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Regularity of Continuous CR Maps
in Arbitrary Dimension

Klas Diederich & Sergey Pinchuk

1. Introduction

In this article we come back to one of those questions of complex analysis that
are at the same time natural, important for applications, easy to formulate, and yet
quite intriguing in the sense that they have given rise to much research without hav-
ing been solved completely. More specifically, we mean the following problem.

General Problem. Let D,D ′ ⊂⊂ Cn be domains and letf : D → D ′ be
a proper holomorphic map. Suppose that∂D and∂D ′ have a certain regularity
property (e.g.,C k-smooth for somek = 1,2,3, . . . ,∞, ω). Does the mapf ex-
tend automatically to a map̂f : D̄ → D̄ ′ with some regularity depending on the
regularity of the boundaries∂D, ∂D ′? (For instance, for whichk do C k-smooth
boundaries imply that̂f is C k?)

Forn = 1 there is a quite precise understanding of these questions, whereas good
answers forn > 1 are known only under additional hypotheses. The answers to
the general questions are unknown even fork = ∞ andk = ω.

The question of boundary regularity of proper holomorphic mappings is not
only natural but also important as a tool for other questions. Namely, if any proper
holomorphic mapf : D → D ′ automatically has a sufficiently high boundary
regularity, then this will imply that the local biholomorphic invariants of a real
hypersurface are part of the geometry of the domains bounded by them. This can,
for instance, be very useful for studying the existence of certain proper holomor-
phic maps and many other problems.

Extensive research has been done in the area of the General Problem. We can-
not mention it in full detail. Instead, we refer the reader to existing survey articles
on the subject (e.g. [8; 22]).

In this article we deal, more specifically, with the casek = ω of the General
Problem. We want to know whether this implies thatf̂ necessarily isCω or, in
other terms, whether all proper holomorphic mapsf : D → D ′ extend holomor-
phically to an open neighborhood of̄D if ∂D and∂D ′ areCω-smooth. We will
show that the answer to this question is indeed “yes” if one knows already thatf
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extends to a continuous map̂f : D̄ → D̄ ′ (see Theorem 1.4). (The question of
whether all proper holomorphic mapsf : D→ D ′ extend continuously up to∂D
remains open; it might require totally different methods.)

Our specific problem and the method we use also have a long history. It started
with the articles by S. Pinchuk [28] and H. Lewy [25], both of whom developed
the first generalization of the Schwarz reflection principle to strictly pseudoconvex
domains in several complex variables. The first steps toward an extension of this
method of a “geometric” reflection principle to the case of degenerate Levi forms
were made by S. Webster [34] and by K. Diederich and S.Webster [21]. The tech-
nique was further developed step-by-step in [16], [17], [18], and [19]. This article
builds on the work of all these previous papers.

From the viewpoint of results, the next major steps in the real-analytic case after
[21] were done in [3], [5], and [16]. At this stage it had been completely proved
that any proper holomorphic mapf : D → D ′, ∂D and∂D ′ Cω-smooth, extends
holomorphically to a neighborhood of̄D if D is pseudoconvex (and hence also
D ′). A major advantage for showing this was that, owing to a long and different
development ending with [15] and [7], it was already known that suchf extend in
aC∞ way up to∂D. This facilitated the application of the method of a geometric
reflection principle and also made it possible to apply a more algebraic version of
a reflection principle as used in [5]. After this, the situation whereD is not nec-
essarily pseudoconvex had to be dealt with. In [17] the holomorphic extendability
of f to a neighborhood of̄D was shown forn = 2 and under the hypothesis thatf
is already known to be continuous up to∂D. In [18] for n = 2 this additional con-
tinuity hypothesis was eliminated. (Now, forn > 2, we have to make it again.)
The article [19] contains a result that (together with [30]) is a very important tool
for the use of the reflection principle in this article.

The question posed in the General Problem is essentially global in nature, and
in Section 6 we will give a proof of Theorem 1.4 that also is global at a crucial
step. Of course, the problem immediately becomes a local one if continuity off

up to∂D is supposed. We show here a strong local result in Theorem1.1,where we
simply assume continuity of the given CR mapf. Forn = 2 this result has been
proved in [23] based on the ideas of a preliminary version of [18]. Forn > 2 it is
shown here for the first time even under the additional hypothesis thatM andM ′
are pseudoconvex (see our Theorem 1.2, for which we will give a simpler proof
than needed for the general Theorem1.1; for aquite special recent result in the
same direction, see [24]). In fact, all previous global results also give certain local
versions (see e.g. [3; 5; 16; 17; 18]). But in the local situation of a continuous CR
mapf : M → M ′ from a (germ of a) real-analytic smooth hypersurfaceM to a
(germ)M ′ of the same kind, many other questions—as variations of the original
General Problem—can be asked. Namely, it now makes sense (a) to strengthen the
hypothesis onf and ask for weaker hypotheses onM,M ′ that still imply holomor-
phic extendability off and/or (b) to take into account algebraic hypersurfaces.
Much research has been done in this direction. In particular, the following two
cases have been studied in recent articles.
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(1) The mapf is aC∞ CR map (see [2; 12]).
(2) The mapf just is a formal CR map from the germ(M,0) to the germ(M,0′)

(without assuming that it is known to be continuous, but also in higher codi-
mension) (see [1; 4; 26; 27]).

The cited articles all contain more detailed bibliographies in their area, to which we
refer the reader interested in the respective specific question. Sometimes certain
additional nondegeneracy hypotheses onf are made in such work. Our decision
in this article is to avoid any further assumptions onf besides continuity.

The main results of this article are as follows.

Theorem 1.1. Let M ⊂ W ⊂ Cn (resp.M ′ ⊂ W ′ ⊂ Cn) be real-analytic
smooth closed real hypersurfaces of finite type in some open setW (resp.W ′) in
Cn and letf : M → M ′ be a continuous CR map. Thenf extends holomorphi-
cally to a neighborhood ofM.

Although it is obviously just a special case of Theorem1.1, weformulate the fol-
lowing theorem separately because it treats a particularly important case that so
far has not been known in general.

Theorem 1.2. LetM ⊂ W ⊂ Cn (resp.M ′ ⊂ W ′ ⊂ Cn) be pseudoconvex
real-analytic hypersurfaces of finite type in some open setW (resp.W ′) in Cn and
let f : M → M ′ be a continuous CR map. Thenf extends holomorphically to a
neighborhood ofM.

Remark 1.3. (a) Even the special case of this theorem in whichf is, in addition,
already known to beC∞ has not been known before.

(b) We will give (in Section 6) a simpler proof for Theorem 1.2 than the one that
shows Theorem1.1.

The following natural global statement also follows from Theorem1.1,which (as
a local statement) is, of course, much stronger. However, we will also give a sim-
pler proof for this global case.

Theorem 1.4. LetD,D ′ ⊂⊂ Cn be domains with real-analytic smooth bound-
aries, and letf : D → D ′ be a proper holomorphic map extending continuously
to D̄. Thenf extends holomorphically to a neighborhood ofD̄.

