least restrictive, whereas the
characterization (1.5) is the most. In other words, for a general set E we always
have {

A∈ M2×2 : A =
∫

M2×2
λν(λ), ν ∈ Hp(E)

}
⊂ Ep,qc,

and the other existing definitions of p-quasiconvex hull (see [Z5]) give sets in
between.

In [Z5] Zhang presented examples where the inclusion just displayed is strict.
His sets are asymptotically close to rank-1 lines. The following less subtle exam-
ple illustrates the idea behind them.

Example 3.1. The set E will be contained in the plane of all diagonal matrices
in M2×2. Hence we use the identification(

d1 0
0 d2

)
= (d1, d2).

In this notation let E = {(d1, 0) ∪ (0, d2) with 0 ≤ d1, d2 < ∞}. Then Ep,qc =
co(E) for every 1 ≤ p < ∞. Nevertheless, if ν ∈ H2(E) then

∫
M2×2 λ dν(λ)∈E.

Proof. Let A ∈ co(E). Then A = (d1, d2) with 0 < d1, d2 < ∞. We use that fi-
nite quasiconvex functions are convex along rank-1 segments and also that, in the
diagonal plane, vertical segments are rank-1 segments. Hence, for every natural
number j,

Q distpE(A) ≤ θj distpE((d1, j)) + (1 − θj ) distpE((d1, 0)) = θj distpE(d1, j),

where θj j = d2. Since distE(d1, j) = min{d1, j}, we have
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Q distpE(A) ≤ d
p

1 d2

j

for every j, whence co(E) ∈ Ep,qc. The claim is proved because Ep,qc is always
included in co(E).

However, if A∈ co(E)\E were the center of mass of a measure ν ∈ H2(E) then,
by [M1, Thm. 1], ν would satisfy Jensen inequality for separately convex functions
with quadratic growth. The function f(d1, d2) = max(d1, 0) max(d2, 0) yields a
contradiction.

Observe that here we have found a sequence {gj} ∈ C∞
0 (D,R

2) that yields the
infimum in the definition of Q distp but such that distE(A + Dgj) ∈ {0, d1} and
limj→∞

∫
D
|Dgj(z)|2 dz = ∞. When the sequence giving the infimum in the def-

inition of the quasiconvexification is bounded in W 1,p, the characterization (1.5)
for the p-quasiconvex hull holds.

Lemma 3.2. Let E ∈ Mn×m be a closed set such that for every matrix A∈ Mn×m

there exists a constant CA such that, for every function φ ∈C∞
0 (
,R

m),∫



|Dφ(z)|p dx ≤ CA

(
1 +

∫
D

distpE(A + Dφ(z)) dz

)
.

Then

Ep,qc =
{
A∈ M2×2 : A =

∫
M2×2

λν(λ), ν ∈ Hp(E)

}
.

Proof. This is a well-known result. Under our assumptions one can argue as in
[P1, Chap. 4, Sec. 3]. More precisely, the claim is a corollary of Pedregal’s Theo-
rem 4.4, Corollary 4.5 and Corollary 4.7.

Beltrami operators yield natural sets that satisfy the preceding coercivity condi-
tion. Using them as the main tool, we can show that the examples containing rank-1
lines or asymptotic to rank-1 lines [Z5] are quite extremal. Roughly speaking, if a
set E ⊂ M2×2 is bounded away from the rank-1 lines then both previous notions
of p-quasiconvex hulls agree for a range of exponents depending on how much
we are off the rank-1 lines. This can be made quantitatively precise as follows.

Proposition 3.3. Let M > 0, K > 0, and 2K
K+1 < p < 2K

K−1. Set E =
B(0,M)∪Q(K). Then for every A∈ M2×2 there exists a constant CA depending
on A, p, M, and K such that, for every function φ ∈C∞

0 (D,R
2),∫

D

|Dφ(z)|p dz ≤ CA

(
1 +

∫
D

distpE(A + Dφ(z)) dz

)
.

