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Second Variation of Compact Minimal
Legendrian Submanifolds of the Sphere

FranNcisco UrRBANO

1. Introduction

The second variation operator of minimal submanifolds of Riemannian manifolds
(theJacobi operatoy carries information about stability properties of the subman-
ifold when it is thought of as a critical point for the area functional. When the
ambient Riemannian manifold is a sph&fé Simons [S] characterized the totally
geodesic submanifolds as the minimal submanifoldS’6feither with the low-

est index (number of independent infinitesimal deformations that do decrease the
area) or with lowest nullity (dimension of the Jacobi fields, i.e., infinitesimal de-
formations through minimal immersions). Other results about the index and the
nullity of minimal surfaces of the sphere can be found in [E2; MU; Ul}xlfs

odd (i.e., ifm = 2n+1) then one can considerdimensional minimalegendrian
submanifolds o§%*+1 (see Section 2 for the definition). These submanifolds are
particulary interesting because the cones over them are special Lagrangian sub-
manifolds of the complex Euclidean spacét!, and as Joyce pointed out in [J,
Sec. 10.2], the knowledge of their index is deeply related to the dimension of the
moduli space of asymptotically conical special Lagrangian submanifold of

This fact, joint to the characterization of minimal Legendrian submanifolds given
by Lé and Wang in [LW], directed my attention to the study of the second varia-
tion of minimal Legendrian submanifolds of odd-dimensional spheres.

In Section 2 we compute the Jacobi operator of compact minimal Legendrian
submanifolds 02"+, proving that it is an intrinsic operator on the submanifold
and that it can be written in terms of the exterior differential, its codifferential op-
erator, and the Laplacian (see formula (2)). In Section 3 we decompose the Jacobi
operator as the sum of two elliptic operators and then study their indexes and nul-
lities (Theorem 1 and Corollary 1). As a consequence we obtain a formula for
the index and the nullity of compact minimal Legendrian submanifolds?6f!
(Corollary 2). Finally, we particularize our study to compact minimal Legendrian
surfaces of° and prove the following result.

If M is an orientable compact minimé&hon—totally geodes)d_egendrian surface
in S5, then
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(a) Ind(M) > 8, and the equality holds if and only M is the equilateral torus
and
(b) Nul(M) > 13, and the equality holds if and only M is the equilateral torus.

If T1: S?*+1 — CP” is the Hopf fibration and/” is a minimal Legendrian sub-
manifold of S?*+1 thenTI(M) is a minimal Lagrangian submanifold GfP”. It

is interesting to compare our Jacobi operator with the one given in [Oh] for mini-
mal Lagrangian submanifolds @f”. It is also interesting to compare the results
of this paper with those obtained by the author in [U2] for minimal Lagrangian
submanifolds ofCP".

2. Jacobi Operator of Minimal Legendrian Submanifolds

Let C"*! be the(n + 1)-dimensional complex Euclidean space, -) the Eu-
clidean metric, an@2 the Kéhler 2-form orC*+L. Then2 = dA, whereA is the
Liouville 1-form given by

2A(v) = (v, Jp),

wherev € T,C"*, p € C"*%, andJ is the complex structure o@" %

LetS?"+1 ¢ C"*! be the(2n +1)-dimensional unit sphere. The vector space of
Killing vector fields onS?** can be identified with the space of skew-symmetric
matricesso(2n + 2) in such way that the Killing field corresponding to a matrix
A es0(2n + 2) is given byX,(p) = Ap for any p e S"*1. This space can be de-
composed aso(2n + 2) = (J) @ s07(2n + 2) @ s0~ (2n + 2), where(J) is the
linear line spanned by the skew-symmetric mattiand

sot(2n+2) ={Aeso(2n+2) | AJ = JA and TracedJ = 0},
500 (2n+2)={Ae€so(2n+2) | AJ =—JA}.

This decomposition ofo(2n + 2) is orthogonal with respect to the inner product
({A,B)) = —TraceABforall A, B € s0(2n+2). Itisclearthatdinso™(2n+2) =
(n+1? -1, dimso~(2n + 2) = n(n + 1), andso™(2n + 2) is the real represen-
tation ofsu(n + 1), soso™ (2n + 2) can be identified with the tangent space at the
origin to the symmetric space %2 + 2)/SU(n + 1).

