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Total Masses of Mixed Monge—Ampére Currents

ALEXANDER RASHKOVSKII

1. Introduction

Our starting point is the classical problem on numeric characteristics for zero sets
of polynomial mappings®: C" — C™. If m > n and P has discrete zeros then
this is about the total number of zeros counted with multiplicities, aneifer n

the characteristics are the projective volumes of the corresponding holomorphic
chainsZp. Whenm = 1 the volume equals the degree of the polynonfiabut

for m > 1the situation becomes much more difficult. In particular, in the general
case no exact formulas can be obtained in terms of the exponents and the prob-
lem reduces to finding appropriate upper bounds. An example of such a bound is
given by Bezout's theorem: i = n and P has discrete zeros, then their number
does not exceed the product of the degrees of the componenRtsAf alterna-

tive estimate is due to Kouchnirenko [11; 12]: The number of zeros is at most
n! times the volume of thé&lewton polyhedron of at infinity (the convex hull

of all exponents ofP and the origin). A refined version of the latter result was
obtained by Bernstein [3], who showed that the number of (discrete) zeros of a
Laurent polynomial mapping on(C\{0})" is not greater than! times the mixed
volume of theNewton polyhedrdthe convex hulls of the exponents) of the com-
ponents ofP.

Here we put this problem into a wider context of pluripotential theory. This can
be done by considering plurisubharmonic functians log| P| and studying the
Monge—Ampére operator®d u)”; we use the notatiod = 9 + 8 andd® =
(8 — 9)/2mi. The key relation is the King—Demailly formula, which implies that
if the codimension of the zero set is at leaghen(dd“u)? > Zp (with an equal-
ity if p = m < n). The problem of estimating total masses of the Monge—Ampeére
operators of plurisubharmonic functionof logarithmic growth was studied in
[22]. In particular, a relation was obtained in terms of the volume of a certain con-
vex set generated by the functisnwhich in case: = log| P| is just the Newton
polyhedron ofP at infinity.

On the other hand, we know that the holomorphic chginwith m = p <n
can be represented as the wedge product of the currents (divigbrig)g| Py |,

1 < k < m, which leads to consideration of tineixedMonge—Ampére operators
ddui A --- A ddu,, and estimating their total masses. Another motivation for
this problem are generalized degrgfgs T A (ddp)P of positive closed currents

T with respect to plurisubharmonic weightsdue to Demailly [5].
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So, our main subject is mixed Monge—Ampere currents generated by arbitrary
plurisubharmonic functions of logarithmic growth. Using the approach developed
in [22], we obtain effective bounds for the masses of the currents. As a conse-
guence, this gives us a plurisubharmonic version of Bernstein’s theorem adapted,
in particular, for polynomial mappings @”. In addition, we get a representation
for the generalized degrees @f 1)-currents.

2. Preliminaries and Description of Results

We consider plurisubharmonic function®f logarithmic growth inC”,
u(z) < C1log*|z| 4 C2

with some constant§; = C;(u). The collection of all such functions will be de-
noted byL (C") or simply by L. Various results on such functions are presented,
for example, in [1; 2; 15; 16; 23]. For general properties of plurisubharmonic func-
tions and the complex Monge—Ampére operators, we refer the reader to [9; 10;

14; 17].
The (logarithmic)ypeof a functionu € £ is defined as
. u(z)
o(u) = limsup——,
|z]—00 lOg|Z|

which can be viewed as the Lelong numbemadt infinity. The corresponding
counterpart for the directional (refined) Lelong numbers are directional types

o, a) = lim sup 22 2.1)
=00 ©q(2)
with
9a(z) = supa;tloglzsl, a=(ay,...,a,) €R"; (2.2)
k

see[22]. One can also consider the typés ¢) with respect to arbitrary plurisub-
harmonic exhaustive functiogse £,

u(z)

o(u, p) =limsup—-. (2.3)
o0 P(2)
One more characteristic is thagarithmic multitype(o1(u), ..., 6,(u)),
o1(u) = sup(G1(u; z') 1z e C" Y (2.4)

(see [16]), wheres1(u; z') is the logarithmic type of the functiom; ,/(z1) =
u(z1, 7') € L(C) with z’ € C"*fixed, and similarly foo(u), ..., o,(u). For ex-
ample, if P is a polynomial of degreé, in z;, theno; (log| P|) = d.

