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Second Variation of Compact Minimal
Legendrian Submanifolds of the Sphere

Francisco Urbano

1. Introduction

The second variation operator of minimal submanifolds of Riemannian manifolds
(theJacobi operator) carries information about stability properties of the subman-
ifold when it is thought of as a critical point for the area functional. When the
ambient Riemannian manifold is a sphereSm, Simons [S] characterized the totally
geodesic submanifolds as the minimal submanifolds ofSm either with the low-
est index (number of independent infinitesimal deformations that do decrease the
area) or with lowest nullity (dimension of the Jacobi fields, i.e., infinitesimal de-
formations through minimal immersions). Other results about the index and the
nullity of minimal surfaces of the sphere can be found in [E2; MU; U1]. Ifm is
odd (i.e., ifm = 2n+1) then one can considern-dimensional minimalLegendrian
submanifolds ofS2n+1 (see Section 2 for the definition). These submanifolds are
particulary interesting because the cones over them are special Lagrangian sub-
manifolds of the complex Euclidean spaceCn+1, and as Joyce pointed out in [J,
Sec. 10.2], the knowledge of their index is deeply related to the dimension of the
moduli space of asymptotically conical special Lagrangian submanifolds ofCn+1.

This fact, joint to the characterization of minimal Legendrian submanifolds given
by Lê and Wang in [LW], directed my attention to the study of the second varia-
tion of minimal Legendrian submanifolds of odd-dimensional spheres.

In Section 2 we compute the Jacobi operator of compact minimal Legendrian
submanifolds ofS2n+1, proving that it is an intrinsic operator on the submanifold
and that it can be written in terms of the exterior differential, its codifferential op-
erator, and the Laplacian (see formula (2)). In Section 3 we decompose the Jacobi
operator as the sum of two elliptic operators and then study their indexes and nul-
lities (Theorem 1 and Corollary 1). As a consequence we obtain a formula for
the index and the nullity of compact minimal Legendrian submanifolds ofS2n+1

(Corollary 2). Finally, we particularize our study to compact minimal Legendrian
surfaces ofS5 and prove the following result.

If M is an orientable compact minimal(non–totally geodesic) Legendrian surface
in S5, then:
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(a) Ind(M) ≥ 8, and the equality holds if and only ifM is the equilateral torus;
and

(b) Nul(M) ≥ 13, and the equality holds if and only ifM is the equilateral torus.

If 5 : S2n+1→ CP n is the Hopf fibration andMn is a minimal Legendrian sub-
manifold ofS2n+1, then5(M) is a minimal Lagrangian submanifold ofCP n. It
is interesting to compare our Jacobi operator with the one given in [Oh] for mini-
mal Lagrangian submanifolds ofCP n. It is also interesting to compare the results
of this paper with those obtained by the author in [U2] for minimal Lagrangian
submanifolds ofCP n.

2. Jacobi Operator of Minimal Legendrian Submanifolds

Let Cn+1 be the(n + 1)-dimensional complex Euclidean space,〈 · , · 〉 the Eu-
clidean metric, and� the Kähler 2-form onCn+1. Then� = d3, where3 is the
Liouville 1-form given by

23(v) = 〈v, Jp〉,
wherev ∈ TpCn+1, p ∈Cn+1, andJ is the complex structure onCn+1.

LetS2n+1⊂ Cn+1 be the(2n+1)-dimensional unit sphere. The vector space of
Killing vector fields onS2n+1 can be identified with the space of skew-symmetric
matricesso(2n + 2) in such way that the Killing field corresponding to a matrix
A∈ so(2n+ 2) is given byXA(p) = Ap for anyp ∈ S2n+1. This space can be de-
composed asso(2n+ 2) = 〈J 〉 ⊕ so+(2n+ 2)⊕ so−(2n+ 2), where〈J 〉 is the
linear line spanned by the skew-symmetric matrixJ and

so+(2n+ 2) = {A∈ so(2n+ 2) | AJ = JA and TraceAJ = 0},
so−(2n+ 2) = {A∈ so(2n+ 2) | AJ = −JA}.

