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A Purity Theorem for Abelian Schemes

Adrian Vasiu

1. Introduction

Let K be the field of fractions of a discrete valuation ring O. Let Y be a flat O-
scheme that is regular, and let U be an open subscheme of Y whose complement
in Y is of codimension in Y at least 2. We call the pair (Y,U) an extensible pair.
Let q : S → SchO be a stack over the category SchO ofO-schemes endowed with
the Zariski topology. Let SZ be the fibre of q over an O-scheme Z. Answers to
the following question provide information on S.

Question 1.1. Is the pull-back functor SY → SU surjective on objects?

Question 1.1 has a positive answer in any one of the following three cases:

(i) S is the stack of morphisms into the Nèron model overO of an abelian vari-
ety over K, and Y is smooth over O (see [N]);

(ii) S is the stack of smooth, geometrically connected, projective curves of genus
at least 2 (see [M-B]);

(iii) S is the stack of stable curves of locally constant type, and there is a divi-
sor DIV of Y with normal crossings such that the reduced scheme Y \U is a
closed subscheme of DIV (see [dJO]).

Let p be a prime. If the field K is of characteristic 0, then an example of
Raynaud–Gabber–Ogus shows that Question 1.1 does not always have a positive
answer if S is the stack of abelian schemes (see [dJO, Sec. 6]). This invalidates
[FaC, Chap. IV, Thms. 6.4, 6.4′, 6.8] and leads to the following problem.

Problem 1.2. Classify all those Y with the property that, for any extensible pair
(Y,U)withU containingYK, every abelian scheme (resp., everyp-divisible group)
over U extends to an abelian scheme (resp., to a p-divisible group) over Y.

We call such Y a healthy (resp., p-healthy) regular scheme (cf. [V, 3.2.1(2), (9)].
The counterexample of [FaC, p.192] and the classical purity theorem of [G, p. 275]
indicate that Problem 1.2 is of interest only if K is of characteristic 0 (resp., only
if O is a faithfully flat Z(p)-algebra). We shall therefore assume hereafter that O
is of mixed characteristic (0,p). Let e ∈ N be the index of ramification of O. If
e ≤ p− 2, then a result of Faltings states that Y is healthy and p-healthy regular,
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provided it is formally smooth overO (see [Mo, 3.6] and [V, 3.2.2(1) and 3.2.17],
a correction to step B of which is implicitly achieved here by Proposition 4.1). If
p ≥ 5, then there are local O-schemes that are healthy and p-healthy regular but
are not formally smooth over some discrete valuation ring (see [V, 3.2.2(5)]). The
goal of this paper is to prove the following theorem.

Theorem 1.3. If e = 1, then any regular, formally smooth O-scheme is healthy
and p-healthy regular.

The casep ≥ 3 is already known, as remarked previously. The casep = 2 answers
a question of Deligne. In Section 2 we present complements on the crystalline con-
travariant Dieudonné functor. These complements are needed in Section 3 to prove
Lemma 3.1, which pertains to extensions of short exact sequences of finite, flat,
commutative group schemes. In Section 4 we use Lemma 3.1 and [FaC] to prove
Theorem 1.3.

Milne used an analogue of Question 1.1(i) to define integral canonical models
of Shimura varieties (see [Mi, Sec. 2] and [V, 3.2.3, 3.2.6]). Theorem 1.3 implies
the uniqueness of such integral canonical models and extends parts of [V] to ar-
bitrary mixed characteristic (see [V, 3.2.3.2, 3.2.4, 3.2.12, etc.]). Also one can use
Theorem 1.3 and the integral models of compact, unitary Shimura varieties used in
[K] to provide the first concrete examples of Nèron models (as defined in [BLR,
p. 12]) of projective varieties over K whose extensions to K̄ are not embeddable
into abelian varieties over K̄.

Acknowledgments. I would like to thank G. Faltings for mentioning that his
result should hold for p = 2 as well. I also thank W. McCallum and the referee
for several suggestions.

