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The Finer Geometry and Dynamics of
the Hyperbolic Exponential Family

MARIUSZ URBANSKI & ANNA ZDUNIK

1. Introduction

Givena € C \ {0}, let the entire functiory; : C — C be defined by the formula

fi(2) = Aet.

McMullen [Mc] proved that the Hausdorff dimension of the set of points escaping
to infinity under forward iterates of; is equal to 2. In this paper we thoroughly
investigate the geometric (fractal) and dynamical structure of the complement (in
the Julia set/(f;)) of this set, which will be denoted in the sequel By f3.).
Although our results apply to all functiong, with attracting periodic cycles, we
perform our analysis in great detail assuming that (0, 1/¢) and treat the gen-

eral case briefly in Section 6. (In a forthcoming paper we treat in the same spirit a
large class of nonhyperbolic functiolfs, including the case whene [1/¢, 00).)
Since f is periodic with period 2, it is natural to identify points that differ by
2kmi and to consider (instead ¢f) the mapF, our main technical device, defined

on some stripP of height 2r. Armed with the mapF and the concept of tight-
ness, we prove the existence and uniqueness of a probability conformal measure
m (with an exponent greater than 1) fBrand ao -finite conformal measure fof.

This powerful tool enables us in turn to prove that the Hausdorff dimension of

the set/,(f3), is less than 2, that thig - dimensional Hausdorff measure B f3)

is positive and finite on each horizontal strip, and thatthelimensional packing
measure of/, (f3) is locally infinite at each point of,.( f;).

The fact thati;, < 2 shows in particular that the equality of the hyperbolic di-
mension and the Hausdorff dimension, conjectured in the theory of iteration of
rational functions, fails in the context of transcendental entire functions.

Turning toward dynamics, we prove the existence and uniqueness of a Borel
probability F-invariant ergodic measure equivalent with the conformal measure
m. We do this by applying first the method of M. Martens to show the existence of
ao-finite F-invariant conservative ergodic measure equivalent with the measure
m and then checking that this measure is finite.

Our paper is organized as follows. In Section 2 we prove that, for every
the Hausdorff dimension of the sé&tq(f2) = {z € J(f2) : {f"(z)} is boundedl
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is larger than 1. This does not require any assumption about hyperbolicity. We
need this fact (which seems interesting in its own right) in Sections 2 and 6 for the
proof of the existence of a conformal measure and in Section 5 for the existence
of a Borel probabilityF-invariant ergodic measure equivalent with the conformal
measure. Notice that Theorem 2.1 was already proved in [Ka] for the case of an
attracting fixed point withk real. In Sections 3-5 we give detailed proofs of the
result just described in the case whgrhas an attracting fixed point ands real.

In Section 6 we show how to modify our arguments to make them work in the
general case of an attracting periodic orbit. In the Appendix (Section 7) we pro-
vide an alternative direct proof of the fact that the Hausdorff dimension of the set
J.(f3) is less than 2 without using the concept of conformal measures.

2. Bounded Orbits

Let
fi(z) = e, A #0.

We shall prove the following.

THEOREM 2.1. If Jug(f2) is the set of all pointg € J(f) such that{ ;" (z)},=o0,
the forward orbit ofz, is bounded, therD (Jpq(f3)) > L

Proof. Let logx be the logarithm of satisfying Imlogr € (—n, 7]. FiX R > 0
and consider the square

Sk = (R, 2R) x (R, 2R).

LetIl = {z e C: 0 < Arg(z) < m/2} be the first quadrant. For evety= Z con-
siderl; : I1 — C, the holomorphic branch of the map inverse to the map Ae?
given by the formula

Iy (z) = —logA + log|z| + i Arg(z) + 2nik, 0 <Arg(z) < m/2.
If R > ¢°9* andk > 1theni,(Sk) C IT and, for everyj € Z,

Re(l;(1(2))) = log|lx(z)| — log|A|
= log|—logA + log|z| + i Arg(z) + 2mik| — log|A|.

Define the sefy to be

Ig = {k >1:R < log(—|logA| + |log(v'2R) + 2rik|) — log|A|

log(2v/2R) + 577117(

< Iog(|logk| + > —log|r| < 2R}

and, for every € I, put
Ipr=1{j>1:R+2r <21j < 2R — 2r}.

Notice that for every € I, j € Z, andz € Sg, we haveR < Re(/;(1x(z))) < 2R;
if j €lgy, then
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cl(lj o [k (Sr)) C Sk.
We have produced in this way the finite family of maps
Gr={ljolx: Sg = Sr}kelx, jelr -

Each mapg € Gz mapsSk conformally onto some topological disk whose clo-
sure is contained ifg. Moreover, there exists a neighborhod Sg such that
each mag; € G extends conformally t&, and it is easy to see that

cl((lj o L) (Sg)) NCl((ljr o lk)(SR)) =0

if (j,k) # (j,k’). Indeed, applying (for variouk € I¢) /; to Sg, we obtain a
collection of topological disks each of which is an image of the other by a trans-
lation z — z + 2mmi for somem € Z. Each of these disks is contained in some
horizontal strip of height/ 2. It is therefore obvious that they are disjoint and that
there exists a neighborhodd > Sk such that thé;, extend conformally td/ and
L(V)NIp (V) = 0. The setd;(I(V)) N1 (1 (V)) are disjoint fork # k' be-
causel, (V) andl (V) were already disjoint. Alsd,;(I,(V)) N 1:(1(V)) = 0

for j # j’ becausé; andl;: are different branches g*;‘l. We define the compact

setJy as follows:
Je = Je"Sw),

n>0 g"

where we take the union over all possible compositions

g" =guo- 08 & ---» &y €GR.
The mapf|,, : Jk — Jr is a conformal expanding repellor. In addition, it is
easy to see thak; is a Cantor set. For every R the topological pressurBg (1)
of the potential-z log| f; | with respect to the repellof; | ;, : Jr — Jr can be cal-
culated as follows:

1
Pr(t) = lim =lo OU[Ie
R(1) = lim ~log} (g™l
g}'l
where once again we sum up over all possible compositions

g" =8no---08,, 8 ---»8i, €Gr.