The structure of this article is as follows. In Section 2 we introduce our basic
notation and concepts, also reminding the reader briefly of the machinery of the
geometric reflection principle by the use of Segre varieties (for details, however,
we must refer to our previous articles [18; 19]). Section 3 contains the proof thatf

in any case extends holomorphically past a dense open subset ofM. This is needed
to get the reflection principle started. Section 4 then contains a slightly changed
variant of the method: how to obtain a candidate for an extending holomorphic
correspondence for the mapf by using Segre varieties. In addition, we intro-
duce the important notion of a “pair of reflection”, which is used in Section 5 to
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study and introduce a new extension technique (as a correspondence) along Segre
varieties. This finally, leads to the construction of certain sequences of analytic
setsσν of dimension≥ 1 that allow us to reduce the task of proving Theorems
1.1 and 1.4 to showing that the cluster set of the sequence(σν) is not completely
contained inM (resp.∂D) (see Lemmas 5.9 and 5.10). In the general case, this
seems to be difficult (see Conjecture 6.1). However, it turns out to be possible in
the global situation of Theorem 1.4 and under the additional pseudoconvexity hy-
pothesis of Theorem 1.2; for the details, see Section 6. In order to deal with this
difficulty in the general situation, we are led to studying the question of conver-
gence of families of analytic varieties. In Section 7 we prove a new criterion for
this (see Theorem 7.4) which also might be of interest for other applications. In
Section 8, using a recent result of A. Tumanov [33], we can verify Conjecture 6.1
when the dimension of theσν is large enough by using a decisive generalization
of this given in Proposition 8.3. In order to apply this to the proof of Theorem1.1,
we must study (in Section 9) intersections of Segre varieties. Finally, Section 10
contains the construction of the needed new complex-analytic setsσν of higher
dimension and the end of the proof of Theorem1.1.

2. Notation and Preliminaries

Observe that Theorem 1.4 follows directly from Theorem 1.1 since, according to
[14, Thm. 4], the boundaries∂D and∂D ′ in Theorem 1.4 are smooth real-analytic
hypersurfaces of finite type (not necessarily pseudoconvex). Hence, it suffices to
prove Theorem 1.1 in this article. We will therefore consider, for a large part of
the article, the following situation:M,M ′ are smooth real-analytic hypersurfaces
of finite type as in Theorem1.1, andf : M → M ′ is a continuous CR map. We
will use the complete machinery of Segre varieties and mostly remain close to the
notation used in our previous articles [18; 19]. We ask the reader to look there for
further details.

We may assume that 0∈ M, 0′ ∈ M ′, andf(0) = 0′, and it suffices to work
near 0 and 0′. By ρ(z, z̄) (resp.ρ ′(z ′, z̄ ′)) we denote real-analytic defining func-
tions ofM (resp.M ′) near 0 (resp. 0′). Wherever needed, we may assume that
we have chosen normal coordinatesz andz ′ such that

ρ(z, z̄) = 2xn +
∞∑
ν=0

ρν(
′z, ′z̄)(2yn)ν (2.1)

with ρν(′z, ′0) ≡ 0 for all ν (and analogously forM ′, ρ ′, z ′). By U2 ⊃⊃ U1 3 0
(resp.U ′2 ⊃⊃ U ′1 3 0′) we denote standard pairs of neighborhoods of 0 (resp. 0′).
For anyw ∈U1, the Segre variety

Qw := {z∈U2 : ρ(z, w̄) = 0}
is a well-defined closed smooth complex hypersurface inU2. For anyw ∈U1\M,
we define the symmetric pointsw as the unique intersection between the complex
line throughw normal toM andQw. Forw ∈M we putsw := w. We call
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U±j := {z∈U : ±ρ(z, z̄) > 0}.
Forw ∈U+1 ,we define the canonical componentQc

w ofQw as the connected com-
ponent ofQw ∩ U−2 containing the symmetric pointsw. For any pointζ ∈ Qw,

we denote byζQw the germ ofQw at ζ.
We denote byM+ the set of strictly pseudoconvex points onM and byM− the

set of strictly pseudoconcave points onM (in the sense that all eigenvalues ofLρ
onT 10M are negative). ByM± we mean the set of all points whereLρ has eigen-
values of both signs onT 10M, and byM 0 we mean the set of points onM where
Lρ has at least one eigenvalue 0 onT 10M. Notice thatM 0 is a closed real-analytic
subset ofM of real dimension at most 2n− 2. We have

M = M+ ∪M− ∪M± ∪M 0.

By D̂ we denote the envelope of holomorphy ofD, and we call6 the set of all
points inM such thatf extends holomorphically to a neighborhood of6 (our
goal, of course, is to show that6 = M).

A fundamental fact for our proof is the result of A. M. Trépreau stating that,
sinceM is minimal, every pointz ∈M has a neighborhoodV such that any con-
tinuous CR functiong onM extends holomorphically either toV + := {z ∈ V :
ρ(z, z̄) > 0} or V − := {z ∈V : ρ(z, z̄) < 0}, where this side of extension does
not depend on the choice ofg.

We assume that the sign ofρ has been chosen so that the mapf extends holo-
morphically toU−2 , and we denote its extension again byf.We need only consider
the case where 0 is not contained in the envelope of holomorphy ofU−2 . We may
assume thatf(U−2 ) ⊂⊂ U ′1.

As a warning to the reader we would like to point out that, forn ≥ 3, it can
happen that 0/∈ Û−2 even though there are no strictly pseudoconvex points on
M ∩ U2.

3. Extending the Map to a Dense Subset ofM

In this section we want to show that6 is dense inM. For this we may assume
(throughout the section) thatf is nonconstant unless otherwise stated. Note first
that (M− ∪M±) ∩ U2 ⊂ Û−2 so that automaticallyf ∈ O(M− ∪M±). Hence,
it suffices to show thatf extends holomorphically to a neighborhood of a dense
subset ofM+. We may therefore assume that 0∈M+. We will shrink the setsUj
andU ′j as convenient in the sequel without pointing it out each time. We consider
two different cases.

(a) Assume that 0′ = f(0)∈M ′+ ∪M ′−. It then follows directly from the result
of [29] that 0∈6.

(b) Assume next that 0′ = f(0) ∈M ′±; in this case we claim thatf is constant.
For suppose thatf is not constant. Then there exists a pointa ∈U−1 as close
toM as we want such thata ′ := f(a)∈U ′−1 or ∈U ′+2 . This follows from the
following lemma.

Lemma 3.1. If f(U−2 ) ⊂ M ′, thenf is constant.
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Proof. By looking at a pointb ∈U−2 where the functional matrix off has maxi-
mal rank, we see thatf(U−2 ) contains a positive-dimensional germ of a complex-
analytic set iff is not constant. This, however, contradicts the fact thatM ′ is of
finite type.

In order to continue case (b), it suffices to considera ′ ∈ U ′−1 . We observe that,
because of 0′ ∈M±, there is a closed complex-analytic subsetAa ′ ⊂ U ′1 of dimen-
sion 1 such thata ′ ∈Aa ′ andAa ′ ∩M ′ = ∅. Now we havea ∈Aa := f −1(Aa ′) ⊂
U−2 . However, since 0∈M+, the complex-analytic setAa must have limit points
onM ∩U2. Hence, the same must be true forAa ′ , a contradiction. Next we show
the following lemma.

Lemma 3.2. Let 0′ ∈ N ′ ⊂ M ′ be a realC2-smooth generic manifold, where
dimRN

′ ≤ 2n − 2, and letU be any neighborhood of0 ∈M+. Then it follows
thatf(M ∩ U) " N ′.
Proof. Without loss of generality we may assume that dimRN

′ = 2n− 2. There
exists a complex planeL′ 3 0′ with dimC L

′ = 2 such thatL′ ∩N ′ is a totally real
manifold of real dimension 2 near 0′. For a ′ ∈ Cn let La ′ be the plane parallel to
L′ and passing througha ′. For small enoughU ′j , all intersectionsL′a ′ ∩ N ′ ∩ U ′2
are totally real and of real dimension 2. Letϕa ′ be a strongly plurisubharmonic
function inU ′2 such that:

(i) ϕa ′ ≥ 0;
(ii) ϕa ′ = 0 onSa ′ := L′a ′ ∩N ′ ∩ U ′2.
Notice that such a functionϕa ′ can be defined byϕa ′ = ∑2n−2

k=1 (ρ
′
k), where

{ρ ′k}2n−2
k=1 is a defining system forSa ′ . We may assume thatU1 ∩M ⊂ M+ and

f(U−1 ) ⊂ U ′1 and that

ρ(z, z̄) = 2xn + |′z|2 + o(|z|2). (3.1)

