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Metric Definition of u-Homeomorphisms

S. KALLUNKI & P. KOSKELA

Dedicated to Fred and Lois Gehring

1. Introduction

The analytic definition of quasiconformality declares that a homeomorplfism
between domain® andQ’ in R”, n > 2, is quasiconformal iff € Ws2(Q2, ')
and there exists a constakitsuch that

IDf (x)|" < KJp(x) a.e.inQ.

Because the Jacobian of any homeomorphjsm W1(2, ') is locally inte-
grable, the regularity assumption ghin this definition can naturally be relaxed

to f € Wt (., Q). There has been considerable interest recently in so-called
u-homeomorphisms that form a natural generalization of the concept of a quasi-
conformal mapping in dimension 2. To be more precise, we consider homeomor-
phismsf € Win (R, ') such that

IDF(x)]? < K(x)Jy(x) a.e.in® @
with K(x) > 1 and exprK) € Lt () for somer > 0. A class of mappings

loc

equivalent to this was introduced by David in [2] and further studied in [17; 18].
David considered the Beltrami equation

3f (2) = n(2)af(2)

and essentially showed that a homeomorphic solufienW,(2, Q') exists (in
the planar case) whemp(z)| < 1 almost everywhere and

14 |u(2)
C—
exp( ey

for someC > 0; for this generality see [18]. These mappings in fact belong to
M,-2 Wé’g’(sz, Q'); they are differentiable a.e. and preserve the null sets for the
2-dimensional Lebesgue measure. These conclusions hold with 2 replaged by
in any dimension for mappings with an exponentially integrable distortion in the
sense of (1); see [13; 14].

) € Lige()
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Quasiconformal mappings can alternatively be defined using metric quantities:
Let Q2 andQ’ be domains irR” and letf : Q@ — ' be a homeomorphism. Recall
that f is then either sense-preserving or sense-reversing; throughout this paper,
we will assume that all the homeomorphisms we deal with are sense-preserving.
Then the two distortion functions gf that are of interest to us at a poing Q2 are

Hy(x) = lim supr(x r) (2)
and
hy(x) = liminf Hy(x,r), 3)
r—0
where Lo
X, r
H =127
A RN
and

Ly(x,r) =suf|f(x) = fO]:|x =yl =r}
lp(x,r) i=inf{| f(x) = fFOD] 1 |x =yl = r}.

By |x — y| we denote the Euclidean distance betweeandy. Now f is quasi-
conformal if and only if the distortio/; is uniformly bounded—that is, iff

Hf(x) <H <oo forall xeQ. (4)

According to a result by Gehring [3, Thm. 8], the uniform boundednesgf afan
be relaxed to the requirement thdit (x) < oo outside a seE of o-finite (n — 1)-
dimensional measure arfdl (x) < H a.e. with respect to the Lebesgue measure.
It has recently been observed that, first of &l}, in (4) can be replaced withy.
For this result, which quickly found applications in complex dynamics, see [7].
Second, we established in [11] a version of the result of Gehring’s by showing that
it suffices to assume that (x) < H outside a set of-finite (n — 1)-measure.
This result was partially motivated by the need for tools of this type in complex
dynamics (see [4]).

In the case ofi-homeomorphisms—or, more generally, homeomorphigras
WIOC (2, Q') that satisfy (1) with some suitably well-integratife—there is no real
hope of obtaining a metric definition that would characterize the class of mappings
in question. Indeed, the size condition on the exceptional set in the metric defini-
tion cannot be relaxed even in the quasiconformal setting; moreover, under integra-
bility conditions onk, we know thatH,; can well be infinite in a set of dimension
larger tham — 1. Thus the best one can hope for is a sufficient metric condition.
Again, the quest for such a condition is partially motivated by complex dynamics;
u-homeomorphisms appear naturally in conjugation problems (see [5; 6]). Ac-
cording to a result of Kallunki and Martio [12], in the planar case, a homeomor-
phism f: @ — ' for which H; € L{ .(Q) for somep > 2 andHs(x) < oo
outside a set af-finite length indeed belongs (2, Q) and is differentiable
a.e. See also [18] for a related result. For simplicity and for the relevance to com-
plex dynamics, here and in the sequel we mostly concentrate on the planar case. In
this paper we establish new results in terms ofThey rely on our first theorem,
which gives control on the distortion of shapes by means of integrais. of
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TueorREM 1.1. Let f be a homeomorphism between domans?’ ¢ R? such
that 2 (x) < oo outside a seE of o-finite length andi; € L2 (). Then

loc

Lp(x,r) <lp(x,r) exp(C ][ h7(y) dy> (5)
B

(x,2r)

for eachx € Q and everyr > 0 such thatB(x, 2r) C . The constanC is an
absolute constant. In particulay; is differentiable almost everywhere.