An immersiong: M" — S?'*! of an n-dimensional manifoldV is called
Legendrianif ¢*A = 0. This implies thatp*Q = 0, and thenM is an isotropic
submanifold ofC"*+2. If CP” is then-dimensional complex projective space and
I1: S»*1 — CP” the Hopf fibration, thep: M" — S?"*1is a horizontal im-
mersion with respect tbl and sollo¢: M" — CP" is a Lagrangian immersion.

Let¢: M" — S?"*1pe a Legendrian immersion, and et M denote the nor-
mal bundle ofp. SinceJ¢ is a normal vector field tg, it follows that7+M =
J(TM) & (Jo), where(J¢) is the trivial line bundle spanned bi. Therefore, a
sectiont e I'(T+M) can be decomposed as

£E=JX+ flp,

whereX € I'(TM) and f € C*(M). If V is the connection op*S?"+! induced
by the Levi—Civita connection dfS?*+*and if V = V 4 V= is the decomposi-
tion into tangent and normal components, then it is easy to derive
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JA;xY =0(X,Y),
VilY = JVxY — (X,Y)Jo, 1)
Ay =0, Vilp=JX,

whereo is the second fundamental form ¢f A is the shape operator, aidd Y
are vector fields tangent td.

From now on we assume thatis aminimalimmersion. We shall mention two
properties of these submanifolds that will be relevant throughout the paper. We
denote byA the Laplacian of the induced metric byon M (which will be also de-
noted by(-, -)); thatis,A = 8d + d§, wheres is the codifferential operator of the
exterior differentiali. Then, sincep is minimal,» is an eigenvalue of the Laplac-
ian A acting onC>(M). Also, sincell o ¢ is a minimal Lagrangian immersion
in CP", it follows that 2n + 1) is also an eigenvalue &f acting onC*°(M) [R,

Cor. 2.11]. L& and Wang [LW] have obtained a lower bound of the multiplicity of
2(n+1), characterizing the totally geodesic immersions as the only ones attaining
that lower bound.

If : M" — S™ is a minimal immersion of a compact manifald, then the
well-known Jacobi operatorof ¢ (which we will denote byL) is an endomor-
phism of the spacE(7+M) given by

L =A"+B+nZ,
whereZ is the identity andA andB are the operators

i

AP =N VIVE-VE L) BE =) o(Aser e,

i=1 i=1
with & € T(T+M) and{ey, ..., e,} an orthonormal reference tangentib Let
Q) = —fM<L§, &) dV be the quadratic form associated to the Jacobi operator
L. We will represent by In@p) and Nul¢) the index and nullity of the quadratic
form Q, which are (respectively) the number of negative eigenvaluésaofd the
multiplicity of zero as an eigenvalue &f. It is interesting to summarize some re-
sults of Simons [S] that are the starting point of our paper.

THEOREMA [S]. Let¢: M" — S™ be a minimal immersion of a compact man-
ifold M. Then the following statements hold.

1. If a* is the normal component of a vectoe R+, thenLa* — na* = 0and
dim{at | a € R"*Y} > m — n, holding the equality if and only i# is totally
geodesic. As consequent®](¢) > m — n and the equality holds if and only
if ¢ is totally geodesic.

2. If X3 is the normal component of the Killing fielth onS™ with A € so(m+1),
thenLX+ = Oanddim{Xi | A € so(m + 1)} > (n + 1)(m — n), holding
the equality if and only if¢ is totally geodesic. As consequenbiyl(¢) >
(n +1)(m — n) and the equality holds if and only i is totally geodesic.

Now we shall analyze the Jacobi operafowheng: M" — S?'*1is a mini-
mal Legendrian submanifold. Using (1) and writiag= JX + fJ¢, we check
easily that
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AYE = JAX — JX 4+ 2JVf + (Af —nf —2divX)Jg,

where div is the divergence operat®¥, is the gradient off, andA is the operator
onI(TM):

n
A = Z{Veive,- - VVgi e,-}
i=1
for {eq, ..., e,} alocal orthonormal reference a. Also from (1) we have
n
B() = Z JAs(x,eei-
i=1

Now using the Gauss equation for we finally obtain
LE = JAX — JS(X) +2(n — DJX + 2JVf + (Af — 2divX)Jo,

whereS denotes the Ricci operator @afi. Because the tangent vector figtdcan
be identified with its dual 1-form, we will consider the following identification:

D(T*M) = QY (M) & C®(M),
£ =(a f),

whereq is the dual 1-form ofX (i.e.,a(v) = (v, X) = (Jv, &) for anyv tangent
to M) and where, in genera®2”(M) denotes the space pfforms onM. Taking
into account the relation betweénand the Laplaciarh acting on 1-forms finally
yields the expression of the Jacobi operdtaf a minimal Legendrian immersion
¢: M" — S?+1as follows:

L: QY M)® C®M — QY M) & C*M,

L, f) = (Aa + 2(n — Da + 2df, Af — 28a). @

Itisinteresting to identify the eigensections givenin Theorem A in terms of 1-forms
and functions. In fact, it is easy to check the following assertions.

1. If a e C"*, then the eigensectian- corresponding to the eigenvalue: of L
is identified with

at = (df, f), where f = (J¢,a) and Af +nf = 0.
2. The Jacobi field(; is identified with
X7 = (0, f), where f(p) =1Vpe M.
3. If Aeso™(2n + 2), then the Jacobi field ; is identified with
Xi = (dg,2g), whereg = (A¢, Jo) and Ag +2(n +1)g = 0.
4. If Aeso™(2n + 2), then the Jacobi field 1 is identified with
Xy = (a,0), wherea,(v) = (Ap(p), Jv) Vpe M, Yve T,M

and whereAa + 2(n — 1) = 0. Moreovera = dw, wherew is the 2-form
wp (v, w) = (Av, Jw) forall pe M and allv e T, M.
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3. Index and Nullity of Minimal Legendrian Submanifolds
To study the index and the nullity of a minimal Legendrian immergior/” —
S?"+1 of a compact orientable manifold, we consider the Hodge decomposition
QY M) = H(M) & dC®M & §Q*(M),
which allows us to write in a unique way any 1-foomase = a9+ dg + dw, with
ag a harmonic 1-formg a real function, and a 2-form onM. The spacé{ (M)
of harmonic 1-forms is the kernel &f, and its dimension ig1(M), the first Betti
number ofM.
Hodge’s decomposition of 1-forms, together with the preceding decomposition

of the Jacobi fields (via the special decompositioms@®2n + 2) given in Sec-
tion 2), suggests the split = L1 & L,, where

Li: H(M) & 8Q%(M) — H(M) & §Q2(M),

Li(a) = Ao+ 2(n —Da,

and
Lo: dC®M @ C®(M) — dC®M & C®(M),

Lo(dg, f) = (Adg + 2(n — 1) dg + 2df, Af — 2Ag).
Hence, ifQ; are the quadratic forms associated to the operdto(s= 1, 2), then
Ind(¢) = Ind(Q1) + Ind(Q2),
Nul(¢) = Nul(Q1) + Nul(Q2).
In the next result we study the index and the nullity@f.

®3)

TueoreM 1. If ¢: M" — S?"*1is a minimal Legendrian immersion of a com-
pact orientable manifold/, then

INd(Q1) = Br(M)+ D> nu Nul(Qa) = nzon,

O<pur<2(n—1)

whereu; denotes the eigenvaluesafof M acting onsQ2(M) andn,,, their re-
spective multiplicities. Moreover

1. Ind(Q;) = Oif and only if ¢ is totally geodesicand
2. Nul(Q1) = n(n 4+ 1)/2, and the equality holds if and only i is totally
geodesic.

Proof. The expressions for In@1) and NulQ;) come from the fact that; =
A+ 2(n — 1)1, wherel is the identity.

To prove part 1, we consider the minimal Lagrangian immersiog: I1 o ¢:
M" — CP" and use a weak modification of Theorem 1 in [U2]. This theorem
states that the first eigenvalpeof A acting onQ'(M) satisfiesp; < 2(n—1) and
that, if the equality holds, they is totally geodesic. To obtain this result in [U2],
the author used certain “test” 1-forms that actually belongéd ) & §Q22(M).
So really Theorem 1 in [U2] says that the first eigenvalyeof A acting on
H(M) @ 8Q%(M) satisfiesp; < 2(n — 1), with equality implying thaty is to-
tally geodesic. Hence we obtain that the first eigenvalue;a§ nonpositive and,
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if it is zero, theng is totally geodesic. This means that if i@;) = 0 theng is
totally geodesic.

