Michigan Math. J. 51 (2003)

Sharp Estimate of the Ahlfors—Beurling Operator
via Averaging Martingale Transforms

OLIVER DRAGICEVIC & ALEXANDER VOLBERG

1. Introduction

Our mostimportant object will be the so-called two-dimensional martingale trans-

form. In order to define it properly, we should start with the notion of a Haar basis.
We call the familyL := {[m2", (m +1)2"] | m, n € Z} the standardyadic lat-

tice. Observe that 0 is the only real number that is not contained in the interior of

anydyadic interval that is, any member of. Each intervall C R gives rise to

its Haar function;, defined by

hy o= 1117%(x, — %),

wherel_ andl, denote (respectively) the left and the right half of the intefvad
x e stands for the characteristic function of the Bets usual. It is a well-known
fact that the seth; | I € £} forms an orthonormal basis of the spdc&R).

At this point we should emphasize that our attention will be concentrated on
the planar case. Toward that end we shall introduce a similar basis for the space
L?(R?). This will be described in detail in the continuation of this preface.

We may now define the operatdy on L2(R) by

T,f =Y o(){f, h)hi,
Iel
whereos : L — {—1,1} is arbitrary. Such operators are callegrtingale trans-
forms. Observe thaf, is an isometry satisfying? = 1.

The symbol{ f); shall stand f0|11|*1f1 f dm, the average of the functiofi
over the intervall. We say that a measurable function R — R satisfies the
dyadic A, conditionif

Qu,2 i= sup(w); (w™); < oc.
Iel
It is well known that, for any such weight, the martingale transforms are uni-
formly bounded onL.?(w), that is, on the Hilbert space of measurable complex
functions onR endowed with the scalar product

(fs 8w = /Rf(x)g(_x)w(x)dx.
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416 OLIVER DRAGICEVI¢C & ALEXANDER VOLBERG

More precisely, in [9] it was shown that there is a constant O such that, for
arbitrary choice of functions) € A,, o: £ — {—1,1}, and f € L?(w), we have
the condition

175 f L2y < COQu.2ll f Il L2aw)- @

The estimate (1) is sharp in the sense that one cannot repl@ge; in it by
¢ (Qu.2), Wwhereg grows slower than a linear function.

Our interest will focus on studying the caseRf instead ofR, and a certain
important singular integral operator &% will play the role of7,,. In the planar
case, all the definitions simply proceed from the one-dimensional case in a natural
way. Thus the terndyadic latticewill now stand for the collection of all squares
of the formI x J c R? wherel andJ are dyadic intervals of the same length.

To each such squag = I x J we will assign three Haar functions:

hf(s. 1) i=hy(s)x, (O],
hj (s, 1) = 1725, () (1),
/’lQ(S, t) :=h;(s)hy(t).

As previously, one can verify that the 5’«%’ h)., hg | O € L} builds an orthonor-

mal basis inL?(R?). Now thetwo-dimensional martingale transforo@ecomes the
operator

T,f =Y o/(QNf hphy + Y or(Q(f h)hh + Y o (Q)(f. hodho.

QeLl QeL QeLl

where, as beforey;, 07, 0: £ — {—1,1} andf € L?(R?) are arbitrary functions.
The term (two-dimensional}, weight now stands for a positive measurable
functionw onRR? such that

Qu,2 = SUp(w)o(w™)o < oo.
QCR?
Here, unlike previously, the supremum runs over all squarég&?jmot merely
the dyadic ones; in the latter case we would be referring talylaelic A, weight.
Certainly, (-)o denotes the average over the squ@reith respect to the planar
Lebesgue measure. One can immediately obtain a two-dimensional version of
Wittwer’s result (1).
Let us also introduce

Qu,p = sup(w)Q(w_l/(”_l))g_l, l<p<oo.
QCR?

We shall be studying the operatbr. L2(w) — L?(w) of convolution with the
kernelz 2, that is,

R [

Rxr (U4 v)?

Herew is a planarA, weight, of course. The operat@r sometimes multiplied
by 1/, is called theAhlfors—Beurling operator.

du dv.
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Our main result is the following theorem.
TueoreM. T is in the weakly closed linear span of operators of the tfjpe
This yields an immediate corollary as follows.
CoROLLARY. [T |lzrw)—Lrw) < C(P)Quw,p-

It is enough to prove the Corollary for = 2 (see [7]). This corollary was the
main goal of [7], where it was proved by different methods. It seems to us that our
proof is much more streamlined and perhaps more conceptual.

The theorem looks slightly unexpected because the same result would not be
true for T replaced by the first-order Riesz transforms on the plane. In fact, all
our operatord, have symmetric kernels,, meaning thak,(x, y) = k,(y, x),
but the first-order Riesz transforms have antisymmetric kernels. This is why a
completely different set of dyadic singular operators was used in [6] to represent
Riesz transforms. The operators from [6] are slightly complicated. We already ex-
plained that, in representing first-order Riesz transforms, one cannot average our
simpler operatorg,,. But we do not know whether one can average something
that is as simple a%, and also antisymmetric in order to obtain the first-order
Riesz transforms.