By theo-finite length of a set we mean that the set has a countable cover by sets
of finite Hausdorff 1-measure.

As an immediate consequence of this theorem and its higher-dimensional ana-
log (given in Section 4), we obtain the following corollary, which gives a full
extension of the result of Gehring’s discussed previously; see Theorem 1.3. Itis
an improvement on our main result in [11].

CoroLLARY 1.2. LetQ2, Q' ¢ R” be domains and suppose that Q@ — Q' is
a homeomorphism. Suppose that there exist &seft o -finite (n — 1)-measure
and a constantf such that:s(x) < oo outsideE in © and

he(x) < H

almost everywhere i. Thenf is quasiconformal.

We close this introduction with a regularity result that gives a sufficient metric
condition for a mapping to be a-homeomorphism.

TueoreM 1.3. Let f be a homeomorphism between doman<2’ ¢ R? such
that/;(x) < oo outside a seE of o-finite length. There is an absolute constant
C’ such that

exp(C'h?) € L}y ()

implies thatf € W,-%(2, Q') and that(1) holds withexp(C'K 2) € L} ().

Notice that we obtain a stronger conclusion than simply the exponential integrabil-
ity of the distortion and also that the asserted regularity of the mapping is stronger
than one would expect. The regularity will be deduced from [8] and [9]. It would
be interesting to know if the exponential integrability/gfcould already guaran-
tee that the mapping belongswqi’cl(sz, Q).

The paper is organized as follows. In Section 2 we prove Thedrgnand
Section 3 is devoted to the proof of Theorem 1.3. The last section contains the
formulation and the outline of the proof of Theorem 1.Rih

2. The Local Quasisymmetry Condition
In this section we prove Theorehr.

Proof of Theoreni.1. If inequality (5) holds, then

Hy(x) =lim :supM

< oo for a.e.xeQ.
r—0 lp(x,r)
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This guarantees the differentiability gfalmost everywhere, owing to the Rade-
macher—Stepanov theorem (see e.g. [12]).

The proof of inequality (5) is somewhat technical. The argument is an improve-
ment on the techniques in [7] and [11]; for the convenience of the reader we will
repeat even the part of the original reasoning from [7] that need not be altered.

First fix xo € Q andr > 0 with B(xq, 2r) C . We can assume that

Lf()Co, r) > 3l_f(Xo, I").
Letl< p < 2 ande > 0. Define
A = B(f(x0), L)\ B(f(x0), 1),
whereL = L¢(xo,r) andl = I¢(xo, r). Foreachk =0,1, 2, ..., write
Ar = {y € fHA) N B(xo, 2r) : 28 < hp(y) < 2K,

The setA, is a Borel setf ~X(A) N B(xo, 2r) \ E = |, Ax, and for every there
exist openU; such thatd; c U, and

£
Ukl < |Arl + @ik

Here|A| denotes the Lebesgue measure of aAsdfix k. Now, for everyy € Ay,
there is ar, > 0 such that

(i) 0 <ry < 5min{d(fXB(f(x0).1)). fX(R?\ B(f(x0), L)),

d(y, 0B (xo, 2r))},

(i) diam(fB,) < 27/0=3L,
(i) He(y,ry) < 21 and
(iv) By C Uy.
HereB, = B(y, ry) and jo is the least positive integer with 2L < [.