This decomposition ofso(2n+ 2) is orthogonal with respect to the inner product
〈〈A,B〉〉 = −TraceAB for allA,B ∈ so(2n+2). It is clear that dimso+(2n+2) =
(n+1)2−1, dimso−(2n+ 2) = n(n+1), andso+(2n+ 2) is the real represen-
tation ofsu(n+1), soso−(2n+ 2) can be identified with the tangent space at the
origin to the symmetric space SO(2n+ 2)/SU(n+1).

An immersionφ : Mn → S2n+1 of an n-dimensional manifoldM is called
Legendrianif φ∗3 = 0. This implies thatφ∗� = 0, and thenM is an isotropic
submanifold ofCn+1. If CP n is then-dimensional complex projective space and
5 : S2n+1 → CP n the Hopf fibration, thenφ : Mn → S2n+1 is a horizontal im-
mersion with respect to5 and so5 Bφ : Mn→ CP n is a Lagrangian immersion.

Let φ : Mn→ S2n+1 be a Legendrian immersion, and letT ⊥M denote the nor-
mal bundle ofφ. SinceJφ is a normal vector field toφ, it follows thatT ⊥M =
J(TM)⊕ 〈Jφ〉, where〈Jφ〉 is the trivial line bundle spanned byJφ. Therefore, a
sectionξ ∈0(T ⊥M) can be decomposed as

ξ = JX + fJφ,
whereX ∈ 0(TM) andf ∈ C∞(M). If ∇̄ is the connection onφ∗S2n+1 induced
by the Levi–Civita connection ofT S2n+1 and if ∇̄ = ∇ + ∇⊥ is the decomposi-
tion into tangent and normal components, then it is easy to derive
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JAJXY = σ(X,Y ),
∇⊥XJY = J∇XY − 〈X,Y 〉Jφ, (1)

AJφ = 0, ∇⊥XJφ = JX,
whereσ is the second fundamental form ofφ, A is the shape operator, andX,Y
are vector fields tangent toM.

From now on we assume thatφ is aminimal immersion. We shall mention two
properties of these submanifolds that will be relevant throughout the paper. We
denote by1 the Laplacian of the induced metric byφ onM (which will be also de-
noted by〈 ·, · 〉); that is,1 = δd+dδ,whereδ is the codifferential operator of the
exterior differentiald. Then, sinceφ is minimal,n is an eigenvalue of the Laplac-
ian1 acting onC∞(M). Also, since5 B φ is a minimal Lagrangian immersion
in CP n, it follows that 2(n+1) is also an eigenvalue of1 acting onC∞(M) [R,
Cor. 2.11]. Lê and Wang [LW] have obtained a lower bound of the multiplicity of
2(n+1), characterizing the totally geodesic immersions as the only ones attaining
that lower bound.

If φ : Mn → Sm is a minimal immersion of a compact manifoldM, then the
well-known Jacobi operatorof φ (which we will denote byL) is an endomor-
phism of the space0(T ⊥M) given by

L = 1⊥ + B + nI,
whereI is the identity and1⊥ andB are the operators

1⊥ =
n∑
i=1

{∇⊥ei ∇⊥ei −∇⊥∇ei ei}, B(ξ) =
n∑
i=1

σ(Aξei, ei),

with ξ ∈ 0(T ⊥M) and{e1, . . . , en} an orthonormal reference tangent toM. Let
Q(ξ) = −∫

M
〈Lξ, ξ〉 dV be the quadratic form associated to the Jacobi operator

L. We will represent by Ind(φ) and Nul(φ) the index and nullity of the quadratic
formQ, which are (respectively) the number of negative eigenvalues ofL and the
multiplicity of zero as an eigenvalue ofL. It is interesting to summarize some re-
sults of Simons [S] that are the starting point of our paper.

Theorem A [S]. Letφ : Mn→ Sm be a minimal immersion of a compact man-
ifold M. Then the following statements hold.

1. If a⊥ is the normal component of a vectora ∈Rm+1, thenLa⊥ −na⊥ = 0 and
dim{a⊥ | a ∈ Rm+1} ≥ m − n, holding the equality if and only ifφ is totally
geodesic. As consequence,Ind(φ) ≥ m− n and the equality holds if and only
if φ is totally geodesic.