Fora∈U−1 , letωa := {z∈U−1 : zn = an} andAa := ωa∩f −1(L′f(a)∩U ′1). Notice
thatωa is a complex manifold of dimensionn−1, ωa ⊂⊂ U1, andf(∂ωa) ⊂ M ′.
If Lemma 3.2 is false then we would havef(∂ωa) ⊂ N ′. Since dimC L′f(a) = 2, it
follows thatAa is an analytic set inU−1 of dimension≥ 1 anda ∈Aa. The func-
tionψa := ϕf(a) Bf is plurisubharmonic and nonnegative onAa, andψa|∂Aa = 0
becausef(∂Aa) ⊂ N ′ ∩ Lf(a). Henceψa|Aa ≡ 0. But ϕf(a) is strongly plurisub-
harmonic. Therefore,f |Aa is constant with image inN ′ ⊂ M ′. Sincea ∈ U−1
was chosen arbitrarily, it follows thatf(U−1 ) ⊂ M ′, a contradiction to Lemma 3.1.
This proves Lemma 3.2.

As an immediate consequence we now have the following result.

Corollary 3.3. The set6 is dense inM.

Proof. The real-analytic setM ′0 can be stratified by smooth generic submanifolds
of dimension≤ 2n − 2. By applying Lemma 3.2 to each of them, we see that
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f(M+) " M ′0. Hence there exist points onM+ arbitrarily close to 0 that are
mapped toM ′+ ∪M ′− ∪M ′±. According to case (b) described previously, such
points cannot be mapped toM ′± becausef is assumed to be nonconstant. There-
fore, according to case (a), the point must belong to6.

Corollary 3.4. If f is not constant then(i) the Jacobi determinantJf of f is
not identically0 and(ii) f is locally proper near all pointsz∈M withJf (z) 6= 0.

Proof. We move to a point of6. Then it follows from a result of Baouendi and
Rothschild [6] thatJf 6≡ 0 and thatf is locally proper near any such point.

4. An Important Brick for the Holomorphic Extension
of the Map f

In this section, 0∈M is arbitrary and 0′ = f(0) ∈M ′. We assume that the stan-
dard neighborhoodsUj andU ′j have been chosen in such a way thatf(U−2 ) ⊂⊂
U ′1. Furthermore, we assume thatf is not constant. The following set will be an
important brick for the holomorphic extension off to a neighborhood of 0:

F + := {(w,w ′)∈U+1 × U ′1 : f(Qc
w) ⊂ Q′w ′ }. (4.1)

Defineπ : F + → U+1 by π(w,w ′) = w andπ ′ : F + → U ′1 by π ′(w,w ′) = w ′.
Lemma 4.1. The setF + is analytic inU+1 × U ′1.
Proof. According to (4.1),(w,w ′) ∈ F + iff ρ ′(f(z), w̄ ′) = 0 for all z ∈ Qc

w.

Furthermore,z ∈ Qw iff ρ(z, w̄) = 0. And this is the case if and only ifzn =
h(′z, w̄), whereh is a function holomorphic in′z and antiholomorphic inw. So
for any pair(w0, w ′0)∈U+1 × U ′1, the setF + is defined near(w0, w ′0) by

ρ ′(f(′z, h(′z, w̄)), w̄ ′) = 0 for ′z close to ′sw
0.

This is a family of (anti)holomorphic equations forw,w ′.

We must now study the set

α := {w ∈U+1 : Jf = 0 onQc
w}. (4.2)

SinceM is supposed to be of finite type, it also is essentially finite (see [21] and
[3]). Hence it follows from Corollary 3.4 thatα must be discrete.

We putU+ := π(F +) ⊂ U+1 .
Lemma 4.2. The mapπ|(F + \ π−1(α)) is locally proper.

Proof. We have to show that, for anyw0 ∈ U+ \ α, the setπ−1(w0) ∩ F + =
{(w0, w ′)∈F +} is discrete. For this we move to a pointb onQc

w0 whereJf (b) 6=
0. Then the image underf of bQc

w0 is a complex-analytic germ of dimension
n − 1. Hence the inclusionf(Qc

w0) ⊂ Q′w ′ completely determines the Segre set
Q′w ′ . The lemma then follows from the fact thatM ′ is essentially finite.
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Corollary 4.3. The dimension ofF + is n.

Proof. According to Lemma 4.2,F + has dimension≤ n at all points not lying on
π−1(α); sinceα is discrete, the dimension ofF + must be≤ n everywhere. How-
ever, the dimension ofF + must actually ben, sinceF + contains the graph off
near all points of6.

We next modify the setF + by excluding from it all irreducible components of
dimension< n. Furthermore, we chooseU ′1 so small that the Segre mapλ′ : U ′1→
λ′(U ′1) ⊂ S ′ is proper.

Lemma 4.4. The mapπ : F + → U+ is proper and henceU+ ⊂ U+1 is open.

Proof. (a) We first show thatπ : F + \ π−1(α) → U+ \ α is proper. For this
we need to show thatF + \ π−1(α) has no limit points on(U+ \ α) × ∂U ′1. Let
(wν,w ′ν)∈F + \π−1(α) be a sequence such thatwν → w0 ∈U+ \ α andw ′ν →
w ′0 ∈ Ū ′1. Sincew0 ∈U+ \ α there exists a point(w0, w̃ ′0) ∈ F + \ π−1(α) with
w̃ ′0 ∈ U ′1 as well as a sequence(wν, w̃ ′ν) ∈ F + \ π−1(α) with w̃ ′ν → w̃ ′0; this
follows because (by Lemma 4.2) the mapπ is locally proper away fromπ−1(α).

By (4.1),f(Qc
wν ) ⊂ Q′w ′ν ∩Q′w̃ ′ν , and sincewν /∈ α we haveQ′w ′ν = Q′w̃ ′ν . Now

the properness ofλ′ together withw̃ ′0 ∈U ′1 means that alsow ′0 ∈U ′1.
(b) Notice that, having eliminated low-dimensional components fromF +, we

haveF + = F + \ π−1(α) because any “vertical” component ofF + over a point
from α would have dimension≤ n−1 and thus would also have been eliminated.
Furthermore, by part (a) of the proof, the setF + is (overU+ \α) contained in a set
whosew ′-coordinates are given by a system of monic polynomials in thew ′k (k =
1, . . . , n)with coefficients holomorphic inw ∈U+ \α. Since all these coefficients
extend holomorphically acrossα and sinceF + is (overα) contained in the set given
by these extended polynomials, the properness ofπ : F + → U+ follows.

The next step is to show the following lemma.

Lemma 4.5. The mapπ ′ : F + → U ′1 is locally proper.

Proof. We need to show that any point(w0, w ′0)∈F + is isolated inπ ′−1(w ′0) =
{(w,w ′0) ∈ U+1 × U ′1 : f(Qc

w) ⊂ Q′
w ′0}. The setπ ′−1(w ′0) is an analytic

set. If π ′−1(w ′0) is not discrete, then dimC π ′−1(w ′0) ≥ 1 and hence the set⋃
(w,w ′0)∈π−1(w ′0) Q

c
w contains an open subset ofU−1 . This would imply that

f(U−1 ) ⊂ Q′w ′0, which contradicts the fact thatJf 6≡ 0.

Lemmas 4.4 and 4.5 together say thatF + induces a holomorphic correspondence
F̂ + : U+ → U ′1 defined byF̂ + = π ′ B π−1. In other words,

F̂ +(w) = {w ′ ∈U ′1 : Q′w ′ ⊃ f(Qc
w)} for w ∈U+.