We have obtained a family of ballB, that satisfy conditions (i) and (ii) and
such that, ify € A, then B, satisfies condition (iii) fotk. By the Besicovitch
covering theorem we may find balBs, B, ... from balls B(y, r,), so that

f7HA) N B(xo.2n) \ E C | J B; C B(xo.2r)
J

and}_; xz (x) < C(2) for everyx € R2. Here and in what follows, notation like
C(2) indicates that this constant will depend on the dimension when the argument
is extended to cover the higher-dimensional setting. For these balls, we know that

|Bj| < C(2) diam(fB;)?
and, wheny; € A, (herey; is the center o)),
C(2) diam( £B;)?

| fBjl = 22(2k+1)2

Let us define

3 L\ diam(fB;) 1
P = ('097) Z d(/B;. f(xo)) diam(B;) 2%

The functionp is measurable because it is a countable sum of simple functions.
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The next step is to estimate thé-norm, 1< p < 2, of p. Inthe planar case we
can simply takep = 1, but in higher dimensions an exponent- 1 < p < n will
be needed. We thus write this proof for gengralo that the extension to higher
dimensions becomes transparent (cf. Section 4).

By a general estimate oh”-norms of weighted sums of characteristic func-
tions, theL”-norms(1 < p < 2) of p are comparable to the corresponding horms
of the function where the characteristic functions; are replaced witly 5, (cf.

[1]). Thus, knowing thad x5, < C(2), we arrive at the estimate

L\ diam(fB) 1 )
Pdx < C(2, p)(log = i Bil-
/ﬂ p(x)Pdx < C( P)(Og l) ;(d(fgj, f(x0)) diam(B;) 151

Using Hélder’s inequality and the fact that digfiB; )2 < C(2)| £B,(2"*1)2 when
y;j € Ax, we thus obtain

L\’ | /B, ),,/2
Pdx < C(2, log — TR f(x 2
/” p(x)?Pdx < C( p)<09 1) (Z]: d(fB;, f(x0))?

(2-p)/2
X (Z Do @4yren diam(B,-)z) :

k yi€eAg

Regrouping the balls depending on their distance fitimy) and then using the
estimated x5, < C(2), itis easy to see that

— d(fB;. f(x0)) I
The approximation of the second term is a little bit trickier. First observe that
diarn(B,-)2 < C(2)|B;| = C(2)(|Bj N Ax|l + |B; \ Ar]). The double sum over the
|B; N A|-terms can be estimated by the integrah®?“~"" and the double sum
over the| B; \ A|-terms turns out to be no more than a constant timégcause

Uy,ea, Bi C Ux and|Us| < |Ax| + &/(227/=P)*. Therefore,

Z Z(zk)Zp/(Z—P) dian(Bj)Z < C(2)</ hf(x)zp/(z—l?) dx + €>.
B(x0,2r)

k yieAg

Because was arbitrary, we conclude that

L\ P2 2-p)/2
/ p(xX)Pdx < C(2, p)(log —> ( / hy(x)%/@p) dx> )
n l B(xo0,2r)

In the following we will actually choose = 1.

Our next goal is to find a lower bound on the integrabofor this, define; =
FUB(f(x0),1)) andF, = fY(R?\ B(f(x0), L)) N B(xo, 2r). Take a point
y € F1N S(xp, r). By applying an auxiliary rotation, we may assume that
xo + (r, 0). Consider the line segmentfs parallel to the imaginary axis through
the pointsxg + (¢, 0), 0 < ¢ < r, that join two points ofS(xg, 2r). Assume first
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that [, p > 55, for eachr ina setA [0, r] with m(A) > r/2. Herem refers to

the Lebesgue measure on the line. Then it follows from the Fubini theorem that

.
P> .
/B(W,Zr) 4000

Suppose then thq»fjt p < ﬁ) for eachr in a setA with m(A) > r/2. Now
m({0 <t <r:EnNJ isuncountablp =0, andm({r <s < 2r : EN S(xg, s)
is uncountablp = 0 becausé haso -finite length (cf. [19, 30.16]).

Take a radius < s < 2r and a number € A such that bottE N S(xo, s) and
E N J, are countable. Pick the ballg, Vs, ... from the ballsBy, Bo, ... for which
V: N S(xo,8) #WVoOrV;NJ, #@. Writey = J, U S(xo, s). Then the connected
sety intersects bothF; and F, and thusf(y) is a connected set that intersects
both B(f(x0), 1) andR?\ B(f(xo), L). Moreover, the setg(V;) cover f(y) up
to a countable set.