2. IfX⊥A is the normal component of the Killing fieldXA onSm withA∈ so(m+1),
thenLX⊥A = 0 and dim{X⊥A | A ∈ so(m + 1)} ≥ (n + 1)(m − n), holding
the equality if and only ifφ is totally geodesic. As consequence,Nul(φ) ≥
(n+ 1)(m− n) and the equality holds if and only ifφ is totally geodesic.

Now we shall analyze the Jacobi operatorL whenφ : Mn → S2n+1 is a mini-
mal Legendrian submanifold. Using (1) and writingξ = JX + fJφ, we check
easily that
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1⊥ξ = J1̂X − JX + 2J∇f + (1f − nf − 2 divX)Jφ,

where div is the divergence operator,∇f is the gradient off, and1̂ is the operator
on0(TM):

1̂ =
n∑
i=1

{∇ei∇ei −∇∇ei ei}

for {e1, . . . , en} a local orthonormal reference onM. Also from (1) we have

B(ξ) =
n∑
i=1

JAσ(X,ei )ei .

Now using the Gauss equation forφ, we finally obtain

Lξ = J1̂X − JS(X)+ 2(n−1)JX + 2J∇f + (1f − 2 divX)Jφ,

whereS denotes the Ricci operator onM. Because the tangent vector fieldX can
be identified with its dual 1-form, we will consider the following identification:

0(T ⊥M) ≡ �1(M)⊕ C∞(M),
ξ ≡ (α, f ),

whereα is the dual 1-form ofX (i.e.,α(v) = 〈v,X〉 = 〈Jv, ξ〉 for anyv tangent
toM) and where, in general,�p(M) denotes the space ofp-forms onM. Taking
into account the relation between1̂ and the Laplacian1 acting on 1-forms finally
yields the expression of the Jacobi operatorL of a minimal Legendrian immersion
φ : Mn→ S2n+1 as follows:

L : �1(M)⊕ C∞M → �1(M)⊕ C∞M,
L(α, f ) = (1α + 2(n−1)α + 2df,1f − 2δα).

(2)

It is interesting to identify the eigensections given in TheoremA in terms of1-forms
and functions. In fact, it is easy to check the following assertions.

1. If a ∈Cn+1, then the eigensectiona⊥ corresponding to the eigenvalue−n of L
is identified with

a⊥ ≡ (df, f ), where f = 〈Jφ, a〉 and 1f + nf = 0.

2. The Jacobi fieldX⊥J is identified with

X⊥J ≡ (0, f ), where f(p) = 1 ∀p ∈M.
3. If A∈ so+(2n+ 2), then the Jacobi fieldX⊥A is identified with

X⊥A ≡ (dg, 2g), where g = 〈Aφ, Jφ〉 and 1g + 2(n+1)g = 0.

4. If A∈ so−(2n+ 2), then the Jacobi fieldX⊥A is identified with

X⊥A ≡ (α,0), where αp(v) = 〈Aφ(p), Jv〉 ∀p ∈M, ∀v ∈ TpM
and where1α + 2(n − 1)α = 0. Moreoverα = δω, whereω is the 2-form
ωp(v,w) = 〈Av, Jw〉 for all p ∈M and allv ∈ TpM.
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3. Index and Nullity of Minimal Legendrian Submanifolds

To study the index and the nullity of a minimal Legendrian immersionφ : Mn→
S2n+1 of a compact orientable manifoldM,we consider the Hodge decomposition

�1(M) = H(M)⊕ dC∞M ⊕ δ�2(M),

which allows us to write in a unique way any 1-formα asα = α0+dg+ δω,with
α0 a harmonic 1-form,g a real function, andω a 2-form onM. The spaceH(M)
of harmonic 1-forms is the kernel of1, and its dimension isβ1(M), the first Betti
number ofM.