AckNOWLEDGMENT. We are grateful to the referee for several useful suggestions.

2. Motivation

Consider the standard differential operators

9 1/ 0 .0
= — —_— ] — .
2\ ox ay

s_1(0 .0
— 2\ ox l&y '

The regularity of solutions of the Beltrami equation

of =p-of (2

has received a lot of attention from mathematicians since the 1940s. Function
called theBeltrami coefficientbelongs to the spade™ (C). Its normk is strictly
smaller than 1. The result of Bojarski, Ahlfors, Bers, and Lavrentiev states that
there is aW? solution to (2) that is a global homeomorphism of the extended
complex plane. Forz € C, it maps the infinitely small ellipse, centeredzand

with ratio of the axe%%, into some infinitely small circle centered #tz).

For this reason it is impoftant to consider the constant

14k
K=K
1—k
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Every homeomorphisny': ¢ > ¢ belonging to the Sobolev clasg? for
which (2) is fulfilled is called &K -quasiconformalmapping. Any local solution
of (2) from W12,|oc is called aguasiregularmapping.

Denotingg = 3f, we are able to writ¢ (such thatf(z) ~ z+C, |z| — 00), as

f(2) = 1 &dA(z) +z+C.
) §—z2
This is where our operatdr begins to play its role, fobf = Tg + 1 and sog =
nTg + p, or
I —pnT)g = p.
Since
IuTllpesr2 < Il Tl 22 < k <1,

the operator] — u7)~* exists and
g=(—ul)

It has been shown that the normiof" as an operator oh? is still less than 1 if
p is slightly greater than 2. On the other hand, the word “slightly” is rather impor-
tant. More precisely, it is known [4] that should not exceed% k. This fact,
combined with our awareness thek||;2_, ;2 = 1, gives rise to the assumption
that
ITrsr = p—1
For in that case,

IeTlr—rr < Itllaol TllLr—rr < kA+k =1 =1

This is still an open question. The best known estimate has been obtained by
Nazarov and Volberg in [5]. They proved thgE || ».» < 2(p — 1). This im-
proves the previous estimate in [3] (namely, witlp4-1)). Recently, the estimate
2(p — 1) was obtained in [2] by using methods that differ from those in [5].

Itis relevant that we also study weighteé spaces. For it was shown in [1] that

I — 1T Miprorr < CONNT Loy Lo

wherew = |f. o fYP2for p e 1+ k, 1+ k1) and f is a quasiconformal
homeomorphism satisfying (2) together with the normalizaffon) = z + o(1
as|z| — oo.

This estimate, together with the Corollary stated in Section 1, gives the linear
growth of |(I — uT)Yzr—» Wherep — 1+ k. We know (see [1]) this implies
that weakly quasiregular maps on the plane are quasiregular. Hence this geomet-
ric fact becomes the corollary of our main theorem about representation of the
Ahlfors—Beurling transform as a closure of the linear span of martingale trans-
formsT, and the correct weighted estimatesipfobtained by Wittwer [9].

3. The Main Idea

As we have announced, we will represent duas the result of averaging of oper-
ators similar tal;,. After that, the desired estimate OF | .2, 1.2(,,) Will follow
from the two-dimensional version of (1) fOf || L2 (,)— £2(w)-
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4. The Averaging

Instead of a dyadic lattice, let us consider for a momagrich G of squares. This
is a family of squares of the forthx J, wherel andJ are dyadic intervals of unit
length. Furthermore, fare R? defineg, := G +1, that s, the grid of unit squares
such that one (in fact, four) of them contain pairats one of its vertices.

Now we are ready to introduce our “core” operatBrs L(w) — L?(w) by

Pof = > [(f. hi)hly — (f. h)h)].
QegG;

Since(f, hj,)h(, can be written as
SUCE hpYhGy + (fo h)Yhly + (. hodho]
+ 3[(f hpYhly — (f By G — (f ho)ho]

and similarly for(f, hé)hé, we see thaP, f is a linear combination (with coef-
ficients 1 and-1) of two convex combinations of two martingale transforms (one
of which is the identity). This means that the analogue of condition (1) also holds
(with some other constant) for all operatdts That we have translated our stan-
dard grid does not cause any problems, as we shall see later.

Notice that the familyQ := {G, | t+ € R?} of all unit grids naturally corre-
sponds to the toruR?/Z?, which is of course in one-to-one correspondence with
the square [01)2. Thus we are able to regafe as a probability space where the
probability measure equals to the Lebesgue measure, &]0

This now leads to the “mathematical expectation” of the “random varidhle”
This will again be an operator ai?(w), defined pointwise (fof € L?(w)) as

(EPf)(x) = /Q B, f(x) dm(?).