Now .
1/ L\ diam( £V;)
S(log>) ST
/yp = 2<°g l) afVi, fxo)

i

If £(V;) touches the annulus; = B(f(xo), 2/ ™) \ B(f(x0),2’l), j =0,...,
jo— 1, thend(fV;, f(x0)) < 2/, and because the connected sgt8;) cover
f(y) up to a countable set,

L —1j0—11 1
> | log — - >
/yp—<gz) 2 3 = 1000

Because € A, we have

/ 0 <
I 2000
and it follows that

fon?=
0> —.
S(ro.s) 2000

From this estimate and using the Fubini theorem, we obtain that

2r 1
p(x) > / (/ p) ds > .
v/l;(xo,Zr) r S(y,s) 2000

Thus, in both cases we have the estimate

/ p(x)dx > Cr.
B(xg,2r)

Combining now the lower bound with the upper bound, we finally have (with the
choicep = 1) that

L\ Y2 1/2
c<2>rsc<2>(logT> ( f 2 hf(x)zdx) |
B(x0,2r)

This gives the claim. O
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3. A Metric Condition for g-Homeomorphisms

In this section we will prove Theorem 1.3. For the proof we need two lemmas, the
first of which is a version (tailored for our setting) of the standard absolute conti-
nuity result for quasiconformal mappings.

LemMa 3.1. Let f be ahomeomorphism between doma&n$2’ ¢ R? such that
Le(x,r) <lf(x,r)e(x) wheneverB(x,2r) C Q, (6)

whereg € L,ZOC(Q). Thenf is absolutely continuous on almost all lines parallel
to the coordinate axes.

Proof. Let 0 cc Q be an open 2-interval and suppose tat= I x J, where

I =]a,b[eR*andJ =]c, d[ C RL For each Borel seE C I we sety(E) =
|f(E x J)|. Thenn is a finite Borel measure ith and hence, by the Radon—
Nikodym theorem, it has a finite derivativg(y) for almost everyy € I. Choose

y e I such that (i)y’(y) exists and (iiyp € L2({y} x J). The latter is possible be-
cause of the Fubini theorem. We will prove thats absolutely continuous on the
segmenty} x J, which will prove the theorem.

DefineJ’ = {y} x J. Now let F c J’ be compact. We wish to estimate
HY(fF). Choose O< ¢ < dist(F, 8J)/4 andr > 0. Let 0 < §; < 1 be the num-
ber given by [19, Lemma&1.1] for the setF. We will soon state what this lemma
gives us. Choosé, such that, if 0< r < 85, then| f(x) — f(z)| < t whenever
x,z€ Qand|x — z| < 2r. Denoted = min{éy, 8», ¢}. Choose O< r < §. Now
[19, Lemma31.1] gives a coering Ay, ..., A, of F with intervals inJ’ such that
(i) diam(A;) = r for1l < i < p, (ii) each point ofJ’ belongs to at most two
differentA;, and (iii) eachA; is contained in the-neighborhood of in J'.

Now, because € L2(J'), there are points; € A; such that

p(x;) <2 inf g(x) < co. (7)

xXeAN;

SetA; = B%(x;, r). NowA; C A; andA; C BY(y, r) x J. Because diaityA;) < ¢
we have thaHl(fF) < > diam(fA;) <23 L;, whereL; = L¢(x;,r). Denote
similarly I; = Iy (x;, r). Using (6), we obtain the estimate

2 2
Hi(fF)? < 22(2 Li) < 22(2 ligo(xi))

22 1/2 ?
=— li i)
. (x Ei rce(x ))
notice thatB(x;, 2r) C . By Hélder’s inequality we further conclude that

22
Hi(fF)? = o Y LFADY re?(x),
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whereQ, = |B%(0,1)|. Because no point belongs to more than two of the sets
A, it follows that | fA;| < 10n(B(y, r)). Since the points; satisfy (7), we

arrive at
.92 . pl
wipy < 21D ’r))< f goz(x)dx).
2 r F+e

HereF + ¢ is thee-neighborhood of in J'. Letting firstr — 0 and therd; — 0
and finallye — 0 and: — 0, we deduce that

HASF)? < c<2>n’(y>( /F <p2<x>dx).

The absolute continuity of on J’ follows from this estimate; see [19, Lemma
30.9]. O

LemMma 3.2. Letu be a nonnegative function such that
exp(C'u) € Lip(Q). (®)
and letp > 1. Then, for each compact sétc ,
expleC'M (xru)) € Lin (), 9)

wheree depends only op and whereM is the usual Hardy—Littlewood maximal
operator.