Proof. Let v(z) = Az + φ(z). By smoothness there exists R(v) > 0 such that
|Dv(z)| ≤ R. Thus, the so-called measurable selection lemma [ET, p. 236] pro-
vides us with a measurable function P : D → E∩B(0, 2R) such that, for every z,

|Dv(z) − P(z)| = distE(Dv(z)). (3.1)
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We declare

µ(z) =
{

P(z)−
P(z)+ if z ∈ D and |P(z)| ≥ M,

0 otherwise.
(3.2)

We need a bound only for the Lp norm, so it is enough to control Dφ in some ball
independent of φ that is centered at ∞. Since φ(z) has zero boundary values, its
zero extension belong to W 1,p(C,C). In addition, it follows from the definition
of µ that ‖µ‖∞ ≤ k. Hence, we can use the key Theorem 2.1 and the Lp bound-
edness of the Beurling transform to obtain∫

D

|Dφ(z)|p dz ≤ C(k, p)

∫
D

|∂z̄φ(z) − µ∂zφ(z)|p dz. (3.3)

Therefore, if we find a constant C such that∫
D

|∂z̄φ(z) − µ∂zφ(z)|p dz ≤ C

(
1 +

∫
D

distpE(Dv(z)) dz

)

then the proposition will be proved. Let us plug in the definition of µ. Then∫
D

|∂z̄φ(z) − µ∂zφ(z)|p dz ≤
∫

{P(z)≤M}
|∂z̄φ(z)|p dz

+
∫

{P(z)≥M}
|∂z̄φ(z) − µ∂zφ(z)|p dz. (3.4)

Now, we estimate each term separately. For the first term we have∫
{|P(z)|≤M}

|Dφ(z)|p dz ≤ C(p)

(∫
{|P(z)|≤M}

distpE(Dv(z)) + |P(z)|p dz + |A|p
)

≤ C(p,A,M)

(
1 +

∫
{|P(z)|≤M}

distpE(Dv(z)) dz

)
. (3.5)

For the second term, use (3.1) to get∫
{|P(z)|≥M}

|∂z̄φ(z) − µ∂zφ(z)|p dz ≤
∫

{|P(z)|≥M}
|∂z̄v(z) − µ∂zv(z)|p dz

+
∫

{|P(z)|≥M}
|A− − µ(z)A+|p dz

≤ C

(
1 +

∫
D

distpE(Dv(z)) dz

)
. (3.6)

We have merely added and subtracted the appropriate quantities and used the re-
spective domains of integration. Combining (3.5) and (3.6) with (3.4) and (3.3)
yields the desired result.

Corollary 3.4. Let K > 1 and 2K
K+1 < p < 2K

K−1. Let E = B(0,M) ∪ Q(K).

Then

Ep,qc =
{
A∈ M2×2 : A =

∫
M2×2

λν(λ), ν ∈ Hp(E)

}
.
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Proof. The proof readily follows from Lemma 3.2 and Proposition 3.3.

One of the remarkable features of quasiregular mappings is the automatic im-
provement of their regularity. Precisely, a mapping f ∈ W 1,q

loc (D,R
2) with q >

2K
K+1 and such that Df(z) ∈ Q(K) belongs to W 1,p

loc (D,R
2) for every p < 2K

K−1.

This was generalized to gradientYoung measures in [AF], where it was proved that
Hq(Q(K)) = Hp(Q(K)) for 2K

K+1 < q,p < 2K
K−1. In this work we shall need the

following sharper result. The idea of the proof is push the sequence to the quasi-
conformal cone when it is close to the cone. We thereby find another generating
sequence {Dϕj} that is either quasiconformal or close to the ball.

This implies that the elements of the new generating sequence satisfy Beltrami
equations whose right-hand sides are uniformly bounded in L∞(D). Then, by
means of cutoff functions, the new sequence is shown to have local higher inte-
grability. Since the Young measure is homogeneous, this is enough to imply the
correct integrability for the measure.

Proposition 3.5. Let M > 0, K > 1, and 2K
K+1 < q, p < 2K

K−1. Set E =
B(0,M) ∪ Q(K). Then

Hq(E) = Hp(E).

Proof. Let ν ∈ Hq(E). A well-known property of gradient Young measures (see
[P1, Prop. 8.15]) is that there exists a generating sequence ϕj ∈W 1,∞(D,R

2) such
that |Dϕj |q is equi-integrable. Therefore,∫

D

distqE(Dϕj(z)) dz → 0.