2. The Crystalline Dieudonné Functor

Let k be a perfect field of characteristic p > 0. Let σk be the Frobenius auto-
morphism of the Witt ring W(k) of k, and let R be a regular, formally smooth
W(k)-algebra. Let Y := Spec(R). Let �R be a Frobenius lift of the p-adic com-
pletion R∧ of R that is compatible with σk. Let �∧R be the p-adic completion of
the R-module of relative differentials of R with respect toW(k), and let d�R/p be
the differential of�R divided by p. For n∈N, the reduction modulo pn of d�R/p
is denoted in the same way. If Z is an arbitrary Z(p)-scheme, let

p − FF(Y )

be the category of finite, flat, commutative group schemes ofp-power order overZ.
Let MF∇[0,1](Y ) be the Faltings–Fontaine category defined as follows. Its ob-

jects are quintuples
(M,F,�0,�1,∇),

where M is an R-module, F is a direct summand of M, both �0 : M → M and
�1 : F → M are�R-linear maps, and∇ : M → M⊗R �∧R is an integrable, nilpo-
tent modp connection onM, such that the following five axioms hold:
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1. �0(m) = p�1(m) for all m∈F ;
2. M is R-generated by �0(M)+�1(F );
3. ∇ ��0(m) = p(�0 ⊗ d�R/p) � ∇(m) for all m∈M;
4. ∇ ��1(m) = (�0 ⊗ d�R/p) � ∇(m) for all m∈F ; and
5. locally in the Zariski topology of Y, M is a finite direct sum of R-modules of

the form R/psR, where s ∈N ∪ {0}.
A morphism f : (M,F,�0,�1,∇)→ (M ′, F ′,�′0,�′1,∇′) between two such

quintuples is anR-linear map f0 : M → M ′ takingF intoF ′ and such that the fol-
lowing three identities hold: �′0 �f0 = f0 ��0, �

′
1 �f0 = f0 ��1, and ∇′ �f0 =

(f0⊗R 1�∧
R
)�∇.We refer toM as the underlyingR-module of (M,F,�0,�1,∇).

Disregarding the connections (and thus axioms 3 and 4), we obtain the category
MF[0,1](Y ). Categories like MF[0,1](Y ) and MF∇[0,1](Y ), in the context of arbi-
trary smooth W(k)-schemes, were first introduced in [Fa] as inspired by [F] and
[FL], which worked with the category MF[0,1](Spec(W(k))). In the sequel we
will need the following result of Faltings.

Proposition 2.1. We assume that �∧R is a flat R-module. Then the category
MF∇[0,1](Y ) is abelian, and the functor from it into the category ofR-modules that
takes f into f0 is exact.

Proof. This follows from [Fa, pp. 31–33]. Strictly speaking, in [Fa] the result is
stated only for smooth W(k)-algebras, but the inductive arguments work also for
regular, formally smooth W(k)-algebras. In fact, we can use Artin’s approxima-
tion theorem to reduce Proposition 2.1 to the result in [Fa] as follows.

Let f and f0 be as before. We denote also by�0,�1,∇ and�′0,�′1,∇′ the dif-
ferent �R-linear maps and connections obtained from them via restrictions or via
natural passage to quotients (for ∇ and ∇′ this makes sense because �∧R is a flat
R-module). We need to show that the three quintuples (Ker(f0), F ∩ Ker(f0),

�0,�1,∇), (f0(M), f0(F ),�
′
0,�

′
1,∇′), and (M ′/f0(M), F

′/f0(F ),�
′
0,�

′
1,∇′)

are objects of MF∇[0,1](Y ) and that f0(F ) = F ′ ∩ f0(M). Since �∧R is a flat
R-module, axioms 3 and 4 hold and so from now on we do not mention ∇
and ∇′. Hence we are interested only in the morphism g : (M,F,�0,�1) →
(M ′, F ′,�′0,�′1) of MF[0,1](Y ) defined by f0.We can assume thatM andM ′ are
annihilated by pn and that R is local. Using devissage as in [Fa, p. 33, ll. 4–11],
it is enough to handle the case n = 1. So all the R-modules involved in the three
quintuples listed are in fact R/pR-modules. Thus, to check that they are free, we
can also assume thatR is complete. Based on [Ma, p. 268], there is a k-subalgebra
k1 of R/pR that is isomorphic to the residue field of R. We easily get that R/pR is
a k-algebra of the form k1[[x1, . . . , xd ]], where d ∈ N ∪ {0}. Because n = 1, the
choice of �R plays no role in the study of the three quintuples and so we can also
assume that k1 is perfect.