SinceEP is a result of integrating over a certain probability space (more gener-
ally, a set of finite measure), it makes sense to call this processénaging.The
significance of this operator is revealed in the following proposition.

ProrosiTiON 1. With notation as before, the operat&iP is a convolution oper-
ator with kernel

a(x1) a(xp)
F(x1, x2) = a(x1)(x2) — flxpa(xz) = |, 00 "2

B(x1) B(x2)

’

where
o =hg*xhg and B = xo * Xo.

Here xo and ko stand(respectively for the characteristic and Haar function of
the interval[—1/2, 1/2].

Proof. Choose = (1, t2) e RZandQ = I x J €G,. Then

) = [ [ Fsssoohlyos 52 dsase
RJR

://f(sl» 52)hy(s1) xs(s2) ds1ds>
7 Ji
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and similarly for(f, n},). Thus for (fixed)f € L?(R?) andx = (x1, x2) € R* we
have

(P f)(x)
= S LS )Rl — (f k)R] ()
0eG,
= Z |:/ / f(s1,82)h(s1)xs(s2) ds1dsy - hIQ(x)
QeG; RJR

—/ / f(slvSZ)XI(Sl)hJ(SZ)dsldSZ'hé(x):|
RJR

=/ / f(S1,Sz)<Z[hz(sl)xJ(Sz)h’Q(x)—Xz(h)hJ(Sz)hé(X)]) dsy ds.
RJR Q0eG;

The expression under the summation in the last row is nonzero for exact{y ane
G,; namely, one such tha, (x) # 0 # h),(x). This means that = (x1, x2) €
0 and hencer; € I andx, € J. Thush’Q(x) = h;(x1) andhé(x) = h(x2). We
thus obtain

(P f)(x)
:/R/Rf(sl,52)[h1(81))(1(52)h1(x1)—i)(](sl)hj(sz)hj(xz)]dsldSZ. ©)

Becausej, does not change if we increase or decrease any componebt/of
1, we may assume thdt= (1, — 1, 1) andJ = (¢, — 1, t,). Denoting/y =
[—1/2,1/2], this assumption implies

1 1
]=t1—§+lo and J=l2—5+10.

Now let xo andhg be as in the formulation of the proposition anddgt= —hg.
The fact that/p is symmetric with respect to 0 yields the equalities
x1(z) = xo(t1 —1/2 —2)
and
hi(z) = ko(h—1/2—2)
for all z e R. The analogue pair is valid also fdr of course.
The point here is that our goal was to modify the expressions on the left to look
more like a part of a convolution integral with andz, as integration variables

andz as a center of convolving.
Together with (3), the last two equalities imply

(P f)(x)
= / / fs152)[ko(ts— 5 — s1)xo(t2 — 3 — s2)ko(t2 — 3 — x1)
RJR

— Xo(l]_ — % — S]_)ko([z — % — Sz)ko(tz — % — xz)] dsi1dso.
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Recall thatx; € I = (11 — 1L 1) andx, € J = (12 — 1,12). Hencex; < t; <
x; +1fori =1, 2. Averaging in our case means integrating over all admissjble
Therefore,

x2+1 x1+1
(EPf)(x) = / / (Ppiny f)(x) diy di.

1

By using the most recent expression {d, f)(x) and changing variables (to
t; —1/2) we obtain

x2+1/2  px1+1/2
(]EIP’f)(x) = / / / / f(Sl, S2)[A] dsldSZdll dl‘g,
x2-1/2 Jx1-1/2 JRJR
where
A = ko(t1 — x1)ko(t1 — s1) xo(t2 — 52) — ko(t2 — x2)ko(t2 — s2) xo(t1 — s1).
Applying Fubini’s theorem yields
x2+1/2  px1+1/2
(EPf)(x1, x2) =/ / f(s1,82) / [A]dtidtadsidss. (4)
RJR x2—1/2 x1—1/2

This is how we obtained the candidate for the convolution kefnefithe operator
EP. Namely, equation (4) gives us the relation

242 pxitl/2
F(x1—51,x2—82) = / [A] dty dt».
x2—1/2 Jx1-1/2

Takings; = so = 0 gives

F(x1, x2)

o2 pritl/2
= / / [ko(t1 — x1) ko(t1) xo(t2) — ko(t2 — x2)ko(t2) xo(t1)] dt1 dt>.
x2—1/2 x1—1/2

We are able to separate variableandt,, so

1112 412
Flay, x2) = / Ko(ts — x1)ko(ts) diy - / Xo(t2) diz
x1—-1/2 x2—1/2
x14+1/2 x2+1/2
—/ xo(t1) dty / ko(ta — x2)ko(t2) dt».
x1—1/2 x2—1/2

Observing that

X412 xi+1/2
/ xo(t;) dt; = / xo(ti) xo(x; — t;) dt;
x;i—1/2 x;i—1/2

fori =1, 2 and thatg * kg = hg * ho, we finally obtain

F(x1,x2) = (ho * ho)(x1)(x0 * x0)(x2) — (X0 * x0)(x1)(ho * ho)(x2),

as desired. O
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Graphs of functiong andg are shown as Figures 1 and 2, respectively.