This clearly implies that∫
{|Dϕj(z)|≥2M}

distqQ(K)(Dϕj(z)) dz → 0. (3.7)

Now let Pj(z) be the measurable function obtained from the measurable selection
lemma such that

distQ(K)(Dϕj(z)) = |Dϕj(z) − Pj(z)|, Pj(z)∈Q(K)

(we need here that ϕj ∈ W 1,∞(D,R
2)). Declare µj(z) = µPj(z)χ{|Dϕj(z)|≥2M}(z)

and hj = (∂z̄ϕj −µj∂zϕj )χ{|Dϕj(z)|≥2M}. Arguing as in the proof of Proposition 3.3,
we find a constant C such that |∂z̄ϕj − µjϕj |q ≤ C distqQ(K)(Dϕj ). Hence (3.7)
implies that

‖hj‖Lq(D) → 0.

By the invertibility of the Beltrami operators and using the Cauchy transform, we
find a sequence {Fj} ∈Lq(C) such that

∂z̄Fj − µj∂zFj = hj (3.8)

in the whole complex plane C and such that ‖DFj‖Lq(C) ≤ C‖hj‖Lq(D) (for a re-
lated argument see [AF, Thm.1.2]). Thus the sequence {D(ϕj −Fj )} also generates
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the measure ν. Set gj = ϕj − Fj . Combining (3.8) and the definition of hj yields
that, in D,

∂z̄gj − µj∂zgj = ∂z̄ϕjχ{|Dϕj(z)|<2M}. (3.9)

That is, gj satisfies locally a nonhomogeneous Beltrami equation whose right-hand
side is bounded by 2M and compactly supported.

In order to apply Theorem 2.1 we must extend gj to the whole plane. Formally,
let η1 ∈ C∞

0 (D) be a cutoff function such that η(z) = 1 if |z| ≤ 1
2 . Then, by the

chain rule,

∂z̄η1gj − µj∂zη1gj = η1(∂z̄gj − µj∂zgj ) + gj(∂z̄η1 − µj∂zη1)

in the distributional sense.
Let us denote the new sequence of right-hand sides by h̃j . Since Dgj is uni-

formly bounded in Lq, the Sobolev embedding theorem implies that gj is uni-
formly bounded in Lq∗

(D,C), where q∗ is the Sobolev conjugate exponent of q

(notice that D is an extension domain).
Becauseη1 is compactly supported, ‖η1(∂z̄gj−µj∂zgj )‖Lp(C) ≤ 2M|spt(η1)|1/p

for every p and thus h̃j is uniformly bounded in Lq∗
(C). Now we need to consider

two different cases.
1. If q∗ ≥ 2K

K−1 then, given that ∂z̄(η1gj ) = (I − µjS)−1h̃j, we can use The-
orem 2.1 once more to obtain that {D(η1gj )} is uniformly bounded in Lp(C) for
every 2K

K+1 < p < 2K
K−1. Hence {Dgj} is uniformly bounded in Lp

(
D

(
0, 1

2

))
.

2. If q∗ < 2K
K−1 then the preceding argument gives only that the sequence {Dgj}

is uniformly bounded in Lq∗(
D

(
0, 1

2

))
. Next, we take a second cutoff function

η2 ∈ C∞
0

(
D

(
0, 1

2

))
where η2(z) = 1 if |z| ≤ 1

4 . Proceeding as before, we find
that η2gj satisfies a nonhomogeneous Beltrami equation with the same Beltrami
coefficient µj but with a new right-hand side Hj,

Hj(z) = η2(∂z̄gj − µj∂zgj ) + gj(∂z̄η2 − µj∂zη2).

The key is that now gj ∈ W 1,q∗(
D

(
0, 1

2

))
. Since q∗ > 2, the Sobolev embedding

implies the existence of representatives of gj that are uniformly Hölder contin-
uous (again we use that discs are extension domains). There is no loss of gen-
erality in assuming that gj(0) = 0 and so, in particular, the gj are uniformly
bounded in L∞(

D
(
0, 1

4

))
. Therefore, since we already knew that ∂z̄gj − µj∂zgj

were uniformly bounded in L∞(D), we deduce that the sequence {Hj} is uniformly
bounded in Lp(C) for each p > 1. Now, as before, the invertibility of the Bel-
trami operators gives that {D(η2gj )} is uniformly bounded in Lp(C) for p < 2K

K−1,

which implies that {Dgj } is uniformly bounded in Lp
(
D

(
0, 1

4

))
. Finally, the ho-

mogeneity of ν implies that both {Dgj |D(0, 1
2 )

} and {Dgj |D(0, 1
4 )

} generate ν. This

gives the desired fact: ν ∈ Hp(E) as well.