The proof of this lemma is a simple computation based on (a) the fact that the
Hardy—Littlewood maximal operator is bounded frdrito LY when 1< ¢ < oo
and (b) the expansion of the exponential function as a power series. Indeed,

/ (Mv)"dxfC/ |v|? dx
R2 R2

wheneverg > 2, whereC = ¢2%g /(g — 1) for ¢ an absolute constant; see [15].

Moreover,
1/2
/Mvdx < (/(Mv)zdx> |E|Y2
E E

by Holder’s inequality. Thus the claim follows from the power series expansion

(peC'M (xru))*

exp(peC'M (xpu)) = ) .

k

Proof of Theorem 1.3From Theorem 1.1 we have thétis differentiable almost
everywhere. Next we would like to show thAis absolutely continuous on lines.
For this it is enough to show that is absolutely continuous on lines in every
squareQ ccC Q. Fixsuch asquar®. Now, if r < %dist(Q, 0Q2) andx € Q then
inequality (5) gives that
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Ly(x,r) < ly(x,r) eXp(CM (xgh?)(x)).

Lemma 3.2 shows that ekBM (xoh?)(x)) € L§,.() when the constant’ is
chosen correctly. By Lemma 3.1, we see tfidgd absolutely continuous on almost
all lines parallel to the coordinate axes.

The next goal in our proof is to check thfite Woa (2, Q). Becausef is ab-
solutely continuous on almost all lines parallel to the coordinate axes, it suffices to
show that Df | € L},.(Q2). Here Df is the matrix obtained from the partial deriva-
tives of the coordinate mappings, and it exists at a.e. poigt.oNow, for a.e.

x € @, it follows that f is differentiable Df (x) exists, andi;(x) < oco. Fix such
a pointx. Becausef was assumed to be sense-preserving, the Jacobian determi-
nantJ;(x) must be nonnegative. if;(x) > 0O, then clearly

IDf ()% < hy(x)Jp(x). (10)

On the other hand, i7;(x) = 0, then elementary linear algebra shows that
min, =1/ Df (x)e] = 0. From the assumptiof;(x) < oo it then follows that
Df (x) must be the zero matrix. Thus (10) holds for a.& 2. Because the Ja-
cobian of each a.e. differentiable homeomorphism is locally integrable (cf. [16,
p. 360]), we thus conclude from (10) and our integrability assumptioh,dhat
| Df| is locally integrable—in fact, locally-integrable for anyp < 2.

We are left to show thaf € Wlé’CZ(Q, Q’). By the previous paragraply,
Wed(R2, '), Jy € L,.(R), and

|Df(x)|* < K(x)Jp(x)

a.e., where&k = h; satisfies exC’'K?) € L},.(R2). Then exgrK) € L1, () for

everyA > 0 and so [8] (or the main theorem in [9]) gives us the desired regularity.
O

4. The Higher-Dimensional Setting

The higher-dimensional setting is somewhat more technical. Corollary 1.2 is an
immediate consequence of the following result.

THeoreM 4.1 Let f be a homeomorphism between domain<2’ C R” such
that 7 (x) < oo outside a seE of o-finite (n — 1)-measure and;; € Li (),
with somer — 1 < p < n. Here p* = pn/(n — p). Then

1 n
Ly < Lz exp(<c<n, nf h}’*(ymy)” | ) (1)
B(x,2r)

for everyx € Q@ and eachr > 0 such thatB(x, 2r) C Q. In particular, f is dif-
ferentiable almost everywhere.

Proof. The first part of the proof is the same as the beginning of the proof of
Theoreml.1. Wesimply replace the number 2 there withWe then end up with
the estimate
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L (p/n)(1—n) (n—p)/n
/ pP(y)dy < C(n, p)(log —) (/ hf(x)np/(n—ﬂ) dx) )
R" l B(xo,2r)

The claim follows from this inequality, provided we can find a suitable lower
bound on thep-integral ofp. Such an estimate is obtained by a simple modifica-
tion of the reasoning in [11] (Lemma 2.1 there holds witreplaced byp when

p >n—1 andin Lemma 2.3 there the sEf is not needed). Explicitly, we have
the lower bound

/ pP(y)dy = C(n, p)r"™7;
Rll

see [10, Lemma 2.6]. By combining these two facts, the claim follows. O
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