Hodge’s decomposition of 1-forms, together with the preceding decomposition
of the Jacobi fields (via the special decomposition ofso(2n + 2) given in Sec-
tion 2), suggests the splitL = L1⊕ L2, where

L1 : H(M)⊕ δ�2(M)→ H(M)⊕ δ�2(M),

L1(α) = 1α + 2(n−1)α,
and

L2 : dC∞M ⊕ C∞(M)→ dC∞M ⊕ C∞(M),
L2(dg, f ) = (1dg + 2(n−1)dg + 2df,1f − 21g).

Hence, ifQi are the quadratic forms associated to the operatorsLi (i = 1,2), then

Ind(φ) = Ind(Q1)+ Ind(Q2),

Nul(φ) = Nul(Q1)+ Nul(Q2).
(3)

In the next result we study the index and the nullity ofQ1.

Theorem 1. If φ : Mn → S2n+1 is a minimal Legendrian immersion of a com-
pact orientable manifoldM, then

Ind(Q1) = β1(M)+
∑

0<µk<2(n−1)

nµk , Nul(Q1) = n2(n−1),

whereµk denotes the eigenvalues of1 ofM acting onδ�2(M) andnµk their re-
spective multiplicities. Moreover:

1. Ind(Q1) = 0 if and only if φ is totally geodesic; and
2. Nul(Q1) ≥ n(n + 1)/2, and the equality holds if and only ifφ is totally

geodesic.

Proof. The expressions for Ind(Q1) and Nul(Q1) come from the fact thatL1 =
1+ 2(n−1)I, whereI is the identity.

To prove part 1, we consider the minimal Lagrangian immersionψ = 5 B φ:
Mn → CP n and use a weak modification of Theorem 1 in [U2]. This theorem
states that the first eigenvalueρ1 of1 acting on�1(M) satisfiesρ1 ≤ 2(n−1) and
that, if the equality holds, thenψ is totally geodesic. To obtain this result in [U2],
the author used certain “test” 1-forms that actually belonged toH(M)⊕ δ�2(M).

So really Theorem 1 in [U2] says that the first eigenvalueρ1 of 1 acting on
H(M) ⊕ δ�2(M) satisfiesρ1 ≤ 2(n − 1), with equality implying thatψ is to-
tally geodesic. Hence we obtain that the first eigenvalue ofL1 is nonpositive and,
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if it is zero, thenφ is totally geodesic. This means that if Ind(Q1) = 0 thenφ is
totally geodesic.

Conversely, ifφ is totally geodesic thenM is isometric to a unit sphereSn,with
2(n−1) as the first eigenvalue of1 acting onH(M)⊕ δ�2(M) (see [IT]).

To prove part 2 of our Theorem 1 we consider, for eachA ∈ so−(2n + 2), the
1-formγA onM defined byγA(v) = 〈Aφ, Jv〉, wherev is a tangent vector onM.
From assertion 3 at the end of Section 2, it follows thatγA is in the nullity ofQ1

for eachA∈ so−(2n+ 2). Thus we have defined a linear map

F : so−(2n+ 2)→ N(Q1),

A 7→ γA;
therefore, Nul(Q1) ≥ dim imgF = n(n + 1) − dim KerF. Now, if A ∈ KerF
thenγA = 0 and soJAφ is a section ofJ(TM). This means that the Killing field
XA on S2n+1 is tangent toM and soXA is also a Killing field onM. Hence we
have defined a linear map

G : KerF → {Killing fields onM}
A 7→ XA,

which is a monomorphism. As the dimension of the isometry group of a compact
n-dimensional manifold is not greater thann(n + 1)/2, we obtain dim KerF ≤
n(n + 1)/2. This, together with the previous inequality, means that Nul(Q1) ≥
n(n+1)/2. If the equality holds, the dimension of the isometry group ofM is ex-
actlyn(n+1)/2, and sinceM is compact we have thatM is isometric either to a
sphere or to a real projective space. Considering the Hopf fibration5 : S2n+1→
CP n, we see that5 Bφ defines a minimal Lagrangian immersion of a manifold of
positive constant curvature. Using the main result in [E1], we obtain that5 B φ
(and henceφ) is a totally geodesic immersion.

Conversely, ifφ is totally geodesic thenM is isometric to a unit sphereSn,with
2(n−1) as the first eigenvalue of1 acting onH(M)⊕ δ�2(M) and with multi-
plicity n(n+1)/2 (see [IT]). This completes the proof of Theorem 1.