Let us combine the foregoing theorems and extend the result to sets that are asymp-
totically K-quasiconformal.

Theorem 3.6. Let E ∈ M2×2 be a set that is asymptotically K-quasiconformal
in the sense of Definition 1.6, and let 2K

K+1 < q, p < 2K
K−1. Then E enjoys the fol-

lowing properties.
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(i) For every A∈ M2×2 there exists a constant C(K,A) such that, for every ϕ ∈
C∞

0 (D,R
2),∫
D

|Dφ(z)|p dz ≤ C(K,A)

(
1 +

∫
D

distpE(A + Dφ(z)) dz

)
.

(ii) Ep,qc = {
A∈ M2×2 : A = ∫

M2×2 λν(λ), ν ∈ Hp(E)
}
.

(iii) Hq(E) = Hp(E).

Proof. Let 2K
K+1 < p, and choose ε > 0 such that 2K

K+1 <
2(K+ε)

K+ε+1 < p. If E is
asymptotically K-quasiconformal then by definition we have M(ε) such that E ⊂
B(0,M(ε)) ∪ Q(K + ε). We can therefore apply Proposition 3.3, Corollary 3.4,
and Corollary 3.5 to such a set and such a p. The result follows.

Remark 3.7. Theorem 3.6 concerns the quasiconformal set of matrices Q(K).

However it should be clear that Corollary 2.3 immediately yields the following
more general result. Let p and K be as before, and let E be a closed set such that
K = k+1

1−k
. If now

lim
M→∞

{
inf

µ0∈D

{
sup

‖A‖>M,A∈E

disth(µA,µ0)
}}

≤ log(K), (3.10)

then Theorem 3.6 holds.

4. Sets with Trivial Quasiconvex Hulls

Let E be a set such that det(A − B) > 0 for A,B ∈ E. In [Z3], Zhang discov-
ered that an enlightening way to express this fact is to describe E as the graph of a
Lipschitz function H : 'CO+(E) �→ CO−. Specifically, H is defined by H(A) =
'CO− �'−1

CO+(A). Furthermore, by a straightforward calculation we can see that E
is K-quasiconformal at every point (see Definition 1.6) if and only if the Lipschitz
norm of H is at most k = K−1

K+1. We combine Beltrami operators with the ideas of
Zhang [Z4] and Iqbal [Iq] for the case K = 1 to obtain the following theorem.

Theorem 4.1. Let K > 1 and let E ⊂ M2×2 be K-quasiconformal at every point
in the sense of Definition 1.6. Let 2K

K+1 < p < 2K
K−1. Then E has the following

properties:

(i) Hp(E) is trivial;
(ii) Ep,qc = E; and

(iii) there exists a constant C(p, k) such that

distpE(A) ≤ C(p, k)Q distpE(A).

Proof. Let H : 'CO+(E) �→ CO− be the k-Lipschitz function such that E is the
graph of H. We extend H (using Kirzsbraun’s extension theorem) to a Lipschitz
map, still denoted by H, that is defined on the whole conformal set CO+(2).

Let A∈ M2×2 and let P(A) be such |A − P(A)| = distE(A). Then

|A− − H(A+)| = |A − P(A) + P(A)+ − A+ + H(P(A)+) − H(A+)|.
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The Lipschitz condition implies that

|A− − H(A+)| ≤ |A − P(A)| + (1 + k)|P(A)+ − A+|
≤ (2 + k) distE(A). (4.1)

Let A∈ M2×2 and let {ϕj} ∈C∞
0 (D,R

2) be a sequence such that

lim
j→∞

∫
D

distpE(A + Dϕj(z)) dz = Q distpE(A).

A rescaling argument as in [Z4] shows that we can assume

ϕj ⇀ 0 in W 1,p
0 (D,R

2). (4.2)

Let ϕj, ϕi be two elements in the sequence. Using the estimate (4.1) at almost
every point z yields∫

D

|A− + ∂z̄ϕj(z) − H(A+ + ∂zϕj(z))|p dz

+
∫

D

|A− + ∂z̄ϕi(z) − H(A+ + ∂zϕi(z))|p dz

≤ (2 + k)p
(∫

D

distpE(A + Dϕj(z)) dz +
∫

D

distpE(A + Dϕi(z)) dz

)
.