Another (and original) definition for the Lelong numbers is in terms of the cur-
rentsdd‘u, which works for arbitrary positive closed currents. This leads to the
notion of degree of a current. L@;(Q) be the collection of all closed positive
currents of bidimensiokp, p) on a domair2 c C". We will consider currents
T e D;(C") with finite projective mass, ategree
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8(T) = / T A (3dd°log(1+ |z]%))";

the set of all such currents is denotedw;. The degree of” [,D; can also
be represented as

8(T) = / T A (dd°10g|z])”

and as the density of the trace meastre= 7 A = (4 3_ dz; A dz;)" of the cur-
rentT:
5(T) = lim 21 =0
oo meg (12] < )

WhenT = [A] is the current of integration over an algebraic 4adf pure dimen-
sionp, the degred([ A]) coincides with the degree of the setlefined as the num-
ber of sheets in the ramified covering map— L to a generigp-codimensional
planeL. Note also that any currefite £D," , has the forn¥" = ddu withu € L,
ands(ddu) = o(u) (see [17]).

Thegeneralized degrees

(T, @) = / T A (ddg)” (2.5)

with respect to plurisubharmonic weightsvere introduced in [5] as a powerful
tool for studying polynomial mappings and algebraic sets.
We are concerned with the problem of evaluating

w(T, uy, ..., up) :=/ T Addui A --- ANddu,

for currentsT € LD, and functionsy; € £ in terms of the distribution of” and
growth characteristics af;. The idea is to replace the functiong by certain
plurisubharmonic functions, with simpler asymptotic properties. A relation be-
tween the corresponding total masses is provided by Theorem 3.1, which shows
that the value ofu(T, u, ..., u,) is a function of the asymptotic behavior of
at infinity. This comparison theorem is an extension of Taylor’s theorem [24] on
the total mass ofddu)" of u € L N L{S,. At the same time, it is an analogue
for Demailly’s second comparison theorem [9, Thm. 5.9] on generalized Lelong
numbers.

Taking v, = log|z| yields a bound in terms of the types of and the degree
of T (Corollary 3.1),

(T, ug, ... upy) <86(T)o(uy)...o(uy,),

and the choice;, = ¢, leads to that in terms of the corresponding directional
characteristics (Corollary 3.3).

Sharper bounds are obtained with= ¥, ., theindicatorsof u;, introduced
in [22] (see the definition and basic properties in Section 4). We have

w(Tou, o oup) < (T L0t

ug,x? Up,X
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(Proposition 4.1), and the problem reduces to evaluating the right-hand side. This
can be done effectively inthe cape=n —1, T = dd“u,,. Namely, foru € L, the
convex functiony,” (1) := W." (expr, ..., expt,), t € R", is the support func-

tion to the convex set

O"={aeR":(a,t) <yl (t) YVt eR"},

u,x

and
w(YE W) = alVol (@, ..., @), (2.6)

Minkowski’'s mixed volume of the set®** (Theorem 4.1).

The foregoing considerations are applied in Section 5 to investigation of the
generalized degreeésT, ¢) defined in (2.5). By Proposition 4.1, we are reduced
to the values(7, ¥, ). WhenT = dd‘u, we prove the relatiod(dd“u, ¥, ) =
8(dd°w, ., ¥, ,) for all x, y € C". We study the “swept out” Monge—Ampére
measures of indicator weights in Theorem 5.3. As a consequence, we derive a
representation faf(ddu, ¥, ,) in terms of the set®* and®¥ and a relation be-
tweeno (u, ¢) ands(dd u, ¢) in Corollary 5.2.

Finally, in Section 6 we specify our results for currents generated by polynomial
mappings. In particular, we observe that (2.6) implies the following analogue for
Bernstein’s inequality (Corollary 6.1): the projective voludiZ p ) of the holomor-
phic chainZp generated by a polynomial mappi®y= (Py, ..., P,) in general
position, 1< p < n, has the bound

8(Zp) < mVOI(GY,....GF A, ... A),

WhereGj+ is the Newton polyhedron of the polynomi&)} at infinity andA =

{t e R : > t; <1} is the standard simplex iR". We also derive a number of
other bounds (like Bezout’s and Tsikh'’s theorems) as direct consequences of our
general results on mixed Monge—Ampére operators.