Itis well known (see [PU]; cf. [Bo]) that the Hausdorff dimensioa HD(Jk)
of Jg is determined as the uniques R for which Pg(¢#) = 0. Since the function
t — Pg(¢) is strictly decreasing, in order to prove that HIR) > 1 it is enough
to show thatPg (1) > 0. Indeed, forz € Sg and allk € I, j € Ig x, we have

1 1
Lioll) ()| = >
1o ) (2) [Lk(2)| - |z] — 24/2R|—logx + log|z| + i Arg(z) + 2kmi|
. 1
T 2V2R(|logA| + |log|z| + i Arg(z) + 2kmi|)
1

(2.1)

> .
~ 2V2R(llogA| + |loglz| + 2kmil)
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Let|(/; olp)| = inf{l(lj oli) (z)] : z€ Sg}. Fixt > 0. Then, by (2.1),

Pe) =log )y > 1o l0)'|f

kEIR jEIR,k

>lo gZ( >#IR7,<

kelg

>t|og< ! ) tIogR+Iog<R>
- 22 4x

+I0gZ(|IogA| +

kE[R

—t

llog A| + log(2v/2R) + gm'k

log(2v/2R) + gnk

>I
where we have used the inequalityx# > R/4m, which is true for allR large

enough. Itfollows from the definition df that(Jlog A +|log(2v/2R) + 3rik|) <
4k, min(Ig) < /4 and maxiz) > ¢3*/2 for all R sufficiently large. Hence

Pr(t)

£3R/2

> tlog(z—\l/i) —tlogR +log R — log(47) +log > (4mk)™

k=e5R/4
3R/2
1 —t
=tlog| —= | — log(4n) + logR — tlog R — t log(4r) + log Z k.
2\/§ k=e5R/4
Therefore,

¢3R/2

—2log(4m) +log Y k7t

k—e5R/4

-

Pr(D) > Iog(

> Iog(

Iog( ﬁ) 2Iog4n+|og( R — C)

whereC > 0 is a universal constant. Thu%k (1) > 0 for R large enough and,
consequently, HQ/;) > 1. By the definition of the selly we haveJr C {z :
f2'(z) € Sg for all n > 0}. Sincele?| = R, we conclude that the forward or-

bit of each point in/g is bounded for everyk > 0. SinceJ is contained in the
closure of fixed points (which are necessarily contracting) of all compositions of
maps forming the syster@y, it follows that J; is also contained in the closure

of repelling periodic points of, which in turn is contained id (f). HenceJz C

J(f) and so HQJpq(f3)) > L U

S

) 2log(4) + log(loge>r/? — loge®*/4 — C)

s\

We should like to point out that this result overlaps with those proven in [Ka].
More precisely, it follows from Theorem 2 in [Ka] (even though it is not stated
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explicitly there) that fon € (0, 1/¢) we have HDJpg(f3.)) > 1. Unlike [Ka], how-
ever, we do not assume thais real and belongs t@, 1/¢) nor that there exists
an attracting fixed point of.
The following observation, which concludes this section, can be deduced from
[Ka, Thm. 2].

COROLLARY 2.2. If A € (0, 00), then
liLnOHD(de(fx)) =1

3. Existence of Conformal Measure

From now on until the last section we assume that(0, 1/¢). Thenf = f, has

a unique attracting fixed point® A,, the basin of its immediate attraction, and
f+lr has another (positive, repelling) fixed point, which we denoteg by g;.
Standard straightforward calculations show that

{z:Re&(z) < g} C Ay

Let
P={zeC:—n <Im(z) <m}

and let
Py ={z€C:Re(z) > g and Im(z) € (-7, ]}
Fix M > ¢, and set

Py ={zeP:qn <Re(z) < M}.
Let
ng: C—> P

be the projection given byo(z) = w ifand only ifw € P ande® = ¢*. We define
the mapF = F,: P — P that we intend to work with by the formula

F(z2) = mo(f(2)). (3.1

In this section we construct a conformal measure for the map N J(f) —
P N J(f). Recall that a Borel measure is calleds-conformal(with ¢ > 0) if,
for any Borel setA C P on whichF is injective, we have

m(F(A)) = /lF/|’ dm.
A
We shall frequently use the following obvious fact without explicitly invoking it.

THeoreM 3.1. For any conformal measura for F: J(F) — J(F) and any
nonempty open subsgtof J(F) (in the relative topology o (F)), m(U) > 0.

Here, instead of the rectangly,, we consider a slightly modified rectangle. In-
deed, notice that there existya< ¢ so close tqy that, for everyM > ¢, the
set

ﬁMz{zeP:—%n <Imz < %n,p<Rez<M}



232 MARIUSZ URBANSKI & ANNA ZDUNIK

is disjoint from the forward orbit of O under iterates fif Consider the preimage
F~Y(Py). This set s a union of infinitely many topological dis@s contained in
the strip—7 < Imz < 7 (recall that the points € P such thafimz| > 7 are
mapped into the region Re< 0, thus outsideP,,). Moreover,
0:NQ; =0
Now we consider the finite family of disk@ whose closures are contained in
Py;. In this way we obtain the finite iterated function system

bi: Py — OM,

whereg; is an appropriate holomorphic branch®f™. Let J,; be the limit set of
this system and let,, be the unique conformal measure. In this case this is simply
the normalized Hausdorff measure with the exporgptqual to the Hausdorff
dimension ofJy,.

REMARK 3.2. We have/y, C Jy 41 for all M large enough. In order to see this,
take QM and IetQiM+l be the preimage of),1 under the same holomorphic
branchF, of F~ Then, obviously,0Y”* > oM. Since F(Q*\ QM) ¢

{z € Pysyr : M < Rez < M + 1} and since the derivative afton{z e
Pyi1: M < Rez < M + 1} is bounded from above b§;, M 2, we conclude that
diam(QiM“\ oM < C,M ~* for some appropriate constards andC,. Since
oM c {Rez < M}, this implies that

oMl c (Rez < M + 1

for all M large enough. Hence, ean”*l D OM is (see the definition) used in
the construction offy;, 1. Thus, the corresponding limit séf; ;1 containsJ/y,.

REMARK 3.3. We have/pg(f) N P = U,?f:[q]ﬂ Jy and so, reasoning as in Re-
mark 3.2, it follows from that remark and Theorem 2.1 that there éxist 1 and
My such that, for everyf > Mo, hy = HD(Jy) > ho.