By the convexity of the pth power, the left-hand side of the inequality is larger
than

1

2p−1

∫
D

|∂z̄(ϕj − ϕi)(z) − H(A+ + ∂zϕj(z)) + H(A+ + ∂zϕi(z))|p.

The important point here is choosing an appropriate sequence of Beltrami coeffi-
cients. Let

µj(z) =
{

H(A++∂zϕj (z))−H(A++∂zϕi(z))

∂z(ϕj (z)−ϕi(z))
if ϕj(z) − ϕi(z) �= 0,

0 otherwise.
(4.3)

Putting these equations together, we arrive at the following inequality:∫
D

|∂z̄(ϕj − ϕi)(z) − µj(z)∂z(ϕj − ϕi)(z)|p dz

≤ 2p−1(2 + k)p
(∫

D

distpE(A + Dϕj(z)) dz +
∫

D

distpE(A + Dϕj(z)) dz

)
.

The Lipschitz condition on H implies that µj(z) ≤ k and that (ϕj −ϕi)(z) belongs
to C∞

0 (D,R
2). Hence we can apply Theorem 2.1. Together with the boundedness

of the Beurling–Alhfors transform, this yields∫
D

|D(ϕj − ϕi)(z)|p dz

≤ C(k, p)

(∫
D

distpE(A + Dϕj(z)) dz +
∫

D

distpE(A + Dϕj(z)) dz

)
. (4.4)
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Now we compute the limit when i tends to infinity. On the right-hand side
we obtain Q distpE(A). On the left-hand side we use that the functional I(ϕ) =∫

D
|Dϕj − Dϕ|p is sequentially weakly lower semicontinuous in W 1,p owing to

the convexity of Fz(A) = |Dϕj(z) − A|p for every z. We obtain

C(k, p)

(∫
D

distpE(A + Dϕj(z)) dz + Q distpE(A)

)

≥ lim inf
i→∞

∫
D

|D(ϕj − ϕi)(z))|p dz ≥
∫

D

|Dϕj(z)|p dz. (4.5)

Finally, we use the following norm estimate. Let M1,M2 be two matrices in
M2×2 and let E be a closed set. Then

|M1|p ≥ 1

2p−1
distpE(M2) − distpE(M1 + M2). (4.6)

Take M1 = Dϕj and M2 = A at every z in D. Rearranging inequality (4.5), we
have

1

2p−1
distE(A) ≤ C(k, p)

(∫
D

distpE(A + Dϕj(z)) dz + Q distpE(A)

)
.

Letting j → ∞, claim (iii) is proved.
The definition of p-quasiconvex hull (see Definition 1.3) immediately yields

claim (ii).
Let ν ∈ Hp(E). Then by general principles there exists a sequence {φj} ∈

W 1,∞(D,R
2) generating ν and such that

lim
j→∞

∫
D

distpE(A + Dφj(z)) dz = 0.

Applying the argument of the proof (in particular, inequality (4.4)) to {φj} gives
that the sequence {Dφj} is a Cauchy sequence in Lp. This implies that ν is a Dirac
Delta and hence proves claim (i). The proof of Theorem 4.1 is complete.

Remark 4.2. Sets that are quasiconformal at every point enjoy further interest-
ing properties. It was proved by Zhang that Theorem 4.1(iii) implies that, if we
denote by Eε the epsilon neighborhood of E, there exists a constant C such that
E

p,qc
ε ⊂ ECε.

In a different direction, Theorem 4.1 implies that the only mappings ϕ ∈
W 1,p(D,C) affine in the boundary and such that Dϕ ∈ E almost everywhere
are affine. Šverák [Š1] proved that, if E is compact and K-quasiconformal at every
point, then there exists a p > 2 such that every Lipschitz mapping ϕ with Dϕ(z)∈
E a.e. z ∈ D actually belongs to W 2,p

loc (D,C). He studied the behavior of the quo-

tients ϕh = ϕ(x+ah)−ϕ(x)

h
(where a is any unit vector) and proved that they satisfy

Cacciopoli inequalities. Our notation simplifies his proof and extends the result,
removing the compactness assumption and yielding the precise value of p. The
idea is that E being K-quasiconformal at every point implies that, for every h, the
ϕh are K-quasiregular mappings. This observation rather easily yields the follow-
ing result.
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Let 2K
K+1 < q, and let ϕ ∈W 1,q

loc (D,C) be such that Dϕ ∈ E, where E is K-
quasiconformal at every point. Then ϕ ∈ W 2,p

loc for every p < 2K
K−1 and Dϕ is

locally 1
K

Hölder continuous. The argument combines a simple integration by
parts with Astala’s theorem [A].