We choose R/pR-bases B and B ′ of M and M ′ (respectively) such that their
subsets are R/pR-bases of F and F ′. With respect to B and B ′, the functions f0,

�0, �1, �
′
0, and �′1 involve a finite number of coordinates that are elements of

R/pR. Let A0 be the k1-subalgebra of R/pR generated by all these coordinates,
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and observe that A0 is of finite type. Hence, from [BLR, p. 91] we derive the ex-
istence of an A0-algebra A1 that is smooth and such that the k1-monomorphism
A0 ↪→ R/pR factors through A1. Localizing A1, we can assume that A1 is the
reduction modp of a smooth W(k1)-algebra R1. Now fix a Frobenius lift of the
p-adic completion of R1 that is compatible with σk1; hence we can speak about
MF[0,1](R1).We get that g is the natural tensorization withR of a morphism g1 of
MF[0,1](R1).Applying [Fa, pp. 31–32] to g1 and tensoring withR,we deduce that
axioms 1, 2, and 5 hold for the three quintuples and that f0(F ) = F ′∩f0(M).

Construction 2.2. LetWn(k) := W(k)/pnW(k). There is a contravariant, Zp-
linear functor

D : p − FF(Y )→MF∇[0,1](Y ).

Similar functors but with Y replaced by Spec(W(k)) (resp., by a smooth W(k)-
scheme and with p > 2) were first considered in [F] (resp. [Fa]). The existence
of D is a modification of a particular case of [BBM, Chap. 3]. We now include the
construction of D based in essence on [BBM] and [Fa, 7.1]. We will use Berth-
elot’s crystalline site CRIS(YWn(k)/Spec(W(k))) (see [B, Chap. III, Sec. 4]) and
its standard exact sequence 0→ JYWn(k)/W(k)

→ OYWn(k)/W(k)
(see [BBM, p. 12]).

Let G be an object of p − FF(Y ) that is annihilated by pn. Let (M̃, �̃0, Ṽ0, ∇̃)
be the evaluation of the Dieudonné crystal D(GYk ) = Ext1Yk/W(k)(GYk ,OYk/W(k))
(see [BBM, p. 116]) at the thickening naturally attached to the closed embedding
Yk ↪→ YWn(k). Hence M̃ is an R-module, �̃0 is a �R-linear endomorphism of M̃,
Ṽ0 : M̃ → M̃ ⊗R �RR is a Verschiebung map, and ∇̃ is an integrable and nilpotent
modp connection on M̃. Identifying �̃0 with an R-linear map M̃ ⊗R �RR→ M̃,

we have
Ṽ0 � �̃0(x) = px ∀x ∈ M̃ ⊗R �RR,
�̃0 � Ṽ0(x) = px ∀x ∈ M̃.

(1)

Let F̃ be the direct summand of M̃ that is the Hodge filtration defined by the lift
GYWn(k)

of GYk . The triple (M̃, �̃0, Ṽ0, ∇̃) is also the evaluation of D(GYWn(k)
) =

Ext1YWn(k)/W(k)
(GYWn(k)

,OYWn(k)/W(k)
) at the trivial thickening of YWn(k). So F̃ is the

image of the evaluation at this trivial thickening of the functorial homomorphism
Ext1YWn(k)/W(k)

(GYWn(k)
,JYWn(k)/W(k)

)→ Ext1YWn(k)/W(k)
(GYWn(k)

,OYWn(k)/W(k)
).

To define the map �̃1 : F̃ → M̃ and to check that axioms 1–5 hold for the quin-
tuple (M̃, F̃ , �̃0, �̃1, ∇̃), we can work locally in the Zariski topology of Y. Hence
we can assume that G is a closed subgroup of an abelian scheme A′ over Y (cf.
Raynaud’s theorem of [BBM, 3.1.1]). Let A := A′/G, and let iG : A′ � A be
the resulting isogeny. We now define �̃1 using the cokernel of a morphism f of
MF∇[0,1](Y ) associated naturally to iG.

Let R(n) := R/pnR. Let M := H1
crys(AR(n)/R(n)) = H1

dR(AR(n)/R(n)) as in
[BBM, 2.5]. Let F be the direct summand of M that is the reduction modpn of
the Hodge filtration FA of
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H1
crys(A/R

∧) := lim←−
l∈N

H1
crys(AR(l)/R(l)) = lim←−

l∈N

H1
dR(AR(l)/R(l)).