Now we study the second operatorL2.

Proposition 1. Let φ : Mn → S2n+1 be a minimal Legendrian immersion of a
compact orientable manifoldM. The negative eigenvaluesρ ofL2 are given by

ρ = h(λ) := λ− (n− 1)−
√
(n− 1)2 + 4λ,

whereλ is an eigenvalue of1 of M acting onC∞(M) such that0 < λ <

2(n+ 1). Moreover, the eigenspaceVρ corresponding to a negative eigenvalueρ
ofL2 is given by

Vρ =
{(
df,

2λ

λ− ρ f
) ∣∣∣∣ 1f + λf = 0 andh(λ) = ρ

}
.

The eigenspaceV0 corresponding to the eigenvalue0 ofL2 is

V0 = {(dg, 2g + a) | 1g + 2(n+ 1)g = 0, a ∈R}.
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Remark 1. Whenn ≥ 3, the functionh is a bijection from ]0,2(n + 1)[ onto
]−2(n−1),0[. So, in particular, the first eigenvalueρ1 of the operatorL2 satis-
fiesρ1 > −2(n−1).

If n = 2 thenh is a map from ]0,6[ onto [−9/4,0[; in particular,ρ1 ≥ −9/4=
h(3/4). In this case 3/4 is the only critical point (in fact, it is a minimum) ofh
on ]0,6[. Also, h from [2,6[ onto [−2,0[ is a bijection and, for each real num-
bery ∈ ]−9/4,−2[, there exist exactlyx1 ∈ ]0,3/4[ andx2 ∈ ]3/4,2[ such that
h(xi) = y for i = 1,2.

Proof of Proposition 1.Let ρ be a negative eigenvalue ofL2 and let(dg, f ) ∈
dC∞(M)⊕C∞(M) be an eigensection corresponding toρ, that is,L2((dg, f ))+
ρ(dg, f ) = 0. Looking at the expression ofL2, we write this equation as

1(dg)+ (2(n−1)+ ρ)dg + 2df = 0,

1f − 21g + ρf = 0.
(4)

If dg =∑k≥1 dgk andf =∑k≥0fk are the decompositions ofdg andf in eigen-
forms and eigenfunctions (respectively) with1dgk+λkdgk = 0 and1fk+λkfk =
0, then (4) yields the following equations:

(2(n−1)+ ρ − λk)dgk + 2dfk = 0, k ≥ 1; (5)

2λkgk + (ρ − λk)fk = 0, k ≥ 1; (6)

ρf0 = 0. (7)

As ρ < 0 andλk > 0 for k ≥ 1, from (7) and (6) we have that

f0 = 0, fk = 2λk
λk − ρ gk for any k ≥ 1. (8)

Using (8) in (5), we obtain(
2(n−1)+ ρ − λk + 4λk

λk − ρ
)
dgk = 0 for any k ≥ 1,

and hence eitherρ = λk − (n− 1)±
√
(n−1)2 + 4λk or dgk = 0. Because the

solution corresponding to the positive root is positive, we deduce that for anyk ≥
1 eitherρ = λk − (n−1)−

√
(n−1)2 + 4λk or dgk = 0. Sincedg is not trivial,

we finally obtain thatρ = h(λ),whereλ is an eigenvalue of1 acting onC∞(M).
It is also clear thatρ < 0 impliesλ < 2(n+1). From (8) it follows that

(dg, f ) =
∑

h(λk)=ρ

(
dgk,

2λk
λk − ρ gk

)
.

Also, there are at most twoλk satisfyingh(λk) = ρ. In Remark 1 we pointed out
that this one occurs only whenn = 2 and−9/4< ρ < −2.

If ρ = 0, reasoning as before yields

fk = 2gk and (2(n+1)− λk)dgk = 0 for any k ≥ 1.
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Hence there are only two posibilities for(dg, f ): either(dg, f ) = (dg, 2g) with
1g + 2(n+1)g = 0, or (dg, f ) = (0, a) with a ∈R. The proof of Proposition 1
is now complete.