If our control on the quasiconformality of E is only at infinity, then we can
not estimate the norm of the Lipschitz function H whose graph is E and hence
the foregoing proof does not work. However, results from previous sections—
together with the weak continuity of the determinant when the integrability is
large enough—immediately yield the following weaker theorem.

Theorem 4.3. Let E ⊂ M2×2 be an asymptotically K-quasiconformal set (cf.
Definition 1.6 ) such that

det(A − B) > 0 for all A,B ∈E. (4.7)

Then, for every q > 2K
K+1, we have that

(1) Hq(E) is trivial and
(2) Eq,qc = E.

Proof. It is enough to prove the theorem for 2K
K+1 < q < 2, since Hölder’s in-

equality implies that Eq,qc ⊂ Ep,qc and that Hq(E) ⊂ Hp(E) when q ≥ p. By
Theorem 3.6(i) it is enough to prove claim (1). But by Theorem 3.6(ii), Hq(E) =
Hp(E) for some p > 2. The determinant is weakly continuous in W 1,p and hence
every ν ∈ Hp(E) satisfies the so-called minor relations:

det

(∫
M2×2

λ dν(λ)

)
=

∫
det(λ) dν(λ).

Then we can apply the arguments from [Š1] to conclude that ν must be a Dirac
mass.

Remark 4.4. Corollary 2.3 gives generalizations of the results just described.
In Theorem 4.1 we could replace requiring the K-quasiconformality of E at every
point by instead requiring that E belong to the graph of a Lipschitz function H

such that, for every A,B, the complex number H(A)−H(B)

A−B
belongs to some hy-

perbolic ball in the unit disc with radius log(K). Similarly, the requirement of
asymptotic quasiconformality can be replaced by condition (3.10) in Remark 3.7.
This should be compared with the laminates of infinite rank constructed in Sec-
tion 5.

The content of the final result in the section is that, if we are studying gradient
Young measures supported in a union of graphs of Lipschitz functions, then we
can use the nonlinear Beltrami operators to obtain a generating sequence with gra-
dients almost everywhere in the graphs.

Proposition 4.5. Let {Hi}Ni=1 with Hi : CO+(2) → CO−(2) be a collection of
k-Lipschitz functions with k < 1. Denote by Ei ⊂ M2×2 the graph of Hi. Let
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q > 1 + k and E = ⋃n
i=1 Ei. Then every ν ∈ Hq(E) can be generated by gradi-

ents Dgj such that Dgj(z)∈E for a.e. z.

Proof. Let ν ∈ Hq and let Dϕj be the usual equi-integrable generating sequence.
Then as always we have that limj→∞

∫
M2×2 distqE(Dϕj(z)) dz = 0. By the point-

wise estimate (4.1) we obtain that

lim
j→∞

∫
M2×2

|∂z̄ϕj(z) − Hj(∂zϕj(z), z)|p dz = 0, (4.8)

where Hj(A, z) = Hi(z)(A) for some i. The existence and measurability of Hj is
guaranteed by the measurable selection lemma.

Denote hj = ∂z̄ϕj(z) − Hj(∂zϕj(z), z). We want to correct ϕj in order to ob-
tain another sequence that satisfies the homogeneous elliptic PDE determined by
Hj and with the same oscillating behavior. It clearly suffices to find, for every j,

a solution Fj to the equation

∂z̄Fj − Hj(∂zϕj + ∂zFj, z) + Hj(∂zϕj, z) = −hj . (4.9)

Then gj = Fj + ϕj would satisfy

∂z̄gj − Hj(∂zgj, z) = 0

in D. To solve (4.9) we observe that, for almost every z,

Ĥj(A, z) = Hj(∂zϕj(z) + A, z) − Hj(∂zϕj(z), z)

is a k-Lipschitz map and Ĥj(0, z) = 0. Hence, we can apply Theorem 2.2 and
obtain that the operator I − Ĥj(S, z) is invertible for 2K

K+1 < p < 2K
K−1. We can

then follow the proof of [AF, Thm. 1.2] with I − Ĥj(S, z) in place of I −µjS and
so obtain a solution to (4.9) in the whole complex plane. Furthermore, the solu-
tion comes with the estimate ‖DFj‖p ≤ C‖hjχD‖p. From here on we can repeat
the arguments in [AF] line by line to obtain that the sequence {Dgj |D} is a gener-
ating sequence for ν.