ProrosiTioN 3.4. The sequence of measurey (M € N) is tight; that is, for
everys > 0 there exists a/ so large that, for every,
my({ze P :Rez > M}) <e.
Proof. Fixe > 0, M > 0, andN > 4. We shall estimate separately the measure
my of two sets, which covefz € P : Rez > M}. First, we have
my({x € Jy : ReF(x) > M})
= my({xedy: f(x) €[M, N] x (—m, 7] + 2kmi}).

keZ
If xeJyandf(x)e[M, N] x [-m, w] + 2kxi, then
|F'(0)| = | f(x)| = (M + 7m|k]) = $(M + |k]),
which gives
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00 hn
my((x : ReF(x) > M}) < 2;%(“ M =Rex <NV i
s 1
hy+1 S
=2 ; M+ &2

where, let us recallyy is the exponent of the measurg,. By Remark 3.3 and
Remark 3.2 there exists > ¢ such thatiy > hy > 1forallN > T. If N <
M, then

my({ze P :Rez > M}) =0. (3.3)
If M > T andN > M, then it follows from (3.2) that

23 23
‘ReF(x) > M) < —— MY < _—__p-ir, 3.4
my ({x (0= M) < = <1 (3.4)
KeepingM > T andN > M, we now estimate the measure of the second set:

my({x : M < Rex < N and ReF(x) < M}).

If Rex > M, then|f(x)| > reM and therefordlm f(x)| > VA2e2M — M2,
Thus,

my({x : M < Rex < N and ReF(x) < M})
< const. Z (2mk)™"

k>(2m) "1V A2e2M— M2

1
< const.. ———MA=hx)
h 1

N —
< iéﬁ;?%eﬂfﬂ-hfx (3.5)
Combining this with (3.3) and (3.4) yields
my({x :Rex > M}) < ¢
for all N and allM large enough. O

Since the sequenaey is tight, it follows from Prochorov’s theorem that there
exists an increasing-to-infinity sequen@é}:*, such that the sequenée, }7°,
weakly converges to some limit probability measureThis is the measure we
are looking for. Put

J(F)=PnJ(f).

We shall prove the following.

THEOREM 3.5. The measuren is h-conformal, whereh = lim;_, hy, and
m(J(F)) =1

Proof. SinceJy, c J(F), J(F) is closed, andny, (Jy) = 1 for everyM > p,
it immediately follows from the definition of the measurethatm (J(F)) = 1
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In view of Remark 3.2, the sequenfey} is eventually nondecreasing and hence
the limit limy_, o hy €exists. Notice that each measuti¢ is /y-conformal for
F|,, but not forF itself (the set/y is not backward invariant). However, X is
large enough then, for every Borel setC {z : Rez < N — 1} such thatF'| 4 is
one-to-one, we have

mNu«A»==/WFWdeN. (3.6)
A

To verify this, first we claim that
F(A)NJy =FANJy). (3.7)

Indeed,F(A N Jy) C F(A) N F(Jy) C F(A) N Jy. To see the opposite inclu-
sion, letx € F(A) N Jy. Takey € A such thatF(y) = x. Let O be the component
of F~Y(Py) containingy. We claim thatQ is entirely contained irPy, in other
words, thatQ is one of component®¥ used in the construction ofy. Suppose,
to the contrary, thap intersects the line Re= N. Then for some; € Q we
have| f(z)| = |F'(z)| = Ae". This means thaf is contained in a component of

fY (P 4 2kmi), wherek > (2m)"1y/A2e2N — N2. If N is large, this implies that
. N
diam(Q) < Cm <1

But Q contains a poiny € A andA C Py_1. This contradiction shows tha®
is entirely contained irPy, that is, Q is one of component® ! used in the con-
struction ofJy. Sincex = F(y) € Jy, this implies thaty € Jy. The formula (3.7)
is proved. Using (3.7), we can write

my(F(A)) = my(F(A) N Jy) =my(F(AN Jy))

=/ |F’|hNdmN=/|F/|hNdmN.
ANJy A

Since the sequendeny,} converges weakly te:, we have
my,(A) — m(A)

for every Borel setd such thatn(dA) = 0. In particular, this holds for every
bounded BorelA such thatm(0dA) = 0 andm(0F(A)) = 0. For these setd,
using (3.6) yields

m(F(A)) = lim my,(F(A)) = lim /|F’|’w dmy,
11— 00 11— 00 A

:/WVMW+/WWM4FWmm-
A A

The first summand converges fg|F’|h dm. The second summand can be esti-
mated by sup(|F’|"» — |F'|"). This tends to zero, sindé’| is bounded om
andhy, — h. Hence

m(F(A)) = /|F/|hdm. (3.8)
A
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Now take an arbitrary Borel set such thatF|, is injective; we can assume
that A is bounded. Sincd(F) C {z : n/2 < Imz < nw/2} and thus (in the ter-
minology of [DU1]) SingF: J(F) — J(F)) = @, and sincen(J(F)) =1, in
order to verify the equalityr (F(A)) = fA|F/|h dm itis enough to invoke [DUL,
Lemma 2.4] and then apply (3.8). O

The existence of a conformal measure leads to the following straightforward
corollary.

CoroLLARY 3.6. There exists a -finite measuren, which isz-conformal for
flap-

Proof. Definem on each stripPy = P + 2kwi asm o w, where (we recall)yr is
the natural projection of, onto P. Checking thatn is f-conformal is straight-
forward. Indeed, assume first thatc P, for somen € Z and thatf | 4 is injective.
Let Z, = f~Y(Py) N P for everyk € Z and letA = A — 2zin. Then

M(f(A) = A(f(A) =Y m(f(ANZ)) =Y m(ro f(ANZ)

keZ keZ

=Y mr@nzy =Y [ iFrdan =3 [ ifan

keZ keZ kez Y ANZk

- /Alf/lhdm - /Alf/l"drﬁ-

Now let A ¢ C be an arbitrary Borel set on whichis injective, and letd; =
AN Py. SinceA, N A; =@ fork # j, we obtain

s = Y =Y [

keZ kez YA

|f/|hdna=/ £ din,
k A€Z
This ends the proof. O
Let
I (F) = {zeP: lim F"(z) =oo},

that s,/ (F) is the set of points escaping to infinity under forward iterate’.of
Analogously define

Io(f) = |z P2 lim () = oo},
Let
J(F)=J(F)\ I(f) and J,(f) = J()\ I(F),

and notice thal,(f) N P = I (F).
Letm be theh-conformal measure constructed in Theorem 3.5. We shall prove
the following.
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ProrosiTiON 3.7. There exists a > 0 such that, fomm-a.e.x,
liminf ReF"(x) < M.
n—00