This result allows us to determine the index and nullity of the quadratic formQ2.

Corollary 1. Let φ : Mn → S2n+1 be a minimal Legendrian immersion of a
compact orientable manifoldM. Then

Ind(Q2) =
∑

0<λk<2(n+1)

mλk , Nul(Q2) = 1+m2(n+1),

whereλk denotes the eigenvalues of1 ofM acting onC∞(M) andmλk their re-
spective multiplicities. Moreover:

1. Ind(Q2) ≥ n+ 1, and the equality holds if and only ifφ is totally geodesic;
2. Nul(Q2) ≥ (n+1)(n+ 2)/2, and the equality holds if and only ifφ is totally

geodesic;
3. if φ is not totally geodesic, thenInd(Q2) ≥ 2n+ 2.

Proof. The expressions of index and nullity ofQ2 are direct consequences of
Proposition 1. Part 2 is exactly Theorem 1.2 in [LW]. To prove parts 1 and 3, we
proceed as follows. For anya ∈Cn+1, let fa = 〈φ, a〉. Then1fa + nfa = 0 and
somn ≥ dimV, whereV = {fa | a ∈ Cn+1}. It is clear that dimV ≤ 2n + 2.
If dimV < 2n + 2, there exists a nonzero vectora in Cn+1 such thatfa = 0.
Deriving fa with respect to a tangent vectorv yields 0= 〈v, a〉 = 〈Jv, Ja〉, so
the normal component ofJa is (Ja)⊥ = 〈Ja, Jφ〉Jφ = faJφ = 0. Hence the
Hessian offJa is given by

(∇2fJa)(v,w) = 〈σ(v,w), Ja〉 − 〈v,w〉φ = −〈v,w〉φ.
A theorem of Obata [O] states that eitherMn is isometric to a unit sphere or

fJa = 0. In the first case,φ is totally geodesic and dimV = n+ 1; in the second
case we havefa = fJa = 0, which implies thata = 0 and so contradicts the as-
sumption. Hence it follows (a) that Ind(Q2) ≥ mn ≥ dimV ≥ n+1, holding the
equality if and only ifφ is totally geodesic, and (b) that ifφ is not totally geodesic
then Ind(Q2) ≥ mn ≥ dimV = 2n+ 2. This completes the proof.

Taking into account (3), Theorem 1, and Corollary 1, we obtain the expressions of
the index and the nullity of an orientable compact minimal Legendrian submani-
fold of S2n+1.

Corollary 2. Let φ : Mn → S2n+1 be a minimal Legendrian immersion of a
compact orientable manifoldM. Then

Ind(φ) = β1(M)+
∑

0<λk<2(n+1)

mλk +
∑

0<µk<2(n−1)

nµk ,

Nul(φ) = 1+m2(n+1) + n2(n−1),

whereλk (resp.,µk) are the eigenvalues of1 ofM acting onC∞(M) (resp., on
δ�2(M)) and wheremλk (resp.,nµk ) are their respective multiplicities.
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Finally, we study the case in which the minimal Legendrian submanifoldM is
a compact orientable surface. Here the star (or duality) operator∗ is an isomor-
phism fromδ�2(M) ontodC∞(M) commuting with1, which implies that the
eigenvalues of1 acting onδ�2(M) are the nonnull eigenvalues of1 acting on
C∞(M) and with the same multiplicity. Hence we obtain the following result.

Corollary 3. Letφ : M 2→ S5 be a minimal Legendrian immersion of a com-
pact orientable surfaceM of genusg. Then

Ind(φ) = 2g + 2
∑

0<λk<2

mλk +
∑

2≤λk<6

mλk ,

Nul(φ) = 1+m2 +m6,

whereλk denotes the eigenvalues of1 ofM acting onC∞(M) andmλk their re-
spective multiplicities.