3. Comparison Theorem for Mixed Operators

A g-tuple of plurisubharmonic functions, ..., u, will be said to beproperly in-
tersectedor in general positionwith respect to a currerft € D; (p > ¢q) iftheir
unboundedness lodi, ..., A, satisfy the following condition: For all choices of
indicesji < --- < ji (k < q), the(2¢q — 2k +1)-dimensional Hausdorff measure
ofthe setd;, N---N A;, NsuppT equals zero. If this is the case, then the current
T AddCui A --- Add€u, is well-defined and has locally finite mass [9, Thm. 2.5].
We recall that a function: in C” is called semi-exhaustiven a setA if
{u < R} N A cc C" for some realR, andexhaustivef this is valid for all R.

THEOREM 3.1 (Comparison Theorem).Let T e ﬁD[jf anduy, ...,u, € L be
properly intersected with respect © and letvy, ..., v, € £ be semi-exhaustive
onsuppT. If, foranyn > 0,
lim sup @ <lj, 1<j<p,
|z]— 00, zesuppT Uj(z) +n |Og|Z|

thenu (T, uy, ..., up) <li...Lu(T, v1, ..., Vp).
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Proof. It suffices to show that the conditions

lim sup 4 (2)

(2 + 1 loalzl V>0, 1<j<p, (3.1)
|z|— 00, zesuppT Uj(Z) +n |Og|z|

imply
w(T, ug, ..., up) < u(T, vy, ..., vp). (3.2)

Without loss of generality, we can also take- 0 onC”".
ForanyN > O, the functionsy; y := maxu;, —N} still satisfy (3.1). Then, for
anyn > 0 andC > 0, the set

E;(C) = {zesuppl : v;(2) +nloglz| — C < uj n(2)}

is compactly supported in the ba,, for somex; = «;(C, n, u; v, vj). Puta =
max; «;, E(C) = Uj E;(C), F(C) = ﬂ,Ef(C), and

w; c = max{v;(z) + nloglz| — C, u; n}.
Sincew; ¢ = vj(z) + nlog|z| — C neardB, N supp?, we have

[T A dawe=[ 1 A dat+ gz

1<j<p Bu a1<j<p
5/ T\ dd‘(v; +nlog|z)).
" a<j<p

Note that, for any compact subsgtof supp7, one can findCx such thatk c
F(C) forall C > Ck; hence

/ T /\ dd"u)j,c < / T /\ dd"(vj + 77|Og|Z|)
Br 1<j<p C" i<y
foranyR > 0 and allC > Ck. In addition,
T N\ ddwjc—T [\ ddujn
1<j=<p 1<j=p
asC — +oo (the functionsw; ¢ decrease ta; y) and therefore

/ T /\ dd“uj,Nflimsup/ T /\ dd‘w; ¢
BR BR

1<j=<p G0 1<j=<p
5/ T /\ dd‘(v; + nlog|z]).
" acj<p
Sincer is arbitrary, we derive the inequality
f T /\ ddcuj,fo T /\ dd‘v;;
Br 1<j<p " 1<j<p

finally, letting N — oo, we have
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/BRT A\ ddcujff”T N\ ddv;

l<j=<p l<j=<p

for any R > 0, which gives us (3.2) and thus completes the proof. O

REMARK. As follows from the theorem,

M(Tv uy, ..., Mp) S /'L(Ts max{ula al}v LR max{up’ Olp})

for anya € R?, and the right-hand side is independentofThe inequality here

can be strict, which follows from the consideration of the functign,, z,) =
log(|z1|2+|z122+1/%). We havew (u, u) = Owhileu(u™, u™) = 4, the latter rela-

tion verified by comparing ™ with the function maglog| z1|, log|z1z2|, 0}, whose

total Monge—Ampére mass can be calculated by Proposition 4.2. This shows that
the condition on the functiong in Theorem 3.1 to be semi-exhaustive is essential.

Animmediate application of Theorem 3.1is the following bound for the total mass
of the currentl” A dduy A - - - A dd‘u,, in terms of the degre&7') of T and log-
arithmic typess (u;) of u;.

CoroLrLary 3.1 If T € LD, anduy, ..., u, € L are properly intersected with
respect tof, then

w(T,uy, ...,up) <8(T)o(uy) ...o(up).

In particular, T A dd uy A -+ - Add u,_y € ED,;* forO<k < p.

Moreover, we have the following refined bound via the generalized characteristics
o(u, ¢) ands(T, ¢) (see (2.3) and (2.5), respectively) with regard to plurisubhar-
monic weightsp.

CoroLLARY 3.2. LetT, uy, ..., u, satisfy the conditions of Corollary 3.1 and let
¢ € L be an exhaustive weight. Then

w(T,uy, ..., up) < (T, p)o(us, @)...o(uy, ¢).