Define another holomorphic correspondenceF̂ − : U−1 → U ′1 by

F̂ −(w) := {w ′ ∈U ′1 : Q′w ′ = Q′f(w)}.
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We putU := U−1 ∪U+ ∪ (6 ∩U1). By the invariance property of Segre varieties,
the correspondenceŝF + andF̂ − coincide near any point from6∩U1. Therefore,
together they give a holomorphic correspondenceF̂ : U → U ′1 with F̂ |U+ = F̂ +
andF̂ |U−1 = F̂ −. Let

F := {(w,w ′)∈U × U ′1 : w ′ ∈ F̂(w)}
be the “graph” ofF̂. It is an analytic set inU×U ′1 of pure dimensionnwith proper
projectionπ : F → U, andF̂ = π ′ B π−1.

By the definition ofF̂ , all valuesf 1(w), . . . , f m(w) ∈ F̂(w) have the same
Segre varieties. Therefore,Q′

F̂(w)
is well-defined for allw ∈U.

Lemma 4.6. If, for a w ∈ U, there exists aw ′ ∈ U ′1 such thatf k(w) ∈Q′w ′ for
some valuef k(w)∈ F̂(w), thenf l(w)∈Q′w ′ for all other valuesf l(w)∈ F̂(w).
Hence, in this case we can writêF(w) ⊂ Q′w ′ .
Proof. Notice thatf k(w) ∈Q′w ′ iff w ′ ∈Q′

f k(w)
. As just observed, we also have

Q′
f k(w)

= Q′
f l(w)

. Together this is the case if and only iff l(w)∈Q′w ′ .
It will be convenient to introduce the following terminology.

Definition 4.7. We say that a pair(w0, z0) ∈ U × (Qw0 ∩ U) is apair of re-
flectionif there are open neighborhoods�(w0) of w0 and�(z0) of z0 such that,
for all w ∈�(w0),

F̂(Qw ∩�(z0)) ⊂ Q′
F̂(w)

.

Remark 4.8. A typical example of a pair of reflection is the situation when
w0 ∈ U+ andz0 ∈ Qc

w0. Another simple example is the pair(w0, w0) for w0 ∈
6. Notice, however, that a pair(w0, z0) is not necessarily a pair of reflection if
we just havew0 ∈ U+ andz0 ∈ Qw0 ∩ U, sinceQw0 ∩ U may (of course) be
disconnected.

We have the following symmetry relation.

Lemma 4.9. If (w0, z0) is a pair of reflection, then also(z0, w0) is a pair of
reflection.

Proof. We takez∈�(z0) andw ∈Qz∩�(w0). Thenz∈Qw ∩�(z0) and hence
F̂(z) ⊂ QF̂(w). From this it follows (as already used) thatF̂(w) ⊂ QF̂(z) and
henceF̂(Qz ∩�(w0)) ⊂ Q′

F̂(z)
. Therefore,(z0, w0) is a pair of reflection.

Lemma 4.10. We have:

(i) clF̂ (w
0) ⊂ ∂U ′1 for anyw0 ∈ ∂U ∩ U+1 ;

(ii) cl F̂ (0) ⊂ Q′0′ ;
(iii) if clF̂ (0) = {0′ } then0∈6;
(iv) F is a closed analytic subset of[U1\ (M \6)] × U ′1.



120 Klas Diederich & Sergey Pinchuk

Proof. (i) Let (wν,w ′ν)∈F with (wν,w ′ν)→ (w0, w ′0)∈ (∂U ∩ U+1 )× Ū ′1 as
ν →∞. For anyν = 1,2, . . . we havef(Qc

wν ) ∈Q′w ′ν . If w ′0 ∈U ′1, we can pass
to the limit and so obtain

f(Qc
w0) ⊂ Q′w ′0.

But this would mean that(w0, w ′0) ∈ F and hence thatw0 ∈ U, a contradiction.
Hence we must havew ′0 ∈ ∂U ′1.

(ii) Let wν ∈U, wν → 0. It is enough to consider the following two cases:

(a) wν ∈U−1 ∪ (6 ∩ U1) for all ν;
(b) wν ∈U+ for all ν.

Sincef is continuous up toM, in the first casef(wν) → 0 and, for anyw ′ν ∈
F̂(wν), we haveQ′w ′ν = Q′f(wν). Since we may assume that the equalityQ′w ′ =
Q ′0′ holds only forw ′ = 0 (w ′ ∈ U ′1), this means thatw ′0 → 0′. Therefore, it
only remains to consider the case when allw ′ν ∈ U+. We havef(Qc

wν ) ⊂ Q′w ′ν
for anyw ′ν ∈ F̂(wν). Suppose thatw ′ν → w ′0 ∈ U ′1; thenQ′w ′ν → Q′

w ′0. Since
wν → 0, also dist(Qc

wν ,0)→ 0. Hence dist(Q′w ′ν ,0
′)→ 0, implying 0∈Q′

w ′0,
and therefore,w ′0 ∈Q′0′ .

(iii) If cl F̂ (0) = {0}, then by (i) we have 0∈ U and hence 0∈ 6, or
dist(0, ∂U ∩ U+1 ) > 0. Thus it remains to consider the case dist(0, ∂U ∩ U+1 ) >
0. We choose a small open neighborhoodŨ1⊂⊂ U1 of 0 such thatŨ+1 ∩ ∂U = ∅.
ThenŨ+1 ⊂ U ; henceU ⊃ Ũ1\ (M \6). We now replaceU1 by Ũ1. The corre-
spondenceF |U+1 is a component of the zero set of a system of pseudopolynomials
with bounded holomorphic functions onU+1 as coefficients. According to the the-
orem of Trépreau, all these coefficients extend holomorphically toU1. The zero
set of the extended system of pseudopolynomials contains a component that is an
extension ofF |U+1 toU1. Since, however,6 ⊂ M is dense, this component must
agree withF + overU−1 , giving thereby an extension ofF over all ofU1 that we
will still call F̂. The projectionπ : F → U1 is again proper. Hence, it follows
from [19] that 0∈6.

(iv) This is a corollary of (i).

5. Extension along Segre Varieties

We now want to study the possible extension off along Segre varieties. For this
we observe the following. For anyw0 ∈ U we can find a neighborhood� =
′� × �n ⊂⊂ U of w0 and a neighborhoodV ⊂ U1 of Qw0 ∩ U1 such that, for
z∈V, the intersectionQz ∩� is connected and nonempty. For such a pair(�,V )

we define

F̃ := F̃(w0, �,V ) := {(z, z ′)∈V × U ′1 : F̂(Qz ∩�) ⊂ Q′z ′ }. (5.1)

Such a construction also has been used in [31].