Now let �0 be the reduction modpn of the �R-linear endomorphism �A of
H1

crys(A/R
∧), and let �1 be the reduction modpn of the �R-linear map FA →

H1
crys(A/R

∧) taking m ∈ FA into �A(m)/p. Let ∇ be the reduction modpn of the
Gauss–Manin connection ∇A of AR∧ . That C := (M,F,�0,�1,∇) is an object of
MF∇[0,1](Y ) is implied by the fact that the quadruple (H1

crys(A/R
∧), FA,�A,∇A) is

the evaluation at the thickening attached naturally to the closed embedding Yk ↪→
Y∧ := Spec(R∧) of a filtered F -crystal over R/pR in locally free sheaves (see
[Ka, Sec. 8]). Similarly, starting fromA′ we construct C ′ = (M ′, F ′,�′0,�′1,∇′).
Let f : C → C ′ be the morphism of MF∇[0,1](Y ) associated naturally to iG.

Let f0 : M → M ′ defining f. Let

D(G) = (M̃, F̃ , �̃0, �̃1, ∇̃) := Coker(f )

(cf. Proposition 2.1). Then M̃ := M ′/f0(M), F̃ := F ′/f0(F ), and so forth. That
the quadruple (M̃, F̃ , �̃0, ∇̃) is as defined previously follows from [BBM, 3.1.6,
3.2.9, 3.2.10].

The association G → (M̃, F̃ , �̃0, ∇̃) is functorial. In order to check that �̃1

is well-defined and functorial, we can assume that R is local. To ease the nota-
tion we will check directly that D(G) is itself well-defined and functorial. So let
m : G→ H be a morphism of p−FF(Y ). IfH is a closed subgroup of an abelian
scheme B ′ over R, then D(G ×Y H ) is computed via the product embedding of
G×Y H intoA′ ×Y B ′.We thus obtain D(G)⊕D(H ) = D(G×Y H ).We now de-
fine D(m). If m is a closed embedding, then the construction of D(m) is obvious
because iG factors through the isogeny iH : A′ → A′/H. In general, the homomor-
phism (1G,m) : G → G ×Y H is a closed embedding. Hence D(m) : D(H ) →
D(G) is defined naturally via the epimorphism D(1G,m) : D(G) ⊕ D(H ) =
D(G×Y H )� D(G).

One easily checks that D(G) and D(m) are well-defined; that is, they depend
neither on the chosen embeddings into abelian schemes nor on the choice of a
power of p annihilatingG and H. For instance, letG be a closed subgroup of an-
other abelian scheme C ′ over Y. By embedding G diagonally into A′ ×Y C ′ and
then using the snake lemma in the context of any one of the two projections of
A′ ×Y C ′ onto its factors, we get that D(G) defined via A′ ×Y C ′ is isomorphic to
D(G) defined via A′ or C ′. This ends the construction of D.

Remarks 2.3. (1) We have

Ṽ0 � �̃1(x) = x ∀x ∈ F̃ ⊗R �RR, (2)

as this identity holds in the context of A and A′. Since M̃ is R-generated by the
images of �̃1 and �̃0, it follows that Ṽ0 is uniquely determined by �̃0 and �̃1. We
therefore deem it appropriate to denote (M̃, F̃ , �̃0, �̃1, ∇̃) by D(G). As C and C ′
depend only on AYWn+1(k)

and A′YWn+1(k)
(respectively), D(G) also depends only on

GYWn+1(k)
.
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(2) If F̃ is neither {0} nor M̃, then Ṽ0 has a nontrivial kernel and so �̃1 is not
determined by Ṽ0. The advantage we gain by using �̃1 instead of Ṽ0 is that we
can exploit axiom 5 and the exactness part of Proposition 2.1 (see the proof of
Lemma 3.1).

(3) Let Y1 = Spec(R1) be an affine, regular, formally smooth W(k)-scheme.
We assume that R∧1 is equipped with a Frobenius lift �R1 compatible with σk and
that there is a morphism l : Y1 → Y whose p-adic completion l∧ is compatible
with the Frobenius lifts. Let l∗ : p−FF(Y )→ p−FF(Y1) and l∗ : MF∇[0,1](Y )→
MF∇[0,1](Y1) be the pull-back functors. Hence l∗(G) = G×Y Y1 and

l∗(M,F,�0,�1,∇) = (M ⊗R R1, F ⊗R R1,�0 ⊗�R1,�1 ⊗�R1,∇1),

where ∇1 is the natural extension of ∇ to a connection on M ⊗R R1. These con-
structions then yield the equality D�l∗ = l∗�D of contravariant, Zp-linear functors
from p − FF(Y ) to MF∇[0,1](Y1).