Notice, as a corollary, that (1) also holds for the oper@Brin place of7,,
since it held for allP;.

Instead of the unit grid we may consider a grid of squares with sides of an ar-
bitrary lengthp > 0. Denote such a grid bg/ if r € R? is a vertex of one of its
members. Henceforth we will call the sizeof the grid and its reference point.

We obtain another family of operators, defined by

PLf = > [(f hpdhy — (f. h))h)).
Qeg!

RemArRk 1. Inorderto clarify some basic properties of these operators, we present
the following observations (and omit the easy proofs).
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Fort e R? p > 0, and any functionf onR?, defineSf(x) = f(px +1). If w
is any weight, ther§ mapsL?(w) — L?(Sw). We also have the identity

P? = S7'PyS.

More preciselyP/| ;2 is the composition of operators
-1
L2w) 3 L2(Sw) 25 LA(Sw) 2= L%(w).

Since|Sfll 2iswy = @/ fllL2aw), it follows that [ S|l 2w — 125wy = 1/4/P;
similarly | S 2¢su) - 2(w) = /P-

If w e A, then alsoSw € A and Qg2 = Q2. ThereforePy: L2(Sw) —
L?(Sw) is a bounded operator that inherits the estimate for its norm farithat
is, it satisfies the same inequality Bsdoes in (1), according to [9].

These facts combined tell us that ev@fis a bounded operator dif (w) with
IPL 1l 20wy 12wy < CQuw,2, WhereC is an absolute constant, as usual.

Let us use the same procedure of averaging as that used earlier ot now for
P/; this yieldsEP*. Applying a similar proof as for Proposition 1, we can show
the following.

ProposiTION 2. Choosep > 0. Then averaging operatoi®’ over the sef2” :=
R?/(pZ?) returns a convolution operator with the kernel

1
FP(x1,x7) = —2F<ﬂ, B)
P PP
Here the sef2” is endowed with the normalized Lebesgue measiye?) dm..

Thus we have found the kernel of the operator as a result of averaginglbver
grids of afixedsize. Our next step will be to average oversities.Let us explain
what we mean by that.

Taker > 0. A lattice of caliberr is said to be a family of intervals (squares)
obtained from the standard dyadic latti€éy dilating it by a factor and translat-
ing by an arbitrary vectar. In other words, such a lattice (call4t)) is the union
of grids of sizesr - 2", n € Z, havingt as their reference point. It is clear that
the set of all possible calibers naturally corresponds to the interva).[Eor our
purpose, the most appropriate measure on this interval turns outdy beT his
makes all other possible choices of intervals (e.d., 22*1)) have the same mea-
sure (i.e., log 2

We introduce kernels

0]

kri= Y F7

n=—0oo

This sum is well-defined because, as a function, it is equal (by our previous asser-

tion) to
> 1 . 1 1 :
E ——F| —— )| =—= E —F .
r2,22n (r,2n> r2n: 4n <r2n>

n=—0oo —0Q
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Since the functiorF is bounded and of compact support, the series converges ab-
solutely onR? and uniformly outside any neighbourhood of the origin. It is easy
to see that the series converges in the sense of distributi@rfisstben understood

as a distribution in the following sense. l¢gebe a test function from the Schwartz
classS and letx = (x1, x2); then

(D, k") = IimO d(x)k"(x)dx.
eV S x|>e

We would like to show that” defines a bounded convolution operator—more
precisely, that it is a strong limit of its partial sums.

Thatk”x is a sum of operators obtained by averaging over grids ofrsiZ¥
hints atk"x itself being an average, this time owsmionsof these grids (i.e., lat-
tices of caliber). Here we present what exactly we have in mind by that.

For M € Z, let the Mth partial sum of the serigs’ be

M
ky = Y F?.

n=—00

Lemma 1. Functionk;, defines a bounded convolution operator bf(w). The
limit k7 := limy_ . kj,* exists in the strong sense and also gives rise to a
bounded operator ofi.?(w).

Proof. For the sake of simplicity we will assume that= 1; the proof does not
change at all for general We start with a formal definition:

M

M

n 1 n

k;*f=<ZF2)*f=Z4—nf P?'f dt (5)
n=—0oo n=—0oo [072”]2

by Proposition 2. At this point we will need the following observatidior any

n, M € Z withn < M, we have

1

= P2'fdt = L P2'f dr.
4n [0,27]2 d 2 !

A Jio, 2
This time we simplify the proof by taking/ = 0. Then the square [@]? con-
sists of exactly 4" dyadic squares of size'2The integral/ P2"f dt over each of
them equals the integral over,[®']? owing to the invariance of the measure on
Q2" with respect to the map ap?' = R?/2"Z? that is induced by the shift dR?,
Since the sum of integrals over these squares equals the integral over their union,
which is [0, 1], we have proved this part of the statement.
This enables us to rewrite (5) as

M
> L / P?'f dt
4M [O,ZM]Z ! ’

n=—00
which is equal to
1

M
— P2'f dr.
4M /[ko’zM]Z Z ! f

n=—00
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Let us explain why we were able to exchange the order of integration and sum-
mation in the last step. Again we do this fir = O only.
We need to show that the?(w) norm of the difference

0 0
P?'f dr — P dt:/ P?'f dr
/[0,1]2 2 T n;N /[0,1]2 a [ 2 B

n=-—00 071]2n<7N

is small if N e N is large.

LemMA 2. For every functionf e L?(w) with w € A, and for everyr € R?,

Y PBEY

[n|=N

=0.
L2(w)

lim

N—o0

Proof. A collection{e, | n € Z} of vectors in a Hilbert spacH is said to give rise
to aRiesz basisf # if there areM, m > 0 such that, for any sequen¢k,),,cz of
scalars, we have the double-sided inequality

2
m Y lanenl® < | Y dnen| <MD Irnenl?

nez nez nez
It is a known fact that
w e A, <= Haar functions form a Riesz basisirf(w). (%)

For everyN €N, define a measurable functigr : R? — C by

gN(t) = Z IP’,Z"f
|n|2N LZ(‘(U)
We claim that, for any € R?,
lim gy() =0. (6)
N—o0

In order to prove this statement, choeseR? and consider the translation oper-
atorS;. Then

Y PP =5, Pgs,

In|=N In|=N

as we saw in Remark 1. Thus

Y B

[n|=N

> P

[n|=N

=

I1S: fll2csw)-
B(L2(S;w))

gn(t) =

L2(S,w)

We can estimate the first term on the right by using (1) to obtain that it is less than
or equal toaCQys, .. 2. Referring once more to Remark 1, we @&,,, > = Q,, 2 and
so conclude that

gn () < COw2ll fllL2aw (7)
for all t e R? and allN e N. TakingN = 0, the statement) implies that
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DY U Gz, + L BYRGIIZ, ) < 00,

neZ geg?"

L BRI R (VAL A

|n|>N Qegzn

SO

Again by (x) it follows that

lm | Syl =0
n|>=N L2(w)
which is exactly the statement in (6). This proves Lemma 2. O

By (7), the functiong y are all bounded; hence the dominated convergence theo-
rem implies that

lim / gN(t)dtzf lim gy(¢)dt.
N—oo [0,1]2 [071]2N%oo

But now equation (6) yields that

lim /
N—o00

We can do the same for,__ instead ofy_, . »,, which is how we justify re-
versing the order of integration and summation (see p. 425). So we were indeed
right to claim that

dt =0.

LZ(W)

¥ e

|n|>=N

M
1 n
s = E P?'f dr.
M * f aM /[012}‘4]2 L t S

The integrands all satisfy (a two-dimensional version of) the inequality (1), so we
may conclude that} « does, too. This proves the first part of Lemma 1.

Now take f € L?(w). Let us verify that{k}, » f | M € N} form a Cauchy se-
quence inL2(w). ChooseM, N € N with N < M and compute the difference

N
(k% —kl)*f_ / PZ'f dt — f P2'f dt
0,212 , % Z av [0,2N12,,:2_:oc '
= 1/ Z P?'f dt 1/ XN: P?'f dt
4M [O’ZM]Zn:—OO ! 4M [()72M]2n:_0o !
1 M
= P?'f dr.
W [ 2 F

n=N+1

This difference is small i/ andN are sufficiently large, which basically follows
from Lemma 2 as well. On the other hand, by choosfrfgom the Schwartz class
S we can use the fact that, converges ta! in the sense of distributions, and
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hence we may conclude thiaf, « f — k* * f pointwise. Herek! x f is under-
stood as the convolution of a distribution and a test function. In particular, for
f €S we have
1 M
1 _ . - n
K = I g [, 2 FT ©
0,2%]1% oo

and similarly for all other € [1, 2). Reasoning in the same way as before, we see

that (1) is fulfilled withk?! in place of7,.
This finishes the proof of Lemma 1. O

ReEmARK 2. To understand distributiob' better, one can notice that its Fourier
transform is a bounded function. In fact, using the previous reasoningonsttl,
we conclude thaf — k'« f is a bounded operator dif(R?).

Note that the integrand in (8) is the sum

> LS hpYhgy — (f hY)RY].
Q0

where Q runs over a “truncated lattice”—that is, the union of grids of sizés 2
(—oo < n < M) and with reference points in Since the square [@"]? repre-
sents all possible reference points for such unions, the expression under the limit
sign in (8) means exactly averaging over these unions. But When oo, the
“truncated” lattice becomes “complete”. Thus we may understand the limit (8)—
and, more generally, the convolution with—as the result of averaging over all
lattices of caliber. Since our operators over lattices are bounded in the sense of
(1), the same is true @&f .

Averaging operatorg”«—that is, integrating" with respect tair/r (again in
the strong sense, i.e., on any fixed test functfgr-gives us a convolution oper-
ator once again. Call its kernkl Then

_ z dr 2 o dr - 2 o dr
k(x)—/l k(X)T—/l H:ZOOF (X)T_H_X_:oo/; F (X)T

n=—0oo

on+l

[o¢]
F-Y(x)ﬁ = f Ff(x)d—s. 9)
n S 0 S
Since the integrajfl2 dr/r is finite and the estimate (1) holds for afl«, it also
holds forkx. Thus we have been able to represent the opekatas a result of
averaging our “brick” operatoi®” over lattices of all calibers.
Observe that there is a map: S* — C such that

m(x/|x|)
|x|2

k(x) = (10)
for all x € R% Taking unimodular vectors yields = k| . For existence of such
m it suffices to show that the functign|?k(x) depends only on the direction of
x. So takex = (x1, x2) e R? andx > 0. We use Proposition 2 to compute
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k(xx)zfoon(xx)d—p =/°° F()‘_x>d_§
0 e Jo o /)p

= L)) ()5 )]s

Clearly, we must now introduce the variale= p/1. We obtain

I e N A A E- AW A L
k(/\x)_szo [‘X(M)ﬁ(u) ﬁ<u>a<ﬂ>]ﬂ3_/\2k(x)’
which is what we wanted.

ReEMARK 3. Observe thdtis an even function, because soam@ndg. Therefore,
m is even onSt as well.

We are able to compute function. Namely, the equality just displayed im-
plies thatn (e’¥) = M(cosg, sing) — M (sing, CoSp) = M (e'¥) — M (e'"/2=9)),
Computation shows that

. 1
M (cosp, sing) = C—dJ(COtgo),

0 ¢
where
a®/6 —a%/4 if 0 <a=<1/2,
®(a) =1 a¥12—a?/6—1/(48) +1/12 if1/2<a <1,
1/(16a) — 1/12 if a>1

Fora < 0, the function® is defined by the requirement that it be even. Finally,
let W(a) = (14+ a—2)®(a). We have thus acquired the formula

m(e'?) = W(cotp) — W(tany).
Clearly, functionn is continuous on the spheséand sa is continuous oiR?\ {0}.

Recall that we are aiming at the operaforwhich is the convolution with &2,
Its kernel can be written in polar coordinates:a&/r2. Comparing this to equa-
tion (10), wherek(re'?) = m(e’?)/r?, we suspect that it would be useful to find a
suitable way of transforming (¢*#) into the functione=2.

Denotingh(¢) = ¢~ for ¢ € S%, we have

(m x h)(e™) = /ﬂ m(e™)e 2= dyr

-7

= 672"‘”/ m(e™)e?V dyr

T
T
=he") | m(e™)[cos2y +isin2y]dy.
Becausen is an even function on{r, 7] (sincea andp are even o), the in-
tegralf_”ﬂ m(e™) sin 2y dyr is equal to zero. Our expression thus simplifies to

h(e™) ! m(e™) cos 2y di.

—IT
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Hence
h— mxh

: 1)
c

where

c= /ﬂ m(e') cos 2y diy.

Notice that (11) gives essentially the representation of the ke@nd?) of the
Ahlfors—Beurling operator as a linear combination of kernef§ W (cot(d — ¢)) —
W(tan(® — ¢))] with coefficientse=%%/c, whereW is defined (see Remark 3) by a
slightly awkward piecewise expression.

5. The Main Calculation

We come to the main point of our work. It needs to be verified ¢htO. If this
is so (and we will see that it is), then (11) represents our singular opéfaisr
the “average” of martingale transforris (actually their analogues, built with the
help of theP/).

Recall from (9) and (10) that

) 00 o d 00 i d
m(e') =/ Fre) L =/ F<e_)_2'
0 P 0 P Jp
oo p2w i cos
c:/ / F(e—) 32# dyr dp.
0 0 P Y

Takingr = 1/p yields

Hence

00 2n
c= / / F(re")rcos 2y dv dr.
o Jo

In Cartesian coordinates, this integral reads

c—//F(x y) dxdy

In Proposition 1 we saw that

F(x,y) =a(x)B(y) = B(x)a(y),
which leads to expressing our integral as

=2 [ a0 5= dxdy
Sincea andg are even functions supported on the interval,[1], we obtain
=8 / / a(0B() 5 dx .

We shall evaluate by computing the inner mtegral first.
Figure 2 (see p. 422) shows thty) = 1— y on interval [Q 1]. We may com-
bine this with the identity
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X2—y2_1 2y2
x2+y2_ x2+y2

and the observation (which follows from Figure 1) t!fétx(x) dx = Otoarrive at

1 1
(x)
—16 2—1/“—dd.
c /Oy(y )0x2+y2xy

Fory > 0, computation returns

Y 165
=, T

1 1 1
= — | 2arctan— — arctan—
y 2y y

+ (% log(y® +1) + 3logy + 4log 2— 2log(4y? + 1)>.

We now need only evaluate the integral

1
/ y2(y —DC(y) dy.
0
We can directly calculate this integral to find that it equals
1 15
o arctan 2— 4 arctan (6 + 5 log5—4log 2|,

which is approximately-0.042
This fact enables us to state our main result as follows.

TueEOREM 1. For any A, weightw, the operatorT of convolution with kernej—2
satisfies the boundedness condition

||T||L2(w)~>L2(w) =< CQw,Zy
where the constar@ does not depend on the weight.

Proof. Fory € [, ], let Uy, : C — C be defined by, (¢) := ¢e™" and de-
noteky = k o Uy. If we denote byS,, the mappingS, f = f o U_y and if Ky,
stands for the convolution operator with kerigl, then we can easily verify the
similarity relation

Ky = 5,'KoSy.

Since the operatoK of convolution withk is bounded inLZ(Sw w), as we saw
on page 427, and since eap is an isometryL2(w) — L2(Syw), it follows
that the operator&’, again belong ta(L?(w)), whose norms can be uniformly
estimated by the norm .

Choosen e Nand let—n/2 = o < Y1 < --- < ¥, = 7/2 be a subdivi-
sion of the interval f/2, 7/2] such thatAy; := ¢; — ;1 < 2m/n for j =
1 ...,n. Put
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1 n
/e —2iy; .
T, = E e VIAY; Ky, .

j=1

This definition, applied to alt € N, determines &®oundedfamily of operators in
B(L?(w)). Hence there is a subsequence that converges weakly to some operator,
callit 7.

Let f, g be two smooth functions whose supports@igoint compact sets. We
would like to show thatTf, g), = (T'f, g)w-

First we make the following computation:

1 T iy
-/ fx—=s) [ e Vky(s)dy dma(s)
C JRr2 —r

= }/ Sx = S)iz /” €2iwm<iew’) dyr dma(s).
¢ Jr2 Is|J I's]

From (11) we see that this is equal to

1 1 s
—f f(x—s)—~c-h<—)ds,
C JRr2 |S|2 |S|

so in fact we have
1 1
AZ fx _S)W ds = <f * ;)(x) = (Tf)(x).

After the change of variable we get that

_1 T oy
(THH(x) = E/]Rz fG) | e Tky(x —s)dy dma(s).

—TT

Denoting byF andg the supports off andg, respectively, this equality yields

(Tf,g)w=/ }f () ”e*Ziwkw(x—s)dwdsgg(_;c)w(x)dx.
GgCJrF -

On the other hand,
1 n ) -
(T, f. 8w = f = / F() Y e P Vingky, (x — s) ds g(w(x) dx.
GCJr a
Thus
(Tf, g)w - (Tn/f7 g>w

:/é;%/]:f(s)[/n eV (x —s)dyr

n

B Z e—2i1//,-ijk¢j (x — s)} ds g(x)w(x) dx
=1

and hence, for every > 0, we have

1
UTf, &)w — (T, f. 8wl 58—/ | f(s)|ds /Ig(X)Iw(X)dx
lel JF g
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if n € N is sufficiently large. It follows that

(TS, 8hw — (T, f, &)ul

. 12 12
s—nfan(w)ngan(w)( / w(srlds) ( / w(x)dx) .
| F g

SinceF andG are compact sets, there is a squarsuch thatF UG C E. This
enables us to estimate

1/2 1/2 1/2
(/ w(s)_lds> (/ w(x)dx) < </ w(s)_lds-/w(x)dx)
F G E E

= (El(w Y| El(w)p) Y2 < |E|QY2,

We have proved that, for eveey> 0, there is amg € N such that > ng implies

|E] 12
KTf, &)w — (T, f. 8wl < 8m”f”L2(w)”g||L2(w)Qw/72,

which of course means théf'f, g),, = (T'f, g)., for any f, g € C* with disjoint
compact supports.

From here it is easy to see tHAt— T’ = M,,, the multiplication operator by
somew € L®(R?). Note that ourw does not depend an. Finally,

1T 1 L2y— 120y < 0T N r2wy— 22wy + 1Mol 200> 12() -

OperatorT’ is a weak limit of operators whose norms are uniformly bounded by
C - Q.2 Also,

1Mol L2w)—12w) < [[@lloo = [|@]loc Qu,2

because, by Hélder’s inequalit@,, » > 1 for all weightsw. We conclude that
there is a constar@’ > 0 such that

IT 1l 2y 120wy < C" - Qu2
forall w € As.

We have thus proved our main estimate. To finish the proof of Theorem 1, it
is enough to show thab = 0. Fix a compact seK and letR be a large num-
ber. Considet/z smooth with compact support, which is 1 on the disc of radius
centered at the origin, O outside of the disc of radtus 1, and has a bounded gra-
dient (independent ak). Itis easy to see th&tyz(x) — 0 asR tends to infinity,
and it is easy to see thd@ yz(x) — O uniformly inn andx € K. In particular,
1T, ¥rllLe < e(R) and||TygllL~ < e(R). Fixing a measurable subsgtof K
and using the fact th&fl” — T')vr = oYz = w on K, we can write

‘/a)Xde

which tends to zero wheR grows to infinity. Hencef,, w dx = 0 for any mea-
surable subsef of K. We conclude thaM, = 0. SoT = T’/, and Theorem 1is
completely proved. O

= (T — T")¥r, x£)l < 2e(R)|E,
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6. Sharpness

We still need to show that this estimate is sharp in the same sense that the esti-
mate (1) was. For this purpose we shall need the following auxiliary result, which
can be proved by direct simple calculation.

LemMa 3. Let|a| < 2and definav: R? — [0, oo) byw(x) = |x|%. Then there
exist constantd/, m > 0, not depending or, such that

4_ 052 =< Qw,2 <
Now we are ready to prove the sharpness. Calculations of this kind have already
been made for other singular integral operators but nof fao we include this
calculation for the sake of completeness.

4—q?

ProrosiTION 3. Let¢: R — (0, co) grow more slowly than a linear function.
Then there is a weight € A, and a functionf e L?(w) such that

ITf 2wy > ¢ (Qu2)Ilf l22w)- 12)

Proof. For |a| < 2, definew(z) = |z|%. (The restriction onx is needed ifw is
to satisfy theAd, condition.) Furthermore, lef = {(r,¢) |0 <r <1 0< ¢ <
w/2}, let X = —E, and letf(z) = |z| *xk&.
We shall estimate the left and right sides (actually, their squares) of inequal-
ity (12). Thus we begin by

1712, = [[ 0 4220w ) dxdy

z//I(f*z‘z)(x,y)lzw(x,y)dxdy
X

-l

We use the identity
1 =22 2=y 1)
(=) iy -0 [x—s2+0 -0 '[(x=52+(-07?

to estimate the square of the modulus of the inner integral (i.e., the ond&over
from above by the square of its imaginary part, that is, by

2(x —s)(y — 1) B 2
(//; [(x —s5)2+(y — t)Z]Z(S2+[2) /stdt>,

Since(x, y) € X and(s, t) € E, we have

2 4 42y-a/2 2
//E [(x Egs) _:iiy —1)]? dsdt (x2 +y2)°‘/2dx dy. (13)

(x =)y —1) = xy.
The bound for the denominator comes from the triangle inequality:
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[(x =2+ (=072 =1(x, ¥) — (5,0 < (I(x, V] + (s, DD

Therefore,
24 (2y-a/2 2 4 ,2y—aj2 2
’// L) stdt > 4x%y (f/ Sihdie) 4dsdt>
El(x—s)+i(y—1)] e (G, M+ 1Gs, 0D
w 2
= 72x? 2([ _ dr).
Y\ Gaomrnt”
By takingu = r/|(x, y)|, we can continue with

) sy , (Y1l e 2
Tox x, )| ——du
y <|( )l /0 A+ 1) )

w2x?y /1 1-« 2 7'[2 x%y
> du | = . .
(xz + yZ)a+2 0 (1+ 1)4 256(2 _ 0[)2 (xz + y2)a+2
Now the integral (13) can be estimated as

o C
2 2\a/2—« 2d dy = 14
— 256(2— )2//x y (x +y) X ay —(z_a)3’ ( )
where
™ [ cogpsitpa
C = co Si .
1= 256 o @ pap

The (square of the) right-hand side of (12) reads

B0 iy = 0@ [[ 105 P )y
= 6(Qua? [[[ 243076 2 Ry
E

72 el
= ¢(Qw,2)2/ / r_2a+a rdr d(p
0

1
—¢(Qw 2) 2 2 Ol

Our goal is to arrange suehthat the expression on the right will be exceeded
by that in (14). That is, we aim to solve the inequality
C,
2—-a)3

2 0(0u2)? 5
27w
or

1 /

7o > CPQu2)

—

for a given constant’. It suffices to show that
a”_[gi(Z —a)¢(Qu2) =0

or, equivalently, that
lim (4 — @®)p(Qu,2) =0
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By Lemma 3,
1

4—qa?

Combining this with the assumption on the growthpofompletes the proof. J

Qw,Z =
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