Lemma 5.1. The setF̃ is analytic inV × U ′1, anddim F̃ ≤ n.
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Proof. Notice thatζ ∈Qz ∩ � iff ρ(ζ, z̄) = 0 and′ζ ∈ ′�. This is again equiva-
lent toζn = h(′ζ, z̄) and′ζ ∈ ′�. Furthermore, forF̂ defined as in Section 4 (after
Lemma 4.4) we havêF(ζ) ⊂ Q′z ′ iff ρ ′(ζ ′, z̄ ′) = 0 for all ζ ′ ∈ F̂(ζ). Finally,
ζ ′ ∈ F̂(ζ) iff (ζ, ζ ′)∈F. We putt ′ := ζ̄ ′ and consider

A := {(z, z ′, t ′)∈V × U ′1× U ′∗1 : ρ ′(t̄ ′, z̄ ′) = 0, (′ζ, h(′ζ, z̄), t̄ ′)∈F ∀′ζ ∈ ′�}.
(HereU ′∗1 means the set of all conjugates of points inU ′1.) The setA is analytic
because it is locally defined by a holomorphic family of equations (after conju-
gation). Letj : (z, z ′, t ′)→ (z, z ′) be the natural projection. We obviously have
j(A) = F̃. Since� ⊂⊂ U, the projectionj : A → V × U ′1 is proper. Namely,
ζ ∈ � implies ζ ′ ∈ F̂(�) ⊂⊂ U ′1 andt ′ ∈ F̂(�)∗ ⊂⊂ U ′∗1 . ThusF̃ = j(A) is an
analytic set inV × U ′1, since it is obviously closed inV × U ′1. We claim that
dim F̃ ≤ n. Notice for this that the set

α := {z∈V : Jf |(Qz ∩�) ≡ 0} (5.2)

(defined similarly as in (4.2)) is discrete for the same reasons as for the set from
(4.2), and we havẽF ⊂ (α × U ′1) ∪ (F̃ ∩ π−1(V \ α)). The first partα × U ′1 has
dimensionn. Furthermore,π : F̃ → V is locally proper overV \ α, since in this
situationF̂(Qz ∩�) has dimensionn− 1 and hence there are only finitely many
possible pointsz ′ with F̂(Qz ∩ �) ⊂ Q′z ′ . Therefore, the dimension of the sec-
ond partF̃ ∩ π−1(V \ α) ≤ n. Together, then, we have dim̃F ≤ n.
We now assume additionally thatsw0 ∈ U. Then, by Lemma 4.9, the setsF and
F̃ coincide near the points of the form(sw0, w ′0) with w ′0 ∈ F̂(sw0). We delete
from F̃ those components that do not contain at least one of these points and de-
note the new analytic set again byF̃. Then dimF̃ ≡ n. By the uniqueness theorem
we now have the following lemma.

Lemma 5.2. If (w0, z0) is a pair of reflection, theñF = F̃(w0, �,V ) contains
F near every point(z0, z ′0)∈F.
Proof. Let (z, z ′)∈F with z∈�(z0) and takew ∈Qz ∩�(w0). Thenz∈Qw ∩
�(z0) andF̂(Qw ∩�(z0)) ⊂ Q′

F̂(w)
. By Lemma 4.9 we havêF(Qz∩�(w0)) ⊂

Q′
F̂(z)
= Q′z ′ . Hence(z, z ′)∈ F̃.

As an immediate consequence we obtain our next result.

Corollary 5.3. In the situation of Lemma 5.2, after deleting low-dimensional
components from̃F one hasdim F̃ = n andF̃ ⊃ F ∩ (V ×U ′1). More precisely,
F ∩ (V × U ′1) is the union of suitable irreducible components ofF̃ ∩ (V × U ′1).
Let w0, �,V, F̃ be as before and suppose that(w0, z0) is a pair of reflection
with z0 ∈ 6 = M ∩ U. Let us denote byS(w0, z0) the irreducible component
of F̃ ∩ [(Qw0 ∩ U1)× U ′1] containing the germ of the graph off at (z0, f(z0)).

Obviously,S(w0, z0) does not depend on the choice of� or V and is an analytic
set of dimensionn−1 in (Qw0 ∩ U1)× U ′1.
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Lemma 5.4. Let (w0, z0) be a pair of reflection withz0 ∈6. Then:

(i) S(w0, z0) ⊂ [(U1∩Qw0)× (U ′1×Q′F̂(w0)
)] ∩ F ;

(ii) S(w0, z0) is an analytic set in(U1∩Qw0)×(U ′1∩Q′F̂(w0)
) andπ(S(w0, z0))∩

(M \6) = ∅;
(iii) the projectionπ : S(w0, z0)→ π(S(w0, z0)) ⊂ U ∩Qw0 is proper.

Remark 5.5. We do not claim that the projectionπ : S(w0, z0)→ U1∩Qw0 is
proper.

Proof of Lemma 5.4.Part (i) follows immediately from the uniqueness theorem,
Lemma 5.2, and̂F(Qw0 ∩�(z0)) ⊂ Q′

F̂(w0)
. Part (ii) follows from (i), Corollary

5.3, and Lemma 4.10(iv). Part (iii) follows from the properness ofπ : F → U.

The setS(w0, z0) may be considered as the maximal analytic continuation of the
germ of the graph off at (z0, f(z0)) alongQw0 ∩ U1. From Lemma 4.9 and the
definitions ofF̃ andS(w0, z0), the next lemma follows immediately.

Lemma 5.6. For anyz∈π(S(w0, z0)), the point(w0, z) is a pair of reflection.

We remind the reader of the following notation.

Definition 5.7. LetAν be a sequence of (closed) subsets of a domainD ⊂ Cn
(orRn). We define

cl(Aν) := {z∈D : ∃zν ∈Aν : z is a point of accumulation of(zν)}.
Next we want to show holomorphic extendability of our mapf : M → M ′ in
certain points inM by studying cluster sets of sequences of certain sequences
S(wν, zν).

Proposition 5.8. Let (wν, zν) ∈ U × 6 be a sequence of pairs of reflection
and choosew ′ν ∈ F̂(wν). Assume that(wν, zν) → (0,0) andw ′ν → w ′0 ∈U ′1.
Suppose, furthermore, that the cluster setS := cl(S(wν, zν)) contains a point
(ζ 0, ζ ′0)∈U1× U ′1 with ζ0 ∈U. Then0∈6.
Proof. Let (ζ ν, ζ ′ν) ∈ S(wν, zν) be chosen such thatζ νµ → ζ 0 andζ ′νµ → ζ ′0
for a certain subsequence(νµ). By Lemmas 4.9 and 5.6,(ζ νµ, wνµ) is a pair of re-
flection for anyµ. Let� ⊂ U andV ⊂ U1 be connected open neighborhoods of
ζ 0 andQζ0 ∩ U1 (respectively) such that, for allw ∈V, the intersectionQw ∩ �
is connected and nonempty. ThenF̃(ζ 0, �,V ) is an analytic set inV ×U ′1. After
shrinkingU1 we haveζ νµ ∈� andQζν(µ)∩U1⊂ V forµ�1, ν(µ)= νµ, and thus
by (5.1)F̃(ζ 0, �,V ) = F̃(ζ νµ,�,V ). By Lemma 5.2, the set̃F(ζ νµ,�,V ) con-
tains the graph off near(zνµ, f(zνµ)) and henceF̃(ζ 0, �,V ) contains(0,0′) =
limµ(z

νµ, f(zνµ)). This means that the graph off extends as an analytic set to a
neighborhood of(0,0′). From the result of [30] it then follows that 0∈6.
Unfortunately, the situation of Proposition 5.8 cannot always be established, since
π(S(wν, zν)) cannot always be shown to be analytic because we do not know thatπ
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is proper on these sets. Therefore, we now begin with the construction of some new
sequences of analytic sets that will, at the end, allow us to overcome this difficulty.

Lemma 5.9. There exist sequences(wν, zν)∈U ×6 andw ′ν ∈ F̂(wν) and ana-
lytic setsσν ⊂ U1 such that:

(1) (wν, zν) is a pair of reflection for anyν;
(2) (wν, zν)→ (0,0);
(3) w ′ν → w ′0 ∈U ′1;
(4) there is an integerp ≥ 1 such that theσν are analytic sets of pure dimen-

sionp;
(5) zν ∈ σν ⊂ π(S(wν, zν)) for all ν.