(4) As in [Fa, 2.3], we see that the category MF∇[0,1](Y ) does not depend (up
to isomorphism) on the choice of the Frobenius lift�R of R∧ compatible with σk.
The arguments of [Fa] apply even for p = 2 because we are dealing with con-
nections that are nilpotent modp. One can use this to show that remark (3) makes
sense even if Y and Y1 are not affine or if no Frobenius lifts are fixed.

(5) If R is local, complete, and has residue field k, then one can use a theorem
of Badra [Ba] on the category p−FF(Y ) to obtain directly that D(G) is functorial.

3. A Lemma

In this section we prove the following lemma.

Lemma 3.1. Assume that e = 1. Let (Y,U) be an extensible pair, with Y a reg-
ular and formally smooth O-scheme of dimension 2 and with U containing YK.
Then any short exact sequence 0 → G1U → G2U → G3U → 0 in the category
p−FF(U) extends uniquely to a short exact sequence in the category p−FF(Y ).

Proof. Let OX be the sheaf of rings on a scheme X. Let j : U ↪→ Y be the open
embedding of U in Y. For i ∈ {1, 2, 3}, the OY -module Fi := j∗(OGiU ) is locally
free (cf. [FaC, Lemma 6.2, p. 181]. The commutative Hopf algebra structure of
the OU -module OGiU extends uniquely to a commutative Hopf algebra structure
of Fi . Hence there exists a unique finite, flat, commutative group schemeGi over
Y extending GiU . We have to show that the natural complex

0→ G1 → G2 → G3 → 0 (3)

is, in fact, a short exact sequence. This is a local statement for the faithfully flat
topology of Y. We may therefore assume that Y is local and complete and that
its residue field k is separable closed and of characteristic p; we may also as-
sume that U is the complement in Y of the maximal point y of Y. We write Y =
Spec(R). From Cohen’s coefficient ring theorem (see [Ma, pp. 211, 268]) we have
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that R is a K(k)-algebra, where K(k) is a Cohen ring of k. Since R/pR is regu-
lar and formally smooth over O/pO (and thus also over k), we can identify R =
K(k)[[x]] as K(k)-algebras. Hence, by replacing R with the faithfully flat R-
algebra W(k̄)[[x]], we can assume that k = k̄ and K(k) = W(k) and so can use
the notation of Section 2 (e.g.�R,�∧R, . . . ). Since�∧R = dxR is a free R-module,
we can also appeal to Proposition 2.1.

Let O be the local ring of Y, which is a discrete valuation ring that is faithfully
flat over W(k). Let O1 := W(k1), where k1 is the algebraic closure of the resi-
due field k((x)) of O. We consider a Teichmüller lift l : Spec(O1)→ Spec(R∧)
that—at the level of special fibres—induces the inclusion k[[x]] ↪→ k1. Hence,
O1 has a natural structure of an O-algebra. Let

0→ D(G3)→ D(G2)→ D(G1)→ 0 (4)

be the complex of MF∇[0,1](Y ) corresponding to (3). LetM1, M2, andM3 be the
underlying R-modules of D(G1), D(G2), and D(G3), respectively. Let

0→ M3 → M2 → M1 → 0 (5)

be the complex ofR-modules defined by (4). LetN1,2 be the underlyingR-module
of Coker(D(G2)→ D(G1)). The key point is that Coker(D(G2)→ D(G1)) exists
in the category MF∇[0,1](Y ) and the sequence M2 → M1 → N1,2 → 0 is exact
(cf. Proposition 2.1). We show that N1,2 = {0}. Because N1,2 is a direct sum of
R-modules of the form R/psR = Ws(k)[[x]] for s ∈ N ∪ {0} (cf. axiom 5), to
show that N1,2 = {0} it is enough to show that N1,2[1/x] = {0}. It is thus enough
to show that the complex