In particular, m(I» (F)) = 0 or equivalentlyn (J.(F)) = 1

Proof. Put
Yy ={z€ P :Rez > M}

and letB C Y be an arbitrary Borel set. We shall estimate from above the mea-
surem(B N FY(B)). We have

m(B N FYB)) <m(FYB)) = Zm(x . f(x) € B + 2kmi)
keZ

If f(x)e€ B+ 2kmi, then
|F'(x)] = |f'(x)] = | f(x)] > (M? + kY2

Therefore,

m({x: F(x) € B}) < ZZm(B) : < const.. m(B)M*".
k=0

1
(M2 + k2)h/2
We thus obtain, in particular, that
C
m(BN FYB)) < MT_lm(B) (3.9)

for every Borel setB C Y, and for some constard independent o and B.
SinceB N F~X(B) C Y), one can now use the estimate (3.9) to get inductively

m(BNFXB)N---NF™(B)) < (CM*""m(B).

This implies that, for allM large enough,

m( N F—”(YM)> =0
n=0
and consequently
m<U F"‘(ﬂ F—"(YM)>) =0.
k=0 n=0
The proof is finished. O

Let us now show that the estimates used in Proposition 3.7 and Proposition 3.4
lead to the following.

COROLLARY 3.8.
m(Yy) < Ce®=MM

for some constar@ and all M > 0 large enough.
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Proof. It follows from the proof of Proposition 3.7 that
m({x € Yy : F(x) €Yy} <m(Yy)CM*™",

and by the proof of Proposition 3.4 (formula (3.5)), wiity, replaced byn, we
have that
m({x € Yy : ReF(x) < M}) < Ce®MM,

These two sets cover the entire gt The first inequality says that (for al
sufficiently large) the first set covers less than, say, half the meastije dhus,

m(Yy) < 2m({x € Yy : ReF(x) < M}) < 2CeMM
and the proof is complete. O

4. Conformal, Hausdorff, and Packing Measures;
Hausdorff Dimension

Letagainf = fi, ¢ = ¢, andF = F,. Recall that
J(F) =J(f)N([g,00) x[-m,7]) = J(f) N ([g, 00) x [-7/2, 7/ 2]).
Recall also that
P, ={z€eC:Rez) > g and Imz) € (-7, 7]}.

Fix someR > g. Consider a countable partitian= {A, : n > 0} of P, de-
fined as follows:

Ao ={z€ Py :Rez <R},

Ai={z€e P, R <Rez<R+1},

A, ={zeP,:R+n—1<Rez<R+n} forn>1
We start this section with two technical lemmas.

LemMA 4.1. If the constantR is large enough{depending ork), then for every
k > 0 we have
F(Ay) DAgUALU - UAgs1.

Proof. Let k > 1. Then f(A;) is an annulus centered at 0 and bounded by two
circles of radiixe®+t*—1 andieRt*.

Let zo be the point in the outer circle such that Re= refT*~1and Imzo >
0. A straightforward geometrical argument shows that if- O is taken so large

that
refH N (Ve2 —1-1) > 47 forall k > 1,
then f(A;) contains some rectangle

0 < Rez < Rezy, Imzo—4n <Imz < Imzog.

If, moreover,R > 0 is taken so large that Rg = ref™ 1> k + 1+ R, then
this rectangle contains some component of therg‘é(Ao U---UAg). So, by
definition,
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F(Ay) DAoU---UApi.

It remains to check the case whiea= 0. But f(Ap) is the annulus of inner radius
g and outer radiug.e®. If R is large, then this set containg U A; = {z € P :
qg <Rez < R+1}. O

From now on in this section, fix the partitiensatisfying the statement of Lem-
ma 4.1. As an immediate consequence of this lemma we have the following.

COROLLARY 4.2. For everyk > 0,
lim m(F"(Ay) =1
n—oo

LemmA 4.3. For everyx € J(F) and every > 0,
lim m(F*(B(x,r))) =1

Proof. For everyk > 0, let A (x) be the element of partitiosm containingF*(x).
Denote byB;(x) the component oF ~%(A;(x)) containingx. Since diameters
of A, are bounded and sincE is expanding on its Julia set, it follows that
diam(B;(x)) — 0 ask — oo. Hence for somé& € N we haveB(x,r) D Bi(x).
Thus, for every: > 0,

F" ™ (B(x,r) D F"™M(By(x)) D F"(Ap),

and the lemma follows from Corollary 4.2. O
Let us now prove the following.

THEOREM 4.4. Theh-conformal measure: is a uniquer-conformal measure for
F witht > 1. In addition, it is conservative and ergodic.

Proof. Suppose that is ar-conformal measure faf with somer > 1. The same
proof as in the case of the measureshows thav (I, (F)) = 0. Let J, y(F) be
the subset of, (F) defined as followsz € J, y(F) if the trajectory ofz underF
has an accumulation point {ifiRez < N}. Obviously,, J, ~(F) = J.(F) and,
by Proposition 3.7, there exists &h > 0 such thav(J, y (F)) = m(J, y(F)) =
1 Fixz € J, y(F). Then there exist € J(F) such that Rg < N and an increas-
ing sequencen )2, such thaty = lim,_.., F"*(z). Now consider (fork large
enough) the set8_"*(B(y, ©/4)) and F,"*(B(y, n/(4K))), where F_ " is the
holomorphic inverse branch @+ defined onB(y, 7/2) and sending”"*(z) to
z; then, using conformality of measuresandv along with Koebe’s distortion
theorem, we easily deduce that

By ) H(F™) ()™ < v(B(z, c|(F™) ()|™) < ByW)I(F™) ()| (4.1)
and
By (m) H(F™) ()™ < m(B(z, c|(F™) (2)|™))
< By(m)|(F™)'(2)|" (4.2)



Geometry and Dynamics of the Hyperbolic Exponential Family 239

for all k > 1 large enough, wherE = 16 is the constant appearing in the Koebe
distortion theorem and ascribed to the scal2 &nd whereBy (v) is some con-
stant depending on andN. Let M be fixed as before. Fix no#, an arbitrary
bounded Borel set containedn(F), and letE’ = ENJ, »(F). Sincem is reg-
ular, for everyx € E’ there exists a radiug(x) > 0 of the form from (4.1) such
that

m( U B(x,r(x)) \ E> <eé. (4.3)

xeE’