For the specified case @f = 1, p = n, andy = ¢,, this gives us the following
bound in terms of the directional typesu;, a) of u; (cf. (2.1)).

CoroLLARY 3.3. If the functionsyy, ..., u, € L are properly intersected, then

o(ug, a)...o(u,,a)

M(M]_, AR ul’t) S Inf
aeR", ajy...day

4. Bounds in Terms of Indicators

More precise bounds can be obtained by means of indicators of functions from the
classC.

Developing the notion of local indicator introduced in [18], the (glolradca-
tor of a functionu € £ atx € C" was defined in [22] as
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W o(y) = lim R7Tsuplu(z) : zx = xil < Iyl®, 1<k <n)

for y1...y, #0,
and it extends to a plurisubharmonic function of the cldssepending only on
Izal, .-, |z| @nd satisfying¥, .(1z1l*, ..., [z4]) = Wy (|z4l, - -, |z,]) for all

¢ > 0. The indicator controls the behavior @fin the wholeC”,
u(z) < \Iju,x(z —x)+C, Vze c" (41)

[22, Thm. 1], withC, equal the supremum afon the unit polydisk centered at
Besides, the indicator is a (unique) logarithmic tangemt&bx, that is, the weak

limitin L1 .(C") of the functions

Un(y) = mu(xs+ v, oo X0+ ¥ (4.2)

asm — oo [22, Thm. 2].

Note that the indicator of Idg| at x equals maxlog|y,| if x = 0 and equals
max; log™|yx| for any other point:.

The asymptotic characteristics (types)wtan be easily expressed in terms
either of its indicator or (more conveniently) of the convwerage

V(1) = W, (e, ..., e™), teR",
of the indicator [22, Prop. 3]: For eaahe C”,

ow)=oc,d,....0)=v,,.1 ..., D,
o(u,a) =Y, (a) VYaeR", (4.3)
o) = Yy x(er), 1<k =<n, (4.4)

with ey, ..., e, the standard basis &". Note that the restriction af, , to R, is
independent of € C" [22, Prop. 7].
By (4.1), Theorem 3.1 implies the following.

ProrosiTioN 4.1. LetT € L:Dp* andus, ..., u, € L be properly intersected with
respect tof, and letx € C". Then

I’L(Ta Ml’ L] u[)) S I’L(Ta \I'lut’)p L] \IJ;;M,V)'
COROLLARY 4.1. Letuy, ..., u, € £ be properly intersected and lef e C” (1 <
k <n). Then
\I—’+

I"l’(ula LA un) S /"L(ul’ AR un—la lp,;:’x") E M(Mj_, cee \IJ+ u”,x”) e

u,,,l,x”‘l’

b ) S (Bt W),

ug,xL’

< plug, ¥
REMARK. The choice of € C" can affect the value of the total Monge—Ampére
mass of the indicators. For example, latz1, z2) = 3log(l + |z122/%); then
W, o(y) = log*|y1y2| has zero mass, while the masslof 1 1, (y) = maxlog*|yi],
logt|y2l, log*|y1y2|} equals 2 (see Proposition 4.2).
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To get an interpretation for the masses of indicators, we proceed as in [22]. Let
® be an abstract indicator i@", that is, a plurisubharmonic function depending
only on|zil, ..., |z,| and satisfying the homogeneity condition

@zl ..oy lzal) = c®@(zal, ..., |za) Ve > 0. (4.5)

The functionsp, (see (2.2)) are particular examples of the indicators. It is clear
that® < 0 in the unit polydiskD and is strictly positive on

Dl={zeC":|z|>1 1<k <n}

unless® = 0.
Let us assum@® > 0 onC". In this case(dd‘®)" is supported by the distin-
guished boundary of D [22, Thm. 6]. Denote

o) = (", ..., e™"), teR”", (4.6)
the convex image of in R”, and
0% ={aeR": (a,t) < ¢(t) Vt eR"}. 4.7

It is easy to see tha® is a convex compact subsetlaT;. By the construction,
@ is the support function oB®. Thereal Monge—Ampére operator applied ¢o
gives us thé-functionso with mass Vo[©®). By comparing the real and complex
Monge—Ampére operators we obtain

w(®, ..., ®) =n!\Vol (%) (4.8)
(see the details in [22, Thm. 6]).
This can be extended to the mixed Monge—Ampére operators of indicators as
follows.
PROPOSITION 4.2. Let®,, ..., ®, be nonnegative indicators. Then
dd“ PN ANdd°D, = pudm,
wheredm is the normalized Lebesgue measureforand
w= (@, ..., d,) =n\Vol(®% ... %)