Proof. Choose an arbitrary sequencezν ∈ 6, zν → 0. If there is a radiusr > 0
such that, for anyν � 1, the setπ(S(zν, zν)) containsQzν ∩B(zν, r), then (after
shrinkingU1) properties (1)–(5) of the lemma are satisfied forwν = zν, w ′ν =
f(zν), andσν = Qzν ∩ U1. Thus we may now assume that there is no such ra-
dius r. This means that, for any (small enough)r ′ > 0, there exists a sequence
(wν,w ′ν)∈ S(zν, zν) such thatwν → 0 andw ′ν → w ′0 with |w ′0| = r ′. The con-
ditionswν = zν andw ′ν = f(zν) of course no longer hold; moreover,wν ∈U+.
By Lemma 4.10(ii) we havew ′0 ∈Q′0′ ∩ U ′1. Sincer ′ > 0 is arbitrary andM ′ is
of finite type, we may assume thatQ′

w ′0 6= Q′0′ . By Lemmas 4.9 and 5.6,(wν, zν)
is a pair of reflection for everyν. We putSν := S(wν, zν).

It remains to show thatπ(Sν) contains an analytic setσν ⊂ U1, z
ν ∈ σν, of some

fixed pure dimensionp ≥ 1. Sincew ′0 ∈Q′0′ we haveQw ′0 3 0′. SinceQ′
w ′0 6=

Q′0′ , there exists a normal coordinate system in the image space such that 0′ is an
isolated point ofQ′

w ′0 ∩ {z ′ : z ′2 = · · · = z ′n = 0}. Hence there exists anε > 0
such that, after shrinkingU ′1, the intersectionq ′0 := Q′

w ′0 ∩{z ′ ∈U ′1 : z ′2 = · · · =
z ′n−1= 0, |z ′n| < ε} has no limit points on∂U ′1. Notice thatq ′0 3 0′ and is an ana-
lytic set of dimension 1 inU ′1∩ {|z ′n| < ε}. Thus, forζ ′ν := f(zν) andν � 1, the
sets

q ′ν := Q′w ′ν ∩ {z ′ ∈U ′1 : z ′k = ζ ′νk for k = 2, . . . , n−1, |z ′n| < ε}
containζ ′ν and are analytic sets of dimension 1 inU ′1 ∩ {|z ′n| < ε} without limit
points on∂U ′1. SinceSν ⊂ (U1∩Qwν ) × (U ′1 ∩Q′w ′ν ) andSν 3 (zν, f(zν)), the
intersections

sν := Sν ∩ {(z, z ′) : z ′k = ζ ′νk for k = 2, . . . , n−1}
are analytic sets of dimension≥ 1 in U1 × (U ′1 ∩ {|z ′n| < ε}). Since the setsq ′ν
have no limit points on∂U ′1, the setssν have no limit points onU1× (∂U ′1∩{|z ′n| <
ε}). By Lemma 4.10, we have clF̂ (0) ⊂ Q′0′ = {z ′n = 0}. Thus, for small enough
U1 3 0, the sν have no limit points onU1 × (U ′1 ∩ {|z ′n| = ε}). This means that,
for ν � 1, the projectionsπ : sν → U1 are proper and the imagesσν := π(sν) are
analytic sets of dimension≥ 1 inU1 with zν ∈ σν.
The following lemma, which is now easy to show, is crucial for our further
considerations.
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Lemma 5.10. Letwν, zν, w ′ν, σν be sequences with all the properties stated in
Lemma 5.9. Assume that0∈M \6. Thencl(σν) ⊂ M \6.
Proof. Suppose there is a pointζ 0 ∈ cl(σν)∩ (U1\(M \6)). By Lemma 5.9 there
is a sequence(wν, zν)∈U ×6 with (wν, zν)→ (0,0) and a sequence(ζ ν, ζ ′ν)∈
Sν = S(wν, zν) with ζ ν ∈ σν such thatζ ν → ζ 0, ζ ′ν → ζ ′0 ∈ U ′1. Sinceζ ν ∈ U
we haveζ 0 ∈ Ū ∩ U1. But sinceζ 0 /∈M \ 6, Lemma 4.10 impliesζ ′0 ∈ ∂U ′1, a
contradiction.

6. Final Steps for Proving Theorems 1.2 and 1.4

What must still be done in order to finish the proofs of Theorems1.1, 1.2, and 1.4?
Let us suppose that, in the situation introduced at the beginning of Section 2, there
is a pointa ∈M \6 left. Using Lemma 5.10, we shall derive a contradiction.

Notice that this would be done if the following conjecture were known to have
a positive answer.

Conjecture 6.1. LetN ⊂ W ⊂ Cn be a real-analytic CR manifold of finite type
in the sense that there are no complex-analytic germs of positive dimension inN,

and letAν ⊂ W be closed complex-analytic sets of pure fixed dimensionp ≥ 1.
Thencl(Aν) " N.

Unfortunately, this important conjecture is in general open. It amounts to hav-
ing a kind of more global uniform Lojaziewicz inequality. One of the difficulties
with Conjecture 6.1arises because cl(Aν) need not contain any even1-dimensional
complex-analytic germ, as examples of Wermer [35] and Stolzenberg [32] show.
(If this were the case then Lemma 5.10—together with the fact thatM is of finite
type—would give a contradiction.)

However, under suitable extra hypotheses onN, the conjecture can be proved.
This is, for instance, the case if the pointa ∈N is a peak point for the restriction to
N of continuous plurisubharmonic functions onW. Then the maximum principle
for plurisubharmonic functions will yield the desired conclusion. We will use this
to bring the proof of Theorem 1.2 to a quick end. The same strategy together with
a small additional argument can also be used to finish the proof of Theorem 1.4.

For proving the general Theorem1.1, a newstrategy will have to be used. It is re-
lated to the theorem of Bishop [9], which states that any sequence of analytic sets
Aν of purep dimension (as considered in Conjecture 6.1) contains a subsequence
converging to a complex-analytic set of dimensionp if, for any relatively com-
pact subsetV ⊂⊂ W, the 2p-dimensional area ofAν ∩V is uniformly bounded in
ν. Namely, we will prove in Section 7 a newcriterion for uniform area bounded-
ness of certain sequences of analytic sets. Later in the article we will replace the
sequences(σν) from Lemma 5.9 by new sequences with sufficiently large dimen-
sions for which we can then prove a variant of Conjecture 6.1. The details needed
to carry out this strategy will, however, still be considerable.

We now come to the proofs of Theorems 1.2 and 1.4. First we introduce the
following simple way of speaking.
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Definition 6.2. LetU ⊂ Cn be an open set, leta ∈ U, and leta ∈ B ⊂ U be
a closed subset. SupposeAν ⊂ U are closed complex-analytic subsets of pure
dimensionp ≥ 1. We say that the sequence(Aν) clusters alongB at a if a ∈
cl(Aν) ⊂ B.
Lemma 6.3. Suppose that, for a pointa ∈B ⊂ U, there is a continuous plurisub-
harmonic functionϕ ∈ PSH(U) such thatϕ(a) > ϕ(z) for all z ∈ B \ {a}. Let
(Aν) be a sequence of closed complex-analytic subsets ofU of pure dimension
p ≥ 1. Then(Aν) does not cluster alongB at a.

Proof. Suppose(Aν) were to cluster alongB ata, and fix an open neighborhood
W ⊂⊂ U of a. ThenAν ∩ ∂W 6= ∅ for all ν and hence cl(Aν) ∩ ∂W 6= ∅.
Therefore alsoB ∩ ∂W 6= ∅. One has sup{ϕ(z) : z ∈ B ∩ ∂W } < ϕ(a). Hence,
because of the continuity ofϕ, there is a sufficiently small open neighborhoodV
of B ∩ ∂W so thatc := sup{ϕ(z) : z ∈V } < ϕ(a). Next we can choose an open
neighborhoodV1 of a such thatϕ(z) > c onV1. Note, however, that forν suffi-
ciently large,Aν ∩ ∂W ⊂ V andAν ∩ V1 6= ∅. But this is a contradiction to the
maximum principle applied to the plurisubharmonic functionϕ|Aν.
It is now important to observe for whichB as in Lemma 6.3 the required plurisub-
harmonic peak functionsϕ are known to exist. Here is a list of the most important
cases.