0→ M3 ⊗O O1 → M2 ⊗O O1 → M1 ⊗O O1 → 0 (6)

obtained from (5) by tensoring with O1 is a short exact sequence. Note that (6) is
the complex obtained by pulling back (3) to Spec(O1), applying D, and then tak-
ing underlying O1-modules (cf. Remark 2.3(4)) applied to l ). But the pull-back
of (3) to Spec(O1) is a short exact sequence (since the pull-back of (3) to U is
so). Thus (6) is the complex associated via the classical contravariant Dieudonné
functor to the short exact sequence 0→ G1k1 → G2k1 → G3k1 → 0 (cf. [BBM,
pp. 179–180]). From the classical Dieudonné theory we therefore have that (6) is
a short exact sequence (cf. [F, p. 128 or p. 153]). So N1,2 = {0}.

Hence the natural W(k)-linear map j1,2 : M2/(x)M2 → M1/(x)M1 is an epi-
morphism. But j1,2 is theW(k)-linear map associated via the classical contravari-
ant Dieudonné functor to the homomorphism G1k → G2k, so this homomor-
phism is a closed embedding (cf. the classical Dieudonné theory). It follows by
Nakayama’s lemma that G1 is a closed subgroup of G2. Both G3 and G2/G1 are
finite, flat, commutative group schemes over Y extending G3U and so we have
G3 = G2/G1. Hence (3) is a short exact sequence. This completes the proof.

Remark 3.2. For p > 2, Lemma 3.1 was proved by Faltings using Raynaud’s
theorem [R, 3.3.3] (see [Mo, 3.6; V, 3.2.17, step B]).
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4. Proof of Theorem 1.3

Let O, K, e, and Y be as in Section 1. We start with a general proposition.

Proposition 4.1. If Y is p-healthy regular then Y is also healthy regular.

Proof. Let (Y,U) be an extensible pair with U containing YK, and let AU be an
abelian scheme over U. We need to show that AU extends to an abelian scheme A
over Y. Since Y is p-healthy regular, the p-divisible group DU of AU extends to
a p-divisible group D over Y. From now on we forget that Y is p-healthy regular
and will use just the existence of D to show that A exists.

LetN ∈N \{1, 2} be prime to p. To show thatA exists, we can assume that Y is
local, complete, and strictly henselian, that U is the complement of the maximal
point y of Y, and that AU has a principal polarization pAU and a level N structure
lU,N (see [FaC, (i)–(iii), pp. 185, 186]). We write Y = Spec(R). Let pDU be the
principal quasi-polarization of DU defined naturally by pAU ; it extends to a prin-
cipal quasi-polarization pD of D (cf. Tate’s theorem [T, Thm. 4]). Let g be the
relative dimension of AU. Let Ag,1,N be the moduli scheme over Spec(Z[1/N ])
parameterizing principally polarized abelian schemes over Spec(Z[1/N ]) of rel-
ative dimension g and with level N structure (see [MFK, 7.9, 7.10]). Let (A,PA)
be the universal principally polarized abelian scheme over Ag,1,N.

Let fU : U → Ag,1,N be the morphism defined by (AU,pAU , lU,N). We show
that fU extends to a morphism fY : Y → Ag,1,N.

Let N0 ∈ N be prime to p. From the classical purity theorem we get that the
étale cover AU [pN0 ]→ U extends to an étale cover YN0 → Y. But as Y is strictly
henselian, Y has no connected étale cover different from Y. So each YN0 is a dis-
joint union of p2gN0 -copies of Y. Hence AU has a level N0 structure lU,N0 for any
N0 ∈N that is prime to p.

Let Āg,1,N be a projective, toroidal compactification of Ag,1,N such that (a) the
complement of Ag,1,N in Āg,1,N has pure codimension 1 in Āg,1,N and (b) there is
a semi-abelian scheme over Āg,1,N extending A (cf. [FaC, Chap. IV, Thm. 6.7]).
Let Ỹ be the normalization of the Zariski closure of U in Y ×O (Āg,1,N)O. It is
a projective, normal, integral Y -scheme having U as an open subscheme. Let C
be the complement of U in Ỹ endowed with the reduced structure; it is a reduced,
projective scheme over the residue field k of y. The Z-algebras of global functions
of Y, U, and Ỹ are all equal to R (cf. [Ma, Thm. 38] for U). So C is a connected
k-scheme (cf. [H, 11.3, p. 279]).