5. Examples

In this section we present examples of connected sets E without rank-1 connec-
tions, and evenK-quasiconformal at every point, but with nontrivialp-quasiconvex
hulls. More precisely, for every 1 < q < 1 + k we construct nontrivial measures
ν ∈ Hq(E). We use the two known methods for constructing homogeneous gradi-
ent Young measures. The first, known in the literature as the Riemann–Lebesgue
lemma, consists of homogenizing a function with affine boundary values. It is of
interest to observe that the appropriate function is a so-called very weak quasi-
regular mapping.

Example 5.1. Let E ⊂ M2×2 be defined by

E ≡ {A : A− = k|A+|, A− ∈ R}
and 1 < q < 1 + k. Then

Eq,qc = co(E).
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Proof. The example lives in the space of reflected symmetric matrices. We shall
use conformal coordinates throughout the example. In these coordinates a ma-
trix A is the composition of a reflection and a symmetric matrix if and only if its
anticonformal coordinate is real. Consider the quasiconformal inversion

f(z) = z̄|z|2K/(K+1).

A direct computation shows that the mapping belongs to the class W 1,q(D,C)

and that Df(z) ∈ E a.e. z. Moreover, on the boundary of the unit disc we have
f(z) = z̄. Since f is affine on the boundary of the unit disc, we can apply the clas-
sical result from gradient Young measure theory [P1, Lemma 8.2], which states
that the probability measure νf defined by∫

M2×2
ϕ(λ) dνf (λ) =

∫
D

ϕ(Df(z)) dz

belongs to Hq(E), where q is the integrability of Df. Moreover, νf ’s center of
mass is equal to the affine boundary values. Therefore, in conformal coordinates
we have that

∫
M2×2 λ dνf (λ) = (0,1). Thus, (0,1) is in Eq,qc. Similarly, (0,ρ) ∈

Eq,qc for every ρ > 0.
To deal with the rest of co(E), we observe that A∈ co(E) if and only if A− ≥

k|A+|. Drawing a picture on the diagonal plane illustrates that if A = (A+, A−)

with A ∈ co(E) and A+ > 0 then A belongs to a rank-1 segment between the set
E and the half-line {(0,ρ), ρ < 0}. Hence if A∈ co(E) then we can find positive
numbers t,ρ, B̃+ such that

(|A+|, A−) = t(0,ρ) + (1 − t)(B̃+, kB̃+), (5.1)

with B̃+ = ρ − kB̃+. The last follows because we must have that det(B̃+,

ρ − kB̃+) = 0. It is easy to see that this implies that A belongs to a rank-1
segment between (0,ρ) and

(A+
1−t

, k
A+
1−t

)
with t as in (5.1). Since Q distq is convex

along rank-1 segments, we obtain that A∈Eq,qc.

This example answers in the negative a question raised in [Z5]. There it was asked
whether E being asymptotically quasiconformal for some K is enough to guaran-
tee E1,qc = E. As observed in [Z4] the result is true if K = 1, but Example 5.1
shows that it is false in general.

The next example is devoted to showing that our Theorem 4.1 is almost sharp.
There are sets, consisting only of two lines, that saturate the bounds between the
integrability of the approaching sequence and the quasiconformality of the set. We
use the second method to construct homogeneous gradientYoung measures, the so-
called p-laminates. The literature on these measures is already extensive (see [K;
P1] for the case p = ∞). Laminates and integrability issues were first considered
in [F1]. In fact, the next example might be considered as dual to the one in [F1].

Let us recall that, in the plane of diagonal matrices, we use the notation(
d1 0
0 d2

)
= (d1, d2).

We also recall the definition of laminates and prelaminates.



Tartar Conjecture and Beltrami Operators 101

Definition 5.2. The family of prelaminates PL is the smallest family of prob-
ability measures on Mn×m such that the following statements hold.

(1) PL contains all Dirac masses in Mn×m.