By the Besicow theorem (see [G]) we can now choose a countable subcover
{B(x;, r(x;))}24, r(x;) < e, from the cove{B(x, r(x))}cegr Of E of multiplic-
ity bounded by some consta@it> 1 that is independent of the cover. Hence, by
(4.1), (4.2), and (4.3) we obtain

oo

V(E") = v(E) < Y (B, r(x)) < By®) Y r(x))'

i=1 i=1

< Bu(v)Bu(m) Y r(x)" ™ "m(B(x;, r(x;)))

i=1
< BM(wBM(m)Cs’hm( U B, r(x,»»)
i=1

< CBy(v)By(m)e'"(e + m(E"))
= CBy (v)By(m)e' ™" (¢ + m(E)). (4.4)

In the case whem > &, letting e \, O yieldsv(E) = 0 and consequently
v(J(F)) = 0, which is a contradiction. We obtain a similar contradiction assum-
ing thatr < 4 and switching in (4.4) the roles of andv. Thust = h and, letting
&\, 0, we obtain from (4.4) that(E) < CBy(v) By (m)m(E). Exchangingn
andv, we obtainm(E) < CBy(v)By(m)v(E). These two conclusions, along
with the already mentioned fact that(J, (F)) = v(J,(F)) = 1, imply that the
measures: andv are equivalent with Radon—Nikodym derivatives bounded away
from zero and infinity.

Let us now prove that any-conformal measure is ergodic. Indeed, suppose
to the contrary thaF —1(G) = G for some Borel se6 C J(F) with 0 < m(G) <
1. But then the two conditional measures

BNG BNJ(F)\G
vg(B) = vBNG) and vyrn(B) = V(l)(J(F—()\)(\;))

v(G)
would bei-conformal and mutually singular; a contradiction.

If now v is again an arbitranjt-conformal measure, then by a simple compu-
tation (based on the definition of conformal measures) we see that the Radon—
Nikodyn derivativep = dv/dm is constant on grand orbits df. Therefore, by
ergodicity ofm, we conclude thap is constanirn-almost everywhere. Since both
m andv are probability measures, this implies tiat= 1 a.e. and hence = m.
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It remains to show that is conservative. We shall prove first that every for-
ward invariant( F(E) C E) subsett of J(F) is either of measure 0 or 1. Indeed,
suppose to the contrary thatOm(E) < 1. Sincem(I(F)) = 0, it suffices to
show that

m(E\ Io(F)) = 0.
Denote byZ the set of all pointg € E \ I.(F) such that
im m(B(z, 1) N(E\ Io(F))) _
r—0 m(B(z,r))
In view of the Lebesgue density theorem (see e.g. [Fe, Thm. 2.941})) =
m(E). Sincem(E) > 0 we find at least one point € Z. Sincez € J(F) \

I (F), there existr € J(F) and an increasing sequengg.}3>; such thatx =
lIM;_ o F™(z). Let

1 (4.5)

8 = min{r/8, q/4}.

Suppose that:(B(x, §) \ E) = 0. By conformality ofm, m(F(Y)) = 0 for all
Borel setsY such thain(Y) = 0. Hence,

0=m(F"(B(x,0)\ E)) = m(F"(B(x, ) \ F"(E))
=m(F"(B(x,8)\ E) = m(F"(B(x,8)) —m(E) (4.6)

foralln > 0. By Lemma 4.3, lim_, .. m(F"(B(x,8)) = 1 Then (4.6) implies
that 0> 1— m(E), which is a contradiction. Consequentiy(B(x, 5) \ E) > O.
Hence, for every > 1large enoughm (B(F"i(z),28) \ E) > m(B(x,8)\ E) >

0. Therefore, sinc& X(J(F)\ E) c J(F)\ E, astandard application of Koebe’s

distortion theorem shows that
lim Supw > 0’
r—0 m(B(z, 1))

which contradicts (4.5). Thus eithenE) = 0orm(E) =1
Conservativity is now straightforward. We need to show that, for every Borel
setB C J(F) with m(B) > 0, we haven(G) = 0, where

G = {x eJ(F): Y xs(F"(x)) < +oo}.

n>0

Indeed, suppose thai(G) > 0 and, for alln > 0, let

Gy = {x €J(F) 1) xa(F"(x) = 0}

k>n

={xeJ(F): F¥x) ¢ Bforall k > n}.

SinceG = J,. o Gn, there exists & > 0 such thain(Gy) > 0. Since all the sets
G, are forward invariant, we conclude thatG,) = 1. But on the other hand, all
the setsF ~*(B), n > k, are of positive measure and are disjoint fraip This
contradiction finishes the proof. O
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In the proof of the following theorem (as well as in the proofs of Proposition 4.8
and Theorem 4.9) we use various forms of the converse Frostman’s type lemmas
(see e.g. [DUS; PU, Chap. 6]).

THEOREM 4.5. If A € (0, 1/e), then thehr-dimensional Hausdorff measuir of
J.(F) is finite, the measurd” of J,( ;) is o-finite, and

h, = HD(Jpa(f)) = HD(J;(f2)) < 2,

wherenh; is the exponent of the conformal measure- m; (see Theorem 3.5 and
Theorem 4.3

Proof. Fix 1 € (0,1/e). Putf = f; andh = h,. By the definition of the numbers
hy (see the beginning of Section 4) and TheoremB.5,HD(Jyqg( f)). It follows
from (4.1) applied with the measusethat thei-dimensional Hausdorff measure
H"(J, »(F)) is finite. Sincen(Jy,,(F) \ J,.u(F)) = 0, we deduce in a similar
way (using again (4.1)) thatMJ, y(F) \ J, »(F)) = 0 forall N > M. Since
Uwnsy Jr.n(F) = J.(F), we thus conclude thatMJ,(F)) = H"(J, y(F)) <
oo and consequently HD,.(F)) < h.