Proof. By the polarization formula for the complex Monge—Ampére operator,

n J n
/\dd‘cpk - % Z(—l)J Z (dd“ Zabjk) ) (4.9)
k j=1 1<iz<--<ij=n k=1

Because the sum of indicators is itself an indicator, the suppgkt,afd‘ ®; is
a subset off . In view of the translation invariance of this measure, it has the form
w(2m)~"do, ... do, with a nonnegative constant

By (4.8), the right-hand side of (4.9) is the alternating sum of the corresponding
volumes. Hence, the definition of the mixed volume gives the desired expression
for 1 and thus completes the proof. O

Now Corollary 4.1 and Proposition 4.2 easily give us the main result of the section.
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THEOREM 4.1. Let functionsuy, ..., u, € £ be properly intersected, and let <
C"forl<k <n.Then

w(us, ..., uy) < n!\Vol(©%, ..., ©%),
where the set®® are defined by4.6)—(4.7)for & = &, = ¥ "

ug,xk*

As a consequence, we can derive a boundufen, ..., u,) in terms of the types
ox(u;) of u; with respect ta, (cf. (2.4)).

CoRrOLLARY 4.2. If uy, ..., u, € L are properly intersected, then

w(u, ..., uy) < nl per(oy (“j))j’?,k:y

whereperA denotes the permanent of the matdix

Proof. As follows from (4.4), the se®® is a subset of the rectangle [ (u;)] x
.-+ x [0, 0,,(j)], and the mixed volume of the rectanglesd@] x - - - x [0, a,;]
(1 <j < n)equals pe@;r); ;_;- U

5. Degrees with Respect to Plurisubharmonic Weights

Given asubset of C", we denote by (A) the collection of all functionsieightg
@ € L that are continuous as mappings tecp, +oc) and are exhaustive ofi.

LetT € £D[;L; then the current (measuré)A (dd°p)? € LDy is well-defined
for anygp € W(suppT). Let

(T, ¢) = /C T A (ddp)P

be the (generalized) degree®iwith respect to the weight (see [5]).

Observe thad(T, ¢) = §(T, ¢ ™) sincey is assumed to be exhaustive on sipp
Note also thas(T, ¢) = §(T) if ¢(z) = log|z|.

Generalized degrees of currents can be viewed as generalized Lelong numbers
at infinity, and we start here with two semicontinuity properties parallel to those
for the Lelong numbers (cf. [9]).

ProrosiTioN 5.1. LetT7,,T € ﬁD,jr andT,, — T. Then, for any weighp from

w(U,, suppT,),
S8(T, ) < liminf 8(T,,, ¢).

Proof. This follows immediately from [9, Prop. 3.12]. O

ProrosiTION 5.2.  Let weightsp, ¢ € W(suppT') be such that, for somes R,
the functionamax gy, t} converge tanax{e, ¢} uniformly on compact subsets of
C". Then

§(T, ¢) = ”,TJQJ 8(T, @i).

Proof. Sinced(T, maxX{¢, t}) = 8(T, ¢) for any weightp € W(suppT), we can
takegp, — ¢ uniformly on compact subsets Gf*.
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For anyR > 0, considem € C*(C"), 0 < n <1, such that supp C Bg and
n = 1onBg,,. The relation

Jim [ 0T A (dd o))" :/"TA (dd‘p)?
—00
implies that
qmmanwuz/MTAww@&
and the assertion follows. O
Comparison Theorem 3.1 for the degrees reads as follows.
ProrosiTioN 5.3.  If two weightsp, ¥ € W(suppT') for a currentT € L‘D]j and
if
lim sup v <lI,
|z]— 00, zesuppT ¥(2)
thend(7, ) < IP8(T, ).

When applied to indicators, this gives us the following corollary.

CoroLLARry 5.1. For any current” € LD, any weightp € W(suppT), and
y € C", we haves(T, ¢) < §(T, \IJJy) =8(T, Y, ).