Let ĀỸ be the semi-abelian scheme over Ỹ extendingAU. Owing to existence of
the lU,N0 , the Néron–Ogg–Shafarevich criterion (see [BLR, p. 183]) implies that
ĀỸ is an abelian scheme in codimension at most 1. Therefore, since the comple-
ment of Ag,1,N in Āg,1,N has pure codimension 1 in Āg,1,N, it follows that ĀỸ is
an abelian scheme. So fU extends to a morphism fỸ : Ỹ → Ag,1,N. Let pĀ

Ỹ
:=

f ∗
Ỹ
(PA). Tate’s theorem implies that the principally quasi-polarized p-divisible
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group of (ĀỸ ,pĀỸ ) is the pull-back (DỸ ,pDỸ ) of (D,pD) to Ỹ. Hence the pull-
back (DC,pDC ) of (DỸ ,pDỸ ) to C is constant; that is, it is the pull-back to C of a
principally quasi-polarized p-divisible group over k.

We check that the image fỸ (C) of C through fỸ is a point {y0} of Ag,1,N. Since
C is connected, to check this it suffices to show that, if Ôc is the completion of
the local ring Oc of C at an arbitrary point c, then the morphism Spec(Ôc ) →
Ag,1,N defined naturally by fỸ is constant. But as (DC,pDC ) is constant, this fol-
lows from Serre–Tate deformation theory (see [Me, Chaps. 4, 5]). So fỸ (C) is a
point {y0} of Ag,1,N.

Let R0 be the local ring of Ag,1,N at y0. Because Y is local and Ỹ is a projec-
tive Y -scheme, each point of Ỹ specializes to a point of C. Hence each point of
the image of fỸ specializes to y0 and so fỸ factors through the natural morphism
Spec(R0) → Ag,1,N. Since R is the ring of global functions of Ỹ, the resulting
morphism Ỹ → Spec(R0) factors through a morphism Spec(R) → Spec(R0).

Therefore, fỸ factors through a morphism fY : Y → Ag,1,N extending fU . This
ends the argument for the existence of fY . We conclude that A := f ∗Y (A) extends
AU, which completes the proof.

Remark 4.2. In the proof of Proposition 4.1, the use of semi-abelian schemes can
be replaced by de Jong’s good reduction criterion [dJ, 2.5] as follows. If we define
Ỹ to be the normalization of the Zariski closure ofU in Y ×O (Ag,1,N)O, then [dJ]
implies that the morphism Ỹ → Y ofO-schemes of finite type satisfies the valua-
tive criterion of properness with respect to discrete valuation rings of equal charac-
teristic p. Using (as in the proof of Proposition 4.1) the Néron–Ogg–Shafarevich
criterion, one checks that the morphism Ỹ → Y of O-schemes satisfies the valu-
ative criterion of properness with respect to discrete valuation rings whose fields
of fractions have characteristic 0. Hence the morphism Ỹ → Y of O-schemes is
proper. The rest of the argument is entirely the same.

Conclusion 4.3. We assume that e = 1 and that Y is formally smooth over O.
Based on Proposition 4.1, in order to prove Theorem 1.3 it suffices to show that
Y is p-healthy regular. So let (Y,U) be an extensible pair with U containing YK.
We need to show that any p-divisible group DU over U extends to a p-divisible
groupD over Y. This is a local statement for the faithfully flat topology, so we can
assume that Y is local, complete, and strictly henselian and that U is the comple-
ment of the maximal point y of Y (see [FaC, p. 183]). Write Y = Spec(R), and
let d ∈ N be the dimension of R/pR. We show the existence of D by induction
on d.

If d = 1 then, for all n,m ∈ N, the short exact sequence 0 → DU [pn] →
DU [pn+m] → DU [pm] → 0 in the category p − FF(U) extends uniquely to a
short exact sequence 0→ Dn → Dn+m → Dm → 0 in the category p − FF(Y )
(cf. Lemma 3.1). Hence there is a unique p-divisible group D over Y such that
D[pn] = Dn. Obviously D extends DU. For d ≥ 2, the passage from d − 1 to d
is entirely as in [FaC, pp. 183, 184] applied to R and any regular parameter x ∈R
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such that R/xR is formally smooth overO. This ends the induction and so estab-
lishes the existence of D, concluding the proof of Theorem 1.3.
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