(2) Let ν = ∑k
i=1 λiδAi

∈ PL and let A1 = λB + (1 − λ)C, where λ ∈ [0,1]
and [B,C] is a rank-1 segment. Then the probability measure

∑k
i=2 λiδAi

+
λ1(λδB + (1 − λ)δC)∈ PL.

Definition 5.3. Let ν be a probability measure on Mn×m and let 1 ≤ p < ∞.

Then ν is said to be a p-laminate if there exists a sequence of prelaminates νj such
that

(a) supj

∫
Mn×m |λ|p dνj(λ) < ∞ and

(b) νj
�
⇀ ν in M(Mn×m).

Example 5.4. Let E ⊂ D, where D is the diagonal plane, be defined by

E =
{

(a,Ka) if a ≥ 0,

(Ka, a) if a < 0.

Let q < 1 + k = 2K
K+1. Then

Eq,qc = co(E).

Proof. For the proof we construct a laminate ν with center of mass (−1,1). Since
a dual construction was explained in detail in [F1], we shall briefly sketch the main
steps in the construction of ν. Consider the sequence An = (−n, n). We shall
build prelaminates νn supported in E ∪An and then take the weak-star limit when
n → ∞. A computation of the integrability of limit measure ν will yield the re-
sult. The key is use of the following equalities:

(−n, n) = K

n(K + 1) + K

(
n

K
, n

)
+

(
1 − K

n(K + 1) + K

)
(−(n + 1), n);

(−(n + 1), n) = K

(n + 1)(1 + K)

(
−(n + 1),

−(n + 1)

K

)
(5.2)

+
(

1 − K

(n + 1)(1 + K)

)
(−(n + 1), n + 1).

In Figure1we use the following notation for the auxiliary matricesBn = (
n
K
, n

)
,

Cn = (−(n+1), n), and Dn = (−(n + 1), −(n+1)
K

)
. Because the convex combina-

tions in (5.2) occur along rank-1 segments (see the figure), we can use the closed-
ness of prelaminates under splitting; see Definition 5.2(2). The basic idea is as
follows.

The matrix A1 is the center of mass of a laminate ν1 supported on B1 and C1.

Then δC1 can be split into a measure supported in A2 and D1. This gives as the
measure ν2 supported on {B1,D1, A2}. However, δA2 can be split into a measure
supported on B2 and C2. Furthermore, δC2 can be split into a measure supported
on D2 and A3, so we have a prelaminate ν3 supported on {B1,D1, B2,D2, A3}.
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 A n

    n  D

n  C  B n

 A
  n+1

  

(a,Ka)

  

(a,a)

(Ka,a)

Figure 1 Black dots denote the support of the measure νn;
the white dot is the center of mass

Figure 1 and equalities (5.2) indicate how the construction can be iterated to obtain
the required sequence of measures νn.

It is easy to check that these prelaminates will enjoy the following properties.
First, they can be written as

νn = µn + λnδAn
,

where

λn =
n−1∏
i=1

(
1 − K

i(K + 1) + K

)(
1 − K

(i + 1)(1 + K)

)
(5.3)

and νn is supported in E ∩ B
(
0, n

∣∣(1, 1
K

)∣∣). Second, the center of mass is fixed:∫
M2×2 λ dν(λ) = (−1,1) for every n. The measure ν is then defined as the weak-

star limit of the measures νn. The integrability of ν follows from standard ar-
guments in measure theory and the basic properties of logarithms. The details
are explained in the dual construction in [F1]. Let us state the result: For every
q < 2K

K+1,
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M2×2

|λ|q dν(λ) < ∞
but ∫

M2×2
|λ|2K/(K+1) dν(λ) = ∞.

Thus we have proved that (−1,1) ∈ Eq,qc. It is clear that our construction re-
mains the same if we multiply everything by a scalar ρ > 0, whence it follows
that (−ρ,ρ) ∈ Eq,qc. As in the previous example, this suffices to conclude that
Eq,qc = co(E) as desired.

Remark 5.5. Let µ1, µ2 be such that disth(µ1, µ2) = 2 log(K). The affine
change of variables used in Section 2 gives us the natural plane of matrices where
a q-laminate supported in two lines with dilatations µ1, µ2 lives. The change
of variables is given by the unique matrix A such such that if µf ∈ {k,−k} then
µf �A ∈ {µ1, µ2}. Here, of course, k = K+1

K−1.
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