More can be said i’ = dd“u (u € L). In this case, the generalized degrees can be
represented by means of the swept-out Monge—Ampére measures introduced by
Demailly [7]. Forp € W(C"), let B, (¢p) = {z : ¢(2) <1}, S;(¢) = {z: ¢(2) =

r}, andg, = max{e, r}. Theswept-out Monge—Ampére measpfeis defined as

uf = (ddp)" = x,(ddp)",

where x, is the characteristic function &&” \ B,(¢). It is a positive measure
on S, () with the total mass.? (S, (¢)) = (ddp)*(B,(¢)). If suppdd )" C
Br (@), thenu? = (dd¢p,)" forallr > R.
Foro(z) = log|z — x|, u? is the normalized Lebesgue measure on the sphere
{z:]z—x| =e"}, and forgp = ¢, it is supported by the set

T,o={z:zr =explrax+i6y), 0<0;, <2m, 1<k <nj (5.1

and has the form%* = (a1...a,) *(27) ™" db ... db, (see [9]).
The role of the measurgs! is clarified by the Lelong—Jensen—Demailly for-
mula [7; 9]: For any functiom that is plurisubharmonic iz (¢),

w? () —/ u(dd p)" :/ / ddu n (dd”go)”‘ldt Vr < R.
By (¢) —00 J B ()

THeOREM 5.1 (cf. [7; 9]). Letue Landgp e W(C"). Then

¢ Yoo+
W@ sddeu, ) < liminf A4 (5.2)
r r—00 r

lim sup

r—00
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If, in addition,
SUPHAd“p)" C By (p) (5.3)
for somerg, thenr — u?(u) is a convex function of e (g, oo) and
¢
s(ddu. o) = lim . (5.4)

r—+o0o r

Proof. From the Lelong—Jensen—Demailly formula, for any ro we have

r

w? (u) :/ u(dd e)" +/ u(dd‘kp)"—i—/ 8(ddu, ¢, t)dt (5.5)
Bro(9) B (9)\ Brq () -

with
8(ddu, ¢, 1) = / ddu A (ddp)" L.
B/(¢)
If ¢ satisfies (5.3) then the right-hand side is a convex function ahd (5.4)
follows. When (5.3) is not assumed, take any- 0 and choose, such that
(dd )" (C" \ Byo(p)) < e andu(z) < (o(u, ) +¢&)p(z) forallz € C"\ B,,(p).
Then we have

r

u?(u) < Const+ (o(u, ¢) + e)re + f 8(ddu, ¢, t)dt,
-0
which gives us the first inequality in (5.2). To get the second inequality, consider
the functionsty (z) = maxXu(z), —N} for N > 0. By Proposition 5.1, the num-
ber N can be chosen such thatlduy, ¢) > §(u, ¢) + &. Application of (5.5) to
the functionuy gives us

wf@wh) = uf(uy) > Const— Ne +/ 8(dd u, @, t) dt

—0Q

and thus finishes the proof. O

As follows from definition of the generalized type (2.3) and inequality (4.1),
o(u,9) > o(u,¥,o) for everyp € W(C"), and Corollary 5.1 shows that
8(ddu, ¢) < 8(dd‘u, ¥, ) withanyy e C". This motivates consideration bb-
mogeneousveights, or (abstract) indicator®, that depend only ofx4|, ..., |Z,|
and satisfy the homogeneity condition (4.5). Note that a homogeneous weight
is exhaustive oi€” if and only if ® > 0 onC”" \ D.

Itis easy to see that the typ€u, ®) with respect to a homogeneous exhaustive
weight® can be computed as

o(u, ®) = max W, o(z) : ®(z) =1}.

Itis interesting that the degre&gld“u, ®) can also be represented in terms of the
indicators.

THEOREM 5.2. For any functionu € £, any x € C”", and any homogeneous
weight® € W(C"), the equalitys(dd‘u, ®) = §(dd“¥, ., ®) holds. In particu-
lar, 8(ddu, ¢) < 8(dd‘u, ¥, ) = §(dd°V, ., ¥, ,) for any weighty € W(C")
andy e C".
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Proof. Consider the family of functions,, defined by (4.2)x € C". As men-
tioned in Section 4, the,, converge (inL}oc) tow, , asm — oo, sodd‘u,, —
dd°v, .. By Proposition 5.1,

8(dd°V, ., ®) <liminf §(dd u,, ®).

m—0o0

However, the homogeneity df gives uss(dd‘u,,, ®) = 8(ddu, ®) for eachmn,
s0é8(dd‘u, ®) > 8(dd°¥, ., ®); the desired equality then follows from Corol-
lary 5.1. The theorem is proved. O

REMARK. As mentioned in Section 2,(u) = §(dd‘u). Itis not hard to see that,
more generally, the directional typéu, ) as described in equation (2.1) is equal
toa;...a,8(ddu, ¢,), where the weightg, are defined by (2.2); in other words,
8(ddu, ¢,) = o(u, p,) u(@a, ..., p,). As can be seen from Corollary 5.2, a re-
lation between the type and the degree with respect to an arbitrary homogeneous
exhaustive weight is not so perfects(dd‘u, ®) < o(u, ®)u (P, ..., ), and

an equality for all: implies that®d™ = ce/ with somec > 0 anda € R",.