Proposition 6.4. Leta ∈B ⊂ U be a closed subset. Then there is a continuous
plurisubharmonic peak functionϕ onU with ϕ(a) > ϕ(z) for all z ∈ B \ {a} in
each of the following cases:

(1) B is aC2-smooth strictly pseudoconvex hypersurface;
(2) B is a smooth totally real submanifold;
(3) B is aC∞-smooth pseudoconvex hypersurface of finite type.

Proof. The cases of strictly pseudoconvex hypersurfaces and of totally real man-
ifolds are well known and easy. IfB is aC∞-smooth pseudoconvex hypersurface
then, according to Catlin [10],B is B-regular. (IfB is even aCω-smooth hyper-
surface, this result was first shown in [14] together with [13].)

Corollary 6.5. LetB ⊂ U ⊂ C2 be aCω-smooth hypersurface of finite type.
Then Conjecture 6.1 holds forN = B.
Proof. According to Proposition 6.4(2) and (3), the conjecture holds if the point
a lies in either the pseudoconvex or the pseudoconcave region ofB. So it remains
to consider the case wherea is a point of degeneracy of the Levi formLB of B.
The setE of these points, however, is itself real-analytic and can (inC2) be strat-
ified by totally real manifolds of dimensions 2, 1, and 0. If we now assume that
cl(Aν) ⊂ B then, fora ∈ E, the set cl(Aν) must lie inE because otherwise we
can move on cl(Aν) to a point in the pseudoconvex or pseudoconcave region. By
the same argument, we can then work our way down the strata ofE.
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We now want to apply these considerations on special cases of Conjecture 6.1 to
the holomorphic extendability of CR mapsf : M → M ′ under the hypotheses
of Theorem 1.2 and Theorem 1.4. From Lemma 5.10 and Lemma 6.3 applied to
Aν := σν andB := M, we immediately obtain the following technical result.

Proposition 6.6. Let a ∈ B := (M \ 6) be arbitrary. Then there is no open
neighborhoodU of a with a continuous plurisubharmonic functionϕ onU such
that ϕ(a) > ϕ(z) for all z∈B \ {a}.
Proof. Lemma 5.10 tells us that necessarilya ∈ cl(σν) ⊂ B. According to
Lemma 6.3, however, this is impossible.

The proofs of Theorem 1.2 and Theorem 1.4 are now obvious.

Proof of Theorem 1.2.SinceM is supposed to beCω-smooth, pseudoconvex, and
of finite type, there are (by Proposition 6.4) plurisubharmonic peak functions for
everya ∈M. Hence, according to Proposition 6.6, the set6 must be all ofM.

Proof of Theorem 1.4.We putM := ∂D andM ′ := ∂D ′. Then all considerations
of this article apply tof |M : M → M ′. Notice, however, that in this case the set
E := M \ 6 ⊂ M is compact. Let us assume that it is nonempty. Then we can
choose a suitable origin of a global coordinate system and take as pointa ∈E the
(unique) point onE of farthest distance from this origin. The functionϕ(z) :=
|z|2 is a plurisubharmonic peak function as needed fora ∈E. This is a contradic-
tion to Proposition 6.6.

7. A Convergence Theorem for Families of Analytic Sets

As explained at the beginning of Section 6, we will need a criterion telling us when
certain sequences of complex-analytic sets contain convergent subsequences with
complex-analytic sets as limit sets. We published our result in this direction in
[20]. For the convenience of the reader and the completeness of this article, we
repeat the proof here.

In general, the cluster set of a sequence of analytic subsetsAν ⊂ U of dimen-
sionp > 0 (U ⊂ Cn open) need not contain a germA of an analytic subset of
positive dimension—even if allAν pass through a fixed pointz0 ∈ U. This can
already happen in codimension 1 and if allAν are of the formAν = {z ∈ U :
gν(z) = 0} for suitable holomorphic functionsgν 6= 0 with gν → 0 onU. For
examples see [35] and [32].

Probably the most important positive result in this direction is the theorem of
Bishop (see [9] and also [11, Thm. 15.5]), which can be formulated in the follow-
ing way.

Theorem 7.1. LetAν ⊂ U be a sequence of purep-dimensional analytic sub-
sets of a complex manifoldX converging to some setA ⊂ X and such that, for
any compact subsetK ⊂ X, there exists a constantMK ≥ 0 with
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vol2p(Aν ∩K) ≤ MK

for all ν. ThenA is also a purep-dimensional analytic subset ofX.

Theorem 7.1 immediately implies the following.

Corollary 7.2. Let Aν ⊂ U be a sequence of purep-dimensional analytic
subsets of a complex manifoldX with locally uniformly bounded2p-dimensional
Hausdorff measures:

vol2p(Aν ∩K) ≤ MK ∀ν
for a suitable constantMK associated to an arbitrary compact subsetK ⊂ U. Then
we can extract a subsequence from(Aν) converging inU to a purep-dimensional
analytic subsetA ⊂ U or to ∅.
For the convenience of the reader, we formulate here explicitly what is meant by
saying that the sequence(Aν) converges to the setA.

Definition 7.3. We say that a sequence of subsetsEj ⊂ U converges to a set
E ⊂ U if (a) E consists exactly of all the limit points of convergent sequences
(xνj ) with xνj ∈Eνj and (b) for any compact subsetsK ⊂ E and anyε > 0, there
exists an indexν(ε,K) such thatK belongs to theε-neighborhood ofEν in U for
all ν > ν(ε,K).

The goal of this paper is to show that a strong analogue of Montel’s theorem holds
for families of analytic setsAw ⊂ U depending holomorphically on a parameter
w ∈V ⊂ Cm. Precisely speaking, our result will be as follows.

Theorem 7.4. Let U ⊂ Cn and V ⊂ Cm be open sets, and letgj(z, w) ∈
O(U × V ) for j = 1, . . . , k with a positive integerk ≤ n. For w ∈V, put

Aw := {z∈U : gj(z, w) = 0 for j = 1, . . . , k}.
LetE := {w ∈ V : dimCAw > n − k}. Then, for anyŨ ⊂⊂ U and Ṽ ⊂⊂ V,
there exists a constantc = c(Ũ, Ṽ ) > 0 such that

vol2(n−k)(Aw ∩ Ũ ) < c

for all w ∈ Ṽ \ E. In particular, we can extract from any sequence(Awν ), wν ∈
Ṽ \E, a subsequence converging inU to an analytic subsetA of pure dimension
n− k. (Observe that the sequence(wν) might converge to a point inE.)

Remark 7.5. (a) Theorem 7.4 is in some sense purely local so that it easily ex-
tends to open subsetsU,V of complex manifolds.

(b) For the proof of Theorem 7.4, we may assume thatU,V are polydiscs cen-
tered at 0 and thatgj(0,0) = 0 for all j = 1, . . . , k.

In Section 7.1 we will first show a crucial lemma that is equivalent to Theorem 7.4
in the casek = 1. In Section 7.2, we generalize this lemma to arbitrary codimen-
sion. The proof of Theorem 7.4 will then be given in Section 7.3 using the lemma
from Section 7.2.
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7.1. A Lemma in Codimension 1

The casek = 1 of Theorem 7.4 is equivalent to the following lemma.

Lemma 7.6. LetU ⊂ Cn andV ⊂ Cm be polydiscs centered at0. Letg(z,w)∈
O(U × V ) be a function such thatg(z,0) ≡ 0 and

g(z,w) =
∑
p

αp(w)z
p.