SinceJ, (f) = U, ez (J-(F)+2min), we thus concludethat’HI,r(f) is o-finite
and that HRJ, (f)) < h. It therefore remains to demonstrate thatHXF)) <
2. For otherwise, it would follow from (4.1) and (4.4), with the measureplaced
by m andm replaced by planar Lebesgue measure, that the planar Lebesgue mea-
sure of J,(F) is positive. This would, however, contradict McMullen’s result
[Mc], which finishes the proof. O

An alternative direct proof—not using the concept of conformal measures—of
the fact that HRJ, (f3)) < 2 is provided in Corollary 7.3. Recall that in [DUZ2]

(cf. [PU]) the dynamical dimension, proven in [PU] to be equal to the hyper-
bolic dimension, was defined as the supremum of Hausdorff dimensions of all
probability-invariant ergodic measures with positive entropy. It has been conjec-
tured that, in the case of rational functions, the dynamical dimension and the Haus-
dorff dimension of the Julia set coincide. Since each Borel probalfjliipvariant
measure is (by Poincaré’s recurrence theorem) supportéd ¢in, as an immedi-

ate consequence of Theorem 4.5 we get the following corollary, which disproves
this conjecture in the case of transcendental entire functions.

CoRrOLLARY 4.6. If A €(0,1/e), then the supremum of Hausdorff dimensions of
all probability f, -invariant ergodic measures is less than the Hausdorff dimension
of the Julia set off;..

THEOREM 4.7. The functionh — HD(J,(f;)) is continuous in the interval
(0,1/e).

Proof. Fix A € (0, 1/e¢) and a sequnck, € (0,1/e) converging tox. Since there
exist quasiconformal conjugacies between the nyapsnd f, with dilation con-
stants converging to 1 when— oo, the required fact follows. O
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Let P" be thek-dimensional packing measure (see [TT]; cf. e.g. [PU] for its defi-
nition and some basic properties). The last three results of this section provide (in
a sense) a complete description of the geometrical structure of thé 6Epsand
J.(f), and they also exhibit the geometrical meaning of Akeonformal mea-
surem.

ProposITION 4.8. We haveéP’(J,(f)) = oo; in fact,P"(G) = oo for every open
nonempty subset df ( f).

Proof. Sincem (J.(F)N(P\Py)) > OforeveryM € R, itfollows from Birkhoff’s
ergodic theorem and Theorem 5.2 (whose proof is obviously independent of the
results proven in the remainder of this section) that there exists& set/, (F)

such thain(E) =1 and

limsupReF"(z) = oo 4.7)

n—00

foreveryz € E. Fix z € E andn > 1, and consider the balt(z, K 7Y(F")' (2)|™),
whereK = 16 is the Koebe constant corresponding to the sgdleThen

B(z, KN(F"Y ()™ € F,"(B(F"(2), 1)),

where F": B(F"(z),1) — C is the analytic inverse branch @" mapping
F"(z) toz. Applying Koebe's distortion theorem, conformality of the measure
and Corollary 3.8, we obtain

m(B(z, KH(F") ()|
< K"[(F" ()" m(B(F"(2), 1)
< K"K HEFE @I m(Yrern(z)-1)
< K?"Cexp((1— h)(ReF"(z) — D)(K Y(F"Y (2)|™".
Hence, using (4.7), we conclude that

r—0 r
Sincem(G N J.(F)) > 0 for every nonempty open subset Hf( F), this im-
plies (see an appropriate converse Frostman'’s type lemma in [DU3] or [PU]) that
P"(G) = cc. SinceJ,(f) = Upez (- (F) + 27ik), we are therefore done. O

0.

THEOREM 4.9. O0< H"(J.(F)) < oo.

Proof. We know from Theorem 4.5 that'lJ, (F)) < oo, so we need only show
that H'(J.(F)) > 0. We havem(J,(F)) = 1 and thus it suffices to demonstrate
that, for every; € J,(F) and allr > 0 sufficiently small (depending a1),

m(B(z,r)) < Cr"
for some constant & C < oo independent of andr. Indeed, put
6 = min{w, dist(J(F), {fk(O) k= 0}
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Fixze J,(F),0<r <632 f'(z)])~ SinceF: J(F) — J(F) is an expanding
map, there exists a largest> 1 such that
0
my —. 4.8
rl(f") (2| < 3 (4.8)
Thus P
n+1y/ . 49
ri(f" (@) > 3 (4.9)

It follows from the definition of6 that the holomorphic inverse brangfy”:
B(f"(z),0) — Cof f", sendingf”(z) to z, is well-defined. Sincef|3(fn(;)79)
is one-to-one and since, by Koeb%’siheorem,f(B(f"(z), )) D B(f"™(2),
201 f'(f"(2))]), we conclude that the holomorphic inverse brangh+b:
B(f"(z2), 301 £'(f"(2))]) — Cof f"*1 mappingf"*i(z) toz, is well-defined.
Since

4r|(fY @) = Ar1(FY @1 - L= 0 (1™ (D)) - 517/ (F"(2))]
and since, by (4.8)%2r|(f”)/(z)| < 1, we conclude that
4r|(F"™ ()] < 01/ (S ().
Applying Koebe’s%-theorem again, we see that
FTOPBS @), A @D) D B Y @I ()
= B(z,r).

The ball B(f"+1(z), 4r|(f"*Y(2))) intersects at mosf-4r|(f"*) (2)| + 1 <
r|(f"YY(z)| horizontal strips of the form 2ik + P (k € Z); therefore, using
Koebe’s distortion theorem;conformality of the measurg, and (4.9), we obtain

r~"(m(B(z, 1))
< r KM GTY @Y @Dm(ro(BO T (2). 4r 1Y ()
< r "KM GTY @I @D
= K| (Y (D! < KH(32)"

whereK = 16 is the Koebe constant corresponding to the sgdle\We are done
by applying an appropriate converse Frostman’s type lemma. O

As an immediate consequence of this theorem we obtain the following.

CoroLLARY 4.10. Theh-dimensional Hausdorff measure of the $eis positive.

5. Invariant Measures

Inorderto prove Theorem 5.2, we must apply a general sufficient condition (proven
in [Ma]) for the existence of -finite absolutely continuous invariant measure. In
order to formulate this condition, suppasés ac -compact metric spacea Borel



244 MARIUSZ URBANSKI & ANNA ZDUNIK

probability measure o that is positive on open sets, and that a measurable map
T: X — X is given with respect to which the measurés quasi-invariant, that
is,v o T~ « v. Moreover, we assume the existence of a countable partitien

{A, : n > 0} of subsets ofX that are allo-compact and of positive measure

We also assume tha{X \ J,.,A,) = 0, and if there exists & > 0 such that

v(T ™A, NA,) >0 forall myn>1,

then the patrtitior is calledirreducible. Martens'’s result reads as follows.