The structure of the swept-out Monge—Ampére measures foogeneous wghts
is given by our next theorem.

THEOREM 5.3. Let ® € W(C") be a homogeneous weight. For any function
thatis plurisubharmonic iBz (®) for R > 0, the swept-out Monge—Ampére mea-
sureu?® on the sefS, (®), 0 < r < R, is determined by the formula

1) = n! f 2, rt) dy (1),
E®

wherex(u, rt) is the mean value of over the distinguished boundary of the poly-
disk {|zx| < exp{r#x}, 1 < k < n} and where the measutg® on the setE® of
extreme points of the convex gete R" : ®(e™, ..., e") < 1} is given by the
relation y*(F) = Vol ®f for compact subsets of £E®, with the set®f defined
by relations(5.8), (5.9),and (5.6).

CoRroLLARY 5.2. Foranygp e W(C"), u e L, andx, y e C",

§(dd°u, @) < 8(dd°u, W, ,) = nl f Vur 0 dy2(0),
ECD

where® = ¥, , andy, , is the convex image of the indicatdy, .. In particular,
(S(ddcbl, (P) S U(“’ (p)/“l’(\lj(p,()? A "Ijgo,o)‘

REMARK. A description for the swept-out Monge—Ampeére measures for (nega-
tive) local indicatorswas given in [21]; the result was that the generalized Lelong
numbers with arbitrary homogeneous weight can be recovered from those with
respect to the weightg, (its directional Lelong numbers aloage R”.). As fol-

lows from Corollary 5.2, this is not always the case for the generalized degrees
(the measurg,” can charg®R” \ R",).
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Proof of Theorem 5.3Since(dd*®)" = 0 on{® > 0}, we haveu?® = (dd“®,)"
for eachr > 0. By the rotation invariance,
u® = 2m)"do ® dp?

with some measurg® supported bys, (®) N R". Moreover, sinceu® has no
masses on the pluripolar s§t(®) N {z : z1... z, = 0}, we can pass to the coor-
dinatesz; = exp{tx + i6;} (—oo < 1ty < 00, 1 < k < n). The functions

p(t) =™, ...,e") and ¢, (t) = O, (e, ..., e") = maX{e(), r}

are convex irR” and increasing in each. Simple calculations show that, in these
coordinatesp? transforms into the measure

)/rq) = n' MA[(pr]s

where M A is thereal Monge—Ampeére operator (see e.g. [20] for details). We
recall that, for smooth functions

92
MA[v] = det( at_,-atk) dt,

and it can be extended as a positive measure to any convex function (see [19]).
Thus we have

u‘f(u):/ <2n>—"/ U216, .., 2ne®) O dp®(za)s .. |20
n [0727.[]!1

=n! f Au, t) dy;b(t) =n! / AMu,rt) dyf’(t)
R R

sinceg, (t) = rei(t/r), and we need only to find an explicit expression for the
measure/® supported in the level set

L® ={reR": @) =1). (5.6)

As follows from properties of the real Monge—Ampére operator,

/ MA[p1] =Vol(w(F, ¢1)) VF C L%, (5.7)
F
where
o(F. 1) = | JlaeR" : g1(t) = 14 (a.1 —1°) V1 €R"}
t9eF

is the gradient image of the sBt
Given a subseF of L®, we put

rp = {a €eR”" :supla, 1) = sup{a, ) = 1} (5.8)
teF tel®
and

OF ={ra:0<r <l aelf). (5.9)
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Note that@fq) is a bounded convex subset®f._ and thai is its support function.
We claim that for any compact subsét of L?, ©F = o (F, ¢1).
If a € w(F, 1) then, for some® e F,

(a,1% > (a,1) —p2(t) +1 VreR". (5.10)

In particular,
(a,t% > (a,t) VrelL®. (5.11)

Whenr = cto with ¢ > 1, (5.10) implies(a, t% < 1. In view of (5.11) it follows
thata € ®% and thusw (F, ¢1) C OF.
Let nowa € ©F, soa = Aa® for a® e I'? and 0< A < 1 Then there is a point
1% e F such that
(a, 1% =supla,t) = supla,t) = A.
teF telL®
Take anyr € R™. If ¢(r) < 1, then(a, t% > (a,t) and thusp,(t) > 1+ (a,t —
9. If p(t) = « > 1, thent/a € L*® and

(a,t) —p1(t) +1=w(a,t/a) +1—a < a SUXa,s) +1—«

selL®
=a(a, O +1—-a=ar+1—a <i=(a, 1%,

S0a € w(F, ¢1). The claim is proved.