Suppose that there is a sequence(wν) ⊂ V, wν → 0, and thatg(z,wν) 6≡ 0 for
all ν. Then there exist a multiindexl = (l1, . . . , lm), an open neighborhood̃V of
0∈Cn, a holomorphic maph : Ṽ → V, and a sequence(w̃ν) ⊂ Ṽ, w̃ν → 0, such
that (after possibly passing to a subsequence)

(1) wν = h(w̃ν) for all ν,
(2) βp(w̃) := αp(h(w̃))/αl(h(w̃))∈O(Ṽ ) for all p, and
(3) g̃(z, w̃) :=∑p βp(w̃)z

p ∈O(U × Ṽ ).
In particular, sincebl(w̃) ≡ 1, it follows thatg̃(z,0) 6≡ 0.

Proof. After shrinking the polydiscV a little bit, we have in particularαp ∈O(V̄ )
for all p. Because (according to a theorem of Frisch and Siu) the ringO(V̄ ) is
Noetherian, the idealI ⊂ O(V̄ ) generated by the functionsαp is spanned as an
ideal by finitely many of them. Sinceg(z,0) ≡ 0 we conclude from this that there
is a positive integers such that, for each multiindexp, we have a representation
of the form

αp(w) =
∑

1≤|j |≤s
hpj(w)αj(w) (7.1)

on V̄ with holomorphic functionshpj ∈O(V̄ ).
After passing to a subsequence of(wν), there is a multiindexl with |l| ≤ s such

that
|αj(wν)| ≤ |αl(wν)| ∀ν, ∀|j | ≤ s. (7.2)

From (7.1) and (7.2) weobtain that, for allp,

|αp(wν)|
|αl(wν)| ≤ Cp ∀ν (7.3)

for suitable constantsCp > 0. Since, moreover,αl(0) = 0, it follows from (7.3)
that 0 is a point of indeterminacy of the meromorphic functionsαp/αl for all p.

Let j1, . . . , jN be any numbering of the multiindicesj with |j | ≤ s. We put

α̂(w) :=
(
αj1

αl
, . . . ,

αjN

αl

)
: V → (P1)N

as a meromorphic map andA := {w ∈ V : αl(w) = 0}. Thenα̂ is holomorphic
onV \ A and the graph0α̂ ⊂ V × (P1)N of the meromorphic map̂α is given by

0α̂ = {(w, ξ)∈ (V \ A)× (P1)N : ξ = α̂(w)},
which is a complex-analytic subset ofV × (P1)N of dimensionn. We denote by
π1 : 0α̂ → V the projection to the first coordinate and byπ2 : 0α̂ → (P1)N the
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projection to the second coordinate. Both are, of course, holomorphic maps. By
(7.3) we may assume, after passing again to a subsequence of(wν), that

lim
ν→∞ α̂(w

ν) = ĉ = (ĉ1, . . . , ĉN )∈CN.
In general, the graph0α̂ will be singular atπ−1(A). Yet according to the Hiro-

naka theorem there is a neighborhoodV̂ of (0, ĉ) ∈ 0α̂ and a complex manifold
X of dimensionm together with a proper holomorphic mapσ : X→ V̂ such that
σ|σ−1 B π−1

1 (V \ A) : σ−1 B π−1
1 (V \ A)→ π−1

1 (V \ A) is biholomorphic. After
passing again to a subsequence we find a convergent sequencew̃ν ∈X, w̃ν → x,

with σ(w̃ν) = (wν, α̂(wν)). Henceσ(x) = (0, ĉ). Let Ṽ be a small coordinate
neighborhood ofx onX with x = 0. Call the coordinates̃w. On Ṽ we define the
maph(w̃) := π1 B σ(w̃) : Ṽ → V. It is holomorphic:h(0) = 0 andh(w̃ν) = wν.
Next we define the holomorphic map

β̂(w̃) := π2 B σ(w̃). (7.4)

On (π1 B σ)−1(V \ A) ∩ Ṽ we have

β̂(w̃) = α̂(h(w̃)) (7.5)

and β̂(0) = ĉ ∈ CN, so we may assume thatβ̂ : Ṽ → W(ĉ) ⊂ CN, an open
neighborhood of̂c. Hence all componentŝβi(h(w̃)), i = 1, . . . , N, are holomor-
phic functions onṼ. Together with (7.1) it follows that, for all multiindicesp,

βp(w̃) := αp(h(w̃))

αl(h(w̃))

may be considered as holomorphic functions onṼ. This proves Lemma7.1.

7.2. A Lemma in Arbitrary Codimension

Lemma 7.7. Let U ⊂ Cn and V ⊂ Cm be polydiscs centered at0, and let
gj(z, w) ∈ O(U × V ), j = 1, . . . , k for somek ≤ n, be holomorphic functions
with gj(0,0) = 0. Let (wν)∞ν=1 ⊂ V be a sequence withwν → 0 and put

Aν := {z∈U : gj(z, w
ν) = 0 ∀j = 1, . . . , k}.

Assume thatAν ⊂ U is an analytic set of pure dimensionn − k for all ν. Then
there exists a subsequence of(wν), which we again denote by(wν), such that
(Aν) converges to an analytic subsetA ⊂ U of pure dimensionn− k. Moreover,
there exist a holomorphic coordinate system inCn with the same origin, a polydisc
U1 ⊂⊂ U with center0, a neighborhoodṼ ⊂ Cm of the origin, a holomorphic
maph : Ṽ → V, a sequence(w̃ν) ⊂ Ṽ, w̃ν → 0, and holomorphic functions
g̃j (z, w̃)∈O(U1× Ṽ ) such that:

(1) h(w̃ν) = wν;
(2) for eachj = 1, . . . , k, the functiong̃j is a polynomial inzj with coefficients

holomorphic inzj+1, . . . , zn, w̃ and leading coefficient1;
(3) Aν ∩ U1 ⊂ {z ∈U1 : g̃j (z, w̃ν) = 0 ∀j = 1, . . . , k} =: Ãν for all ν andÃν is

of pure dimensionn− k;
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(4) A0 := {z ∈ U1 : g̃j (z,0) = 0 ∀j = 1, . . . , k} is an analytic set inU1 of pure
dimensionn− k; and

(5) A0 ⊃ lim(Aν ∩ U1)—in particular, this limit exists.

Remark 7.8. In general we do not haveAν = Ãν in Lemma 7.7(3), because
we pass at a certain step of the following proof to a resultant of two pseudopoly-
nomials that might add some additional roots.

Proof of Lemma 7.7.The proof is given by induction overk. Namely, fork = 1
the claim follows from Lemma 2.1. By the induction hypothesis we then may as-
sume that, forj = 1, . . . , k − 1, thegj are already Weierstraß polynomials inzj
with coefficients holomorphic inzj+1, . . . , zn, w. We put

A′ν := {z∈U : gj(z, w
ν) = 0 ∀j = 1, . . . , k −1} ∀ν,

A′0 := {z∈U : gj(z,0) = 0 ∀j = 1, . . . , k −1},
and we have

Aν ⊂ A′ν ∩ {z∈U : gk(z, w
ν) = 0}. (7.6)

TheA′ν are analytic sets inU of pure dimensionn− k + 1 andA′0 = lim A′ν . By
Lemma 2.1 we may also assume thatgk(z,0) 6≡ 0. Since the analytic sets

A′ν ∩ {z∈U : gk(z, w
ν) = 0}

are of pure dimensionn − k, the functionsgk(·, wν)|A′ν are not identically 0 for
anyν.

Replacinggk by gk+g1 if necessary, we may assume thatgk(z1,0, . . . ,0) 6≡ 0.
After that we replacegk by the resultant ofg1 and the Weierstraß polynomial ofgk
(with respect toz1). The newgk is obviously holomorphic inU × V (with possi-
bly smallerU 3 0) and does not depend onz1. At the same time, (7.6) still holds.
After repeating this procedure consecutively forz2, . . . , zk−1,we obtain a function
holomorphic inU × V, again denoted bygk, that does not depend onz1, . . . , zk−1