Conversely, ifp is totally geodesic theM is isometric to a unit sphe&, with
2(n — 1) as the first eigenvalue af acting onH(M) @ §Q2(M) (see [IT]).

To prove part 2 of our Theorem 1 we consider, for edchso~ (2n + 2), the
1-formy, on M defined byy,(v) = (A¢, Jv), wherev is a tangent vector oM.
From assertion 3 at the end of Section 2, it follows thats in the nullity of O
for eachA € so~(2n + 2). Thus we have defined a linear map

F:s0”(2n+2) - N(Q1),
A ya;

therefore, NulQ;) > dimimgF = n(n +1) — dimKerF. Now, if A € KerF
theny, = 0 and saJA¢ is a section of/ (TM). This means that the Killing field
X4 onS?*1 s tangent taV and soX, is also a Killing field onM. Hence we
have defined a linear map

G: Ker F — {Killing fields on M}
A~ XA,

which is a monomorphism. As the dimension of the isometry group of a compact
n-dimensional manifold is not greater thatw + 1)/2, we obtain dim KeF <
n(n + 1)/2. This, together with the previous inequality, means that(Qu) >
n(n+1)/2. If the equality holds, the dimension of the isometry group/is ex-
actlyn(n + 1)/2, and sinceM is compact we have that is isometric either to a
sphere or to a real projective space. Considering the Hopf fibratio§? +* —
CPP", we see thall o ¢ defines a minimal Lagrangian immersion of a manifold of
positive constant curvature. Using the main result in [E1], we obtainlihat
(and hence) is a totally geodesic immersion.

Conversely, ifp is totally geodesic theM is isometric to a unit sphef&, with
2(n — 1) as the first eigenvalue & acting onH.(M) & §Q22(M) and with multi-
plicity n(n 4+ 1)/2 (see [IT]). This completes the proof of Theorem 1. O

Now we study the second operaios.

ProposITION 1. Let¢: M" — S?*+1 be a minimal Legendrian immersion of a
compact orientable manifolgf. The negative eigenvalugsof L, are given by

p=h() =r— (-1 —(n—12+4x,

where A is an eigenvalue ofA of M acting onC*(M) such that0 < A <
2(n + 1). Moreover, the eigenspadg corresponding to a negative eigenvalpie
of L, is given by

2
The eigenspack, corresponding to the eigenval@eof L, is
Vo={(dg,2¢g+a)| Ag+2(n+1g =0, acR}.
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RemArRk 1. Whenn > 3, the functionk is a bijection from ]02(n 4+ D[ onto
1-2(n — 1), O[. So, in particular, the first eigenvalyg of the operatot., satis-
fiespy > —2(n — 1.

If n = 2thenh is amap from ]Q6[ onto [-9/4, O[; in particular,po; > —9/4 =
h(3/4). In this case B4 is the only critical point (in fact, it is a minimum) &f
on ]0, 6[. Also, & from [2, 6] onto [-2, O[ is a bijection and, for each real num-
bery € ]-9/4, —2], there exist exactly; € ]0, 3/4[ andx, € ]13/4, 2[ such that
h(x;j)=yfori =12

Proof of Proposition 1.Let p be a negative eigenvalue éf, and let(dg, f) €
dC>®(M)@® C>*(M) be an eigensection correspondingtdhatis,L,((dg, f))+

p(dg, ) = 0. Looking at the expression df,, we write this equation as
A(dg) + (2(n =1 + p)dg + 2df =0, @
Af —2Ag+ pf =0.

Ifdg =) ;.1dgrandf = Zkzo fi are the decompositions @¢ andf in eigen-
forms and eigenfunctions (respectively) witldg, +X y dgr = 0andA fi+Ax fr =
0, then (4) yields the following equations:

@n =D +p—r)dgr +2dfiy =0, k>1 )]
2agk+ (=2 fi =0, k=1L (6)
pfo=0. (7)
As p < 0andxr; > Ofork > 1, from (7) and (6) we have that
fo=0, fi= Zht g forany k>1 (8)
Ap—p

Using (8) in (5), we obtain

iy
Ar—p

(2(n—1)+p—kk+ )dgkzo forany k > 1,

and hence eithes = A, — (n — 1) &/ (n — )2 + 4x, ordg; = 0. Because the
solution corresponding to the positive root is positive, we deduce that far any

leitherp = Ay — (n —1) —+/(n — 1)2 + 44, ordg, = 0. Sincedyg is not trivial,
we finally obtain thap = & (1), wherex is an eigenvalue oA acting onC*(M).
Itis also clear thap < O impliesA < 2(n + 1). From (8) it follows that

2%
dg, f)= ) (dgk,A : gk>.

hG0=p k=P

Also, there are at most two, satisfyingi(1;) = p. In Remark 1 we pointed out
that this one occurs only when= 2 and—9/4 < p < —2.
If p =0, reasoning as before yields

fi=2g and (2(n+1) —Aiydg, =0 foranyk >1
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Hence there are only two posibilities fatg, f): either(dg, ) = (dg, 2g) with
Ag+2(n+1g =0, o0r(dg, f) = (0,a) witha € R. The proof of Proposition 1
is now complete. O

This result allows us to determine the index and nullity of the quadratic f@sm

COROLLARY 1. Let¢: M" — S?'*1 be a minimal Legendrian immersion of a
compact orientable manifolstf. Then

Ind(Q2) = Y my,  Nul(Q2) =1+ myua,

O<Ar<2(n+1)

wherel, denotes the eigenvaluesAfof M acting onC*> (M) andm,, their re-
spective multiplicities. Moreover

1. Ind(Q2) > n + 1, and the equality holds if and only i is totally geodesic

2. Nul(Q2) = (n+1)(n + 2)/2, and the equality holds if and only i is totally
geodesig

3. if ¢ is not totally geodesic, theimd(Q»,) > 2n + 2.

Proof. The expressions of index and nullity @i, are direct consequences of
Proposition 1. Part 2 is exactly Theorem 1.2 in [LW]. To prove parts 1 and 3, we
proceed as follows. For anye C"*, let f, = (¢, a). ThenAf, +nf, = 0 and
som, > dimV, whereV = {f, | a € C"™Y}. Itis clear that dinV < 2n + 2.

If dimV < 2n + 2, there exists a nonzero vecterin C"+! such thatf, = 0.
Deriving f, with respect to a tangent vectoryields 0= (v, a) = (Jv, Ja), SO

the normal component ofa is (Ja)* = (Ja, Jp)Jp = f.J¢ = 0. Hence the
Hessian offy, is given by

(V1) (v, w) = (o (v, w), Ja) — (v, w)p = —(v, w).

A theorem of Obata [O] states that eithé” is isometric to a unit sphere or
f1a = 0. In the first casey is totally geodesic and divi = »n + 1; in the second
case we havg, = f;, = 0, which implies thatz = 0 and so contradicts the as-
sumption. Hence it follows (a) that lii@2) > m, > dimV > n +1, holding the
equality if and only if¢ is totally geodesic, and (b) thatgfis not totally geodesic
then Ind Q2) > m, > dimV = 2n + 2. This completes the proof. O

Taking into account (3), Theorem 1, and Corollary 1, we obtain the expressions of
the index and the nullity of an orientable compact minimal Legendrian submani-
fold of S+,

COROLLARY 2. Let¢: M" — S?"+1 pe a minimal Legendrian immersion of a
compact orientable manifolsf/. Then

Ind(@) = M)+ Y mu+ D g,
O<Ar<2(n+l) O<pr<2(n—1)
Nul(¢) = 1+ mapu+1) + nom-1),

wherei, (resp.,uy) are the eigenvalues af of M acting onC*(M) (resp., on
8Q2(M)) and wheren;, (resp.,n,,) are their respective multiplicities.
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Finally, we study the case in which the minimal Legendrian submanitblis
a compact orientable surface. Here the star (or duality) opetdtoan isomor-
phism fromsQ2(M) ontodC*> (M) commuting withA , which implies that the
eigenvalues ofA acting onsQ2?(M) are the nonnull eigenvalues of acting on
C>°(M) and with the same multiplicity. Hence we obtain the following result.

COROLLARY 3. Let¢: M? — S°be a minimal Legendrian immersion of a com-
pact orientable surfacé/ of genusg. Then

Ind(¢) =2g+2 > my + Y. my,,

O<Ap<2 2<ix<6
Nul(¢) = 14 my + me,

wherel, denotes the eigenvaluesAfof M acting onC*> (M) andm,, their re-
spective multiplicities.