Finally, let E® be the set of extreme points b (i.e., those not situated inside
intervals onL?®). SinceL® C {t e R"\ R" : t; < by, 1< k < n} for someb e
R"., we have

sup(a, t) = sup{a,t) VYaeR",

teL® teE®
so that®}, = ©F,. Hencey,”(L®) = y{"(E®) and then supp;” C E®. The
proof is complete. U

6. Algebraic Case: Newton Polyhedra

Here we test our results for the case of currents generated by polynomial mappings.
Whenu = log| P| for a polynomialP, it follows thato () is the degree oP,

ox(u) is its degree with respect tg, andy, (1) = max{{t, J) : J € w,(P)},

where

+t 9z
(see [22]). Note that the maximum is attained on the set of extreme poIOE)
of the setw,(P). In particular,Eq(P) coincides with the set of extreme points of
the convex hull of the exponents of the polynomkalThis means that the séx®
with & = ¥, o equals

J
w(P) = {JeZ” : E(x) " 0}

GT(P) = convEo(P) U {0}), (6.1)
theNewton polyhedron aP at infinity as defined in [11].
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LetnowP = (P4, ..., P,) be a polynomial mapping; if; = log| P;| thenZ; =
dd‘u; is the divisor ofP;. Let the zero setd; of P; be properly intersected—that
is, let codimA; N---N A;, > m for all choices of indicegy, ..., j. (m < p).
Then the holomorphic chair of the mappingP is the intersection of the divisors
ZiiZ=Zin---NZ,[9,Prop. 2.12].

In this setting, Corollary 3.1 turns into the bound

/ TAZ<8T)s...5,

via the degree$; of P;. ForT = 1 this gives Bezout's inequality for the projec-

tive volume of the chairz. The specification of Corollary 3.3 withhe Z', gives

a bound by means of the degreesRy{z*), a global counterpart for the Tsikh—

Yuzhakov theorem on multiplicity of holomorphic mappings in terms of the quasi-

homogeneous (or weighted homogeneous) initial polynomial terms [26] (see also

[4, Thm.10.3.2). And Corollary 4.2 becomes exactly a result of Tsikh [25].
Theorem 4.1 now takes the following form.

CoroLLARY 6.1. The degre€ projective volumgs(Z) of the holomorphic chain
Z generated by a polynomial mappiy= (P, ..., P,), wherep < n and the
zero sets of componenks are properly intersected, has the bound

8(Z) <n\Ol(GY,...,G A, ... A).

Here Gf is the Newton polyhedron of the polynomil at infinity (defined by
(6.1))andA = {r e R", : > t; < 1}, the standard simplex iR". In particular,

if p = n then the number of zeros #f counted with their multiplicities does not
exceed! VoI (G, ..., G,").

WhenP;(0) =0, the seth+ is strictly greater than the convex hilb(P;) of the
setwo(P;) appearing in Bernstein's theorem. But in return we take care of all the
zeros whereas Bernstein’s theorem estimates only thog&e in{0})". Actually,
no bound for the total number is possible in terms of just the convex hulls of the
exponents (see e.g(z) = z).

An algebraic specification of Theorem 5.3 and Corollary 5.2 is as follows. Let
® be the indicator of logP| for a polynomial mapping®: C" — C” (p > n)
with discrete zeros. Then the ﬂéL% is the Newton diagram foP and @2’4, =
G*(P) is the Newton polyhedron faP at infinity—that is, the convex hull of the
setsGt(Py), 1 < k < p. In this case, the s&f® = {%, ..., tV} is finite; it con-
sists simply of normals to th@: — 1)-dimensional faceg; (P) of the polyhedron
situated outside the coordinate planes, with the condiigr) = 1. The measure
v+ charges/ with the volume of the convex hutl;"(P) of the corresponding
facel’;(P) and 0, so

5(dd‘u,10g|P|) < 5(dd‘u, Wiogp.0) =n! Y Vu,0()VOI(G"(P)).

1<j<N
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