THEOREM 5.1 [Ma, Prop. 2.6, Thm. 2.9]. Suppose that = {4, : n > 0} isan
irreducible partition for7T: X — X, and suppose thdf is conservative and er-
godic with respect to the measurelf for everyn > 1there existk, > 1such
that for all k > 0 and all Borel subsetd of A, we have

1 v(A) - v(T75(A)) - v(A)

" v(Ay) T v(THAL) T (A

thenT has aoc-finite T-invariant measureu that is absolutely continuous with
respect tov. In addition, i is equivalent withv, conservative and ergodic, and
unique up to a multiplicative constant. Moreover, for every Borelsset X,

n —k
o o (T HA)
HA) = S T Ag))

The main result of this section is the following.

K

THEOREM 5.2. There exists a probability-invariant measureu that is abso-
lutely continuous with respect toconformal measure:. In addition, u is equiv-
alent withm and ergodic.

Proof. Let us first prove that there existsrafinite ergodicF-invariant measure
wu that is equivalent with. Let o be the partition constructed at the beginning of
Section 4 with the consta® > 0 sufficiently large (as required in Lemma 4.1).
In view of Koebe’s distortion theorem, there exists a constant 1 such that,
if F7": P — P is a holomorphic branch af =, then for everyk > 0 and all
x,y € Ay we have
(EY D _
|(F") (ol —
We thus obtain, for all Borel sets, B C A; with m(B) > 0 and allz > 0, that

m(F,"(A) _ [I(F"' " dm - sup, {I(F7")'1"}m(A) < Mm@

(5.1)

m(F,"(B)) — [(FT™Y ) dm ~ infa {|(F"Y Mym(B) —  m(B)’
Therefore,
—n —n —n m(A)
m(F (A)>=;m<F* (A))s;Khm(F* (B))@
= Khm(F’"(B))M (5.2)

m(B)’
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where the summation is taken over all holomorphic inverse branch&$.on
view of Lemma 4.3, for every > 0 and every > O there exisky; > 0 such that

F™I(Ap) D Ay (5.3)

Applying now (5.2) and (5.3) along with Theorem 4.4 and Theorem 5.1 concludes
the proof of the existence of the requiredfinite measurec.

It only remains to show that is finite. And indeed, fix O< p < g with the
same requirements as in the definition/f in the beginning of Section 4. Each
holomorphic branchF,’: P — P of F~/ restricted to the seAgUA1---UA,
extends in a holomorphically univalent fashion to the{get C : p < Rez <
R+n+1land—2n7 < Imz < 2n7w}; hence it follows from Koebe’s distortion
theorem that there exists a const@nt> 1 such that, for every > 0, all x € Ao,
and ally € A,,, we have

—Jj\s
I(F*_ A) (62 <
[(F ) ()]

Therefore, using Lemma 3.8, we obtain

A,
3m(An) ; < Ci(Rn)3Cm(Ag) teTMEn,

Ci(Rn)®.

—J
m(F*_ '(An)) < Cy(Rn)
m(F,'(Ao)) m(Ao
Hence

m(F~I(A,)) 3 1 @-h)(R+n-1
m(Fi(Ao) < Ci(Rn)°Cm(Ap) e

and consequently, for eveky> 0,
S _om(FI(A,))
Y _om(F~I(Ag))

Thus, applying Theorem 5.1 yields

& .

- F7I(A,
w(hy) = lim zimoF A
koo 3ok m(F~I(Ao))

SinceR > 0, we finally getu(J(F)) = anou(A,,) < o00. We aredone. [J

< C1(Rn)3Cm(Ag) te@ MR +n=D

< Cj_(Rn)3Cm(A0)_l€(l_h)(R+”_l).

6. General Hyperbolic Case

In this section we outline the argument showing that the phenomenon described
previously holds also for every mgfy = Le* such thatf; has an attracting peri-
odic orbit.

We decided to write the details of the proof for the particular case of the attract-
ing fixed point because the dynamics is very simple in this case. On the other hand,
the extension of the arguments for the general hyperbolic case is rather straight-
forward, but it requires some extra information about the structure of the Julia set
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(see [BD]). So, in what follows we rely on the description given in [BD] as well
as the notation of that paper. We recall it briefh, ..., z, = zo is an attract-
ing cycle of f. Assume that the singular value 0 is contained in the domajn
the immediate basin of attraction of. The topological diskB,,,; containingz;

is chosen so that @ B3 and f*(B,+1) C B,y1. ThenB, is defined a3, =
fY(B,+1). The setB, contains some half-plane Re< —M andzg € B,,.

Forj =1 ...,n, let B,_; be the connected componentﬁfl(B,,_Hl) con-
tainingz,— ;. Observe thaB; is contained in the immediate basin of attraction of
z1 and thatB, 1 C Bi. The setBg containsB,,, and f"(Bg) = B,,.

Fori < n, B,_; is a simply connected unbounded set that is bounded by a sim-
ple curve—a “finger” in the terminology of [BD]. The s} is a complement of
a union of infinitely many such finge#s. In order to build an appropriate dynam-
ics, we fix one component (fingefy of the complement oBg (obviously, F; =
Fo + 2kmi; see [BD, Fig. 3]). Let

n—1
P= Fo\nl(UBi>,
i=1

wherer is the natural projection: | F; — Fo. Then

F(P) > | J(P + 2ki)
k
and, modifying the seP slightly, we can actually require that

£(P) > | P + 2ki).
k

Now, F: PN fY(n~Y(P)) — PisdefinedasF = o f.
Let
J(F) ={ze P : F"is defined for alh > 0}.

One can easily see that
J(HNP=JF).

The whole construction given in previous sections can now be repeated. We omit
the details and summarize the results as follows.

THEOREM 6.1. Assume that the mafi(z) = Le® has an attracting periodic or-
bit. Denote by

J. ={ze J(f): f"(z) does not tend too}.

Thenkh = HD(J,) < 2. Moreover, there exists &-conformal measure: for the
mapF: J(F) — J(F) and ac-finite conformal measuié for f: J(f) — J(f)
satisfyingn (I (f)) = 0. Theh-dimensional Hausdorff measure bfF) is finite,
whereas thé-dimensional packing measure is infinite. There exists a probability
ergodic F-invariant measurg: that is equivalent ta.
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7. Appendix

Our main goal in this appendix is to provide an alternative direct proof—without
using the concept of conformal measures—of the fact that the Hausdorff dimen-
sion of the set/, (f3) is less than 2Let

Ju(f) = [z € J(£) < liminf | £2(2)] < 0 and lim supf;'(2)] = oc].

n—oo

We start with the following lemma.