Consider the Legendrian immersion

R2→ S5,

(x, y)→ 1√
3
(e ix, e iy, e−i(x+y));

its first fundamental form is given byg11 = g22 = 2/3 andg12 = 1/3. It there-
fore induces an embeddingφ : T → S5 from T = R2/0, where0 is the lattice in
R2 generated by

{(
1/
√

2,1/
√

6
); (0,√2/

√
3
)}
. It is clear that the induced met-

ric in T by φ is flat, thatT is a minimal Legendrian surface, and thatλ1(T ) =
2, λ2(T ) = 6, m2(T ) = 6, andm6(T ) = 6. This surface is usually called the
equilateral torus.Projecting the immersion just described fromR2 into S5 by the
Hopf fibration5 : S5→ CP2,we obtain an immersion fromR2 intoCP2 that de-
fines the minimal Lagrangian embedding of the (generalized) Clifford torus. The
equilateral torus is a 3-covering of the Clifford torus, and in this case 6 is the first
nonnull eigenvalue of1 acting on functions of the Clifford torus.

Corollary 4. Let φ : M 2 → S5 be a minimal(non–totally geodesic) Legen-
drian immersion of a compact orientable surfaceM of genusg. Then

Ind(φ) ≥ 2+
∑

2≤λk<6

mλk ,

whereλk denotes the eigenvalues of1 of M acting onC∞(M) andmλk their
respective multiplicities. Moreover, the equality holds if and only ifM is the equi-
lateral torus.

Proof. If the genusg of the surfaceM is zero thenψ = 5 B φ : M 2 → CP2 is
a minimal Lagrangian immersion of a sphere, and Theorem 7 of [Y] says thatψ

is totally geodesic. This implies that alsoφ is totally geodesic, which contradicts
our assumptions. Sog ≥ 1 and the inequality follows. If the equality holds, then
M 2 is a torus withλ1 = 2. Using the main result in [EI], we obtain thatM is the
equilateral torus.
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Corollary 5. Let φ : M 2 → S5 be a minimal(non–totally geodesic) Legen-
drian immersion of a compact orientable surfaceM of genusg. Then:

(a) Ind(φ) ≥ 8, and the equality holds if and only ifM is the equilateral torus;
and

(b) Nul(φ) ≥ 13, and the equality holds if and only ifM is the equilateral torus.

Proof. From Corollary 4 and the proof of Corollary 1.3, it follows that Ind(φ) ≥
2+m2 ≥ 8. If Ind(φ) = 8 theng = 1 andλ1= 2, and using again the main result
in [EI] we obtain thatM is the equilateral torus. Finally, ifM 2 is the equilateral
torus then Ind(φ) = 8. This proves part (a).

From the proof of Corollary 1.3 it follows thatm2 ≥ 6. In order to estimatem6,

we proceed as in the proof of Theorem 1. We defined a linear map

F : so+(6)→ V6 = {f | 1f + 6f = 0},
A 7→ fA = 〈Aφ, Jφ〉,

and hencem6 ≥ dim imgF = 8−dim KerF. Now, if A∈KerF thenfA = 0 and
so∇fA = 0, which means thatAφ is tangent toM. Hence the Killing fieldXA on
S2n+1 is tangent toM and soXA is also a Killing field onM. This means that we
can define a linear map

G : KerF → {Killing fields onM},
A 7→ XA,

which is a monomorphism. Becauseφ is not totally geodesic (and so not isomet-
ric to a sphere), it follows that the dimension of the isometry group ofM is not
greater than 2, which in turn implies that dim KerF ≤ 2. A previous inequality
states thatm6 ≥ 6. Now Corollary 3 together with the estimation ofm2 implies
that Nulφ ≥ 13.

If Nul φ = 13 then (in particular)m6 = 6 and the dimension of the isometry
group ofM is 2. This implies that the genusg of M is either 0 or 1. Ifg = 0, the
result mentioned in the proof of Corollary 4 says thatφ is totally geodesic, which
contradicts the assumption. This means thatM is a torus with two linear indepen-
dent Killing vector fields. Hence the torusM is flat and so5 B φ : M → CP2 is
a flat minimal Lagrangian torus. Therefore,5 B φ is a finite Riemannian cover-
ing of the Clifford torus. Thusφ : M → S5 is a finite Riemannian covering of the
equilateral torus, but only among the finite Riemannian coverings of the equilat-
eral torus does it satisfym2 = 6 andm6 = 6. This finishes the proof.
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