Consider the Legendrian immersion
R? — SS,

i ix iy _—i(x+y)y.
(x,y)—>\/§(€ ,e7,e );
its first fundamental form is given by = g2 = 2/3 andgi, = 1/3. It there-

fore induces an embedding T — S° from T = R?/T, whereT is the lattice in

R? generated by(1/v/2,1/+/6); (0, v/2/+/3)}. Itis clear that the induced met-
ricin T by ¢ is flat, thatT is a minimal Legendrian surface, and that7) =

2, Ao(T) = 6, mo(T) = 6, andmg(T) = 6. This surface is usually called the
equilateral torus.Projecting the immersion just described fr@finto S° by the
Hopf fibrationIT: S® — CP?, we obtain an immersion frof? into CPP? that de-
fines the minimal Lagrangian embedding of the (generalized) Clifford torus. The
equilateral torus is a 3-covering of the Clifford torus, and in this case 6 is the first
nonnull eigenvalue oA acting on functions of the Clifford torus.

COROLLARY 4. Let¢: M? — S° be a minimal(non—totally geodes)cLegen-
drian immersion of a compact orientable surfafeof genusg. Then

Ind(¢) =2+ > my,,

2<ip<6

where; denotes the eigenvalues afof M acting onC* (M) and m;, their
respective multiplicities. Moreover, the equality holds if and only iis the equi-
lateral torus.

Proof. If the genusg of the surfaceM is zero theny = Mo ¢: M? — CP?is

a minimal Lagrangian immersion of a sphere, and Theorem 7 of [Y] sayg/that
is totally geodesic. This implies that algds totally geodesic, which contradicts
our assumptions. S¢ > 1 and the inequality follows. If the equality holds, then
M? is a torus withi; = 2. Using the main result in [El], we obtain thaf is the
equilateral torus. O
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COROLLARY 5. Let¢: M? — S° be a minimal(non—totally geodes)d_egen-
drian immersion of a compact orientable surfafeof genusg. Then

(a) Ind(¢) > 8, and the equality holds if and only M is the equilateral torus
and
(b) Nul(¢) > 13, and the equality holds if and only M is the equilateral torus.

Proof. From Corollary 4 and the proof of Corollary 1.3, it follows that (gl >
2+my > 8. IfInd(¢) = 8theng = 1andxr; = 2, and using again the main result
in [EI] we obtain thatM is the equilateral torus. Finally, it/? is the equilateral
torus then Ingp) = 8. This proves part (a).

From the proof of Corollary 1.3 it follows thai, > 6. In order to estimate:,
we proceed as in the proof of Theorem 1. We defined a linear map

F:s0%(6) > Vo= {f | Af +6f =0},
A fa=(Ad, JP),

and henceng > dimimgF = 8 —dimKer F. Now, if A € Ker F thenf, = 0 and
soVf4 = 0, which means that ¢ is tangent taV/. Hence the Killing fieldX, on
S?"+1is tangent taV and soX , is also a Killing field onM. This means that we
can define a linear map

G: Ker F — {Killing fields on M},
A XA,

which is a monomorphism. Becauges not totally geodesic (and so not isomet-
ric to a sphere), it follows that the dimension of the isometry group/ag not
greater than 2, which in turn implies that dim Ker< 2. A previous inequality
states thatng > 6. Now Corollary 3 together with the estimation af implies
that Nulg > 13.

If Nul ¢ = 13 then (in particularjzg = 6 and the dimension of the isometry
group of M is 2. This implies that the genysof M is either 0 or 1. Ifg = 0, the
result mentioned in the proof of Corollary 4 says thas totally geodesic, which
contradicts the assumption. This means tdsk a torus with two linear indepen-
dent Killing vector fields. Hence the toru4 is flat and sd1 o ¢: M — CP?is
a flat minimal Lagrangian torus. Thereford,o ¢ is a finite Riemannian cover-
ing of the Clifford torus. Thug: M — S®is a finite Riemannian covering of the
equilateral torus, but only among the finite Riemannian coverings of the equilat-
eral torus does it satisfy, = 6 andmg = 6. This finishes the proof. O
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