LEmMA 7.1. If X € (0, 00), then
lim supHD(J,,,(f1)) <1

A—0
Proof. Fix A € (0, 1/e). Given an integek > 2, consider the set
Ji(M) = {ze Py NJ(f,) :Re(f () <M
and Réf/(z)) > Mforall j =1,...,k—1}
and define the map;.: J,(M) — Py by the formula
Fi(2) = mo(f(2)) = FX(2).

If z € Ji(M), then Re& f*Y(z)) > M and thereford f*(z)| > Are™. Since

Re(f*(z)) < M, this implies thaflm(f¥(z))| > v12e2M — M > xeM/2 for all
M large enough. Since also R€(z)) > M for everyz € Jy(M) and allj =
0,1,...,k—1, we may conclude that, for every € F, (J,(M)) and every > 1,

) (2 ’ f 1 k-1
IFl(2) ™ < <_)< 2 _ )
72
ek w) o a 27\ = (M2 2n)?)
4 t
< (tﬂ)l )\1 t(Ml 5> )k 1 (7.1)
where

1 Foo 1
T =— ——
T o f_oo A+ u2)z "
Since all the setg, (M), k > 2, are mutually disjoint, putting/o.(M) =

Ukzz Ji (M) allows us to define the maR,, : Joo(M) — Py by the requirement
that Fio| 5,y = Fi. It then follows from {.1) that, for everyw € J(f) N Py,

R ) P VIR 1-1\j
Y @I = = (e Y M
zEFo;l(w) j=1

_ @t a 1

PO L )Y Lo P —

—p *eh) 1- % ,M-

t—1
< 22,(;7) (heMyipi=t (7.2)
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for all M sufficiently large. Fix now > 1 and define

Ex(M)={zePyNJ(f):Re(fi(z)) <Mforal j=01,....k—1
andF*Y(z) € Jo(M)}.

PUtE(M) = ;=1 Ex(M). Since the set&; (M), k > 1, are mutually disjoint,
we can define the ma@: E.(M) — Py by setting

G(2) = Foo(F*1(2))

if z€ Ex(M).
Note thatEy(M) = J(M) andG| g,y = F. Since Réf/(z)) > g, for all
ze J(fy) andallj > 0, it follows that for allw € Py, N J(f;) we have

> IG @I

zeG~Yw)
(471)[_1 el . 9] +00 1 k=1
<|2% A M —_——
= ( t r—1 (re™) ; n;m (qf 4 (27[”)2)1/2
A7) -1 0
<25, B oy Y @'Eok
t—1 pard

Fix now 1 > 0 so small thay; is so large tha.thl”z, < 1/2. Then, for allw €
Py N J(f3), we obtain

Y 16/ @IT < CiMe™) (7.3)

z€G~Y(w)

for some constant, depending om and independent af/. Now there exist O<
P < ¢ such that{z € C : Re(z) > p,} N{f"(0) : n > 0} = @. Cover the set
Ou =1{z€C: p, < Re(z) < M + 1} by the familyR,, of nonoverlapping rect-
angles intersectinG (E«(M)) of the formA x [— 37, 37 ] with the lengths ofA
equalto 1Forevery elemem € R, fixone elementvg € RNG(E.(M)). Then
the family{G;(R) : R € Ry, z € GH(wg)} cOversE, (M), whereG*: Q) —
C is the holomorphic branch @ sendingw to z. It follows from Koebe'’s distor-
tion theorem and (7.3) that, # € %), andv € R, thenZzeG,l(wR)|(G;1)/(v)|’ <
C/(MeM)Y=! for some constant; that is independent aff. Consequently,

YooY dian(GIR) < Y0 D IGIY (v diand(R)

ReRy zeGYwp) ReRy ze G—Ywp)

<@r+D'C Y (M)

ReNy

< @1 4+1)'C/(M +1)(Me™),
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wherev, € R is chosen so thatG; ™)' (v.)| = sup,x{|(G; ' (v)]}. Since

Ju(f)N{zeCi—n <Im@z) <7} C () Ex() forall N =1,
M=N

Y3 ) diam(GIAR) < B +D)'C i(M + (MM,

M=>N ReRy zeGYwg) M=N
and limy_. o (37 +1'C; 35 _y (M + 1) (Me™)*=") = 0, we conclude that
HD(J..(fu) N{zeC: - <Im(z) <n}) <t.

Since
Ju(f) = | JUn(f) Nz eC i =1 <IM(2) < 7} + 2min),
nez
we conclude that HY,, (f.)) < t. The proof is finished. O
Let

55 = {ze () liminf | 2(2)] < o0}

SinceJ, (f;.) = Jua(fr) U J(f3), combining Lemma 7.1 and Corollary 2.2 yields
the following theorem.

THEOREM 7.2. If A € (0, c0), then
yTOHD(Jr(fA)) =1

CoroOLLARY 7.3. If |A] <1/eandi # 0, thenHD(J.(f3)) < 2.

Proof. We use the following theorem, proven in [As, Cor. 1.3] (cf. [GL, Thm. 5,
p. 13]).

THEOREM 7.4. If f: Q — Q'is aK-quasiconformal homeomorphism afdc
Q is a compact set, then

2K HD(E)
HDU(ED = 5k D HD@E)”

Although Astala’s result is stated for compact sgt®nly, it actually holds for

all subsetsE of Q. Indeed, assuming first tha@ c G and that the closur& is
compact, we see that [LV, Thm. I1.8.1] applies and so Astala’s proof goes through
step by step. Now, it suffices to observe that the Hausdorff dimensipisiable

and that each subset @fis a countable union of sets whose closures are compact
subsets of2. In particular, quasiconformal maps send sets whose Hausdorff di-
mension is less than 2 into sets with Hausdorff dimension less than 2. Since all
the mapsf; with |A| < 1/e and) # 0 are mutually quasiconformally conjugate,
combining Theorem 7.2 and Theorem 7.4 yields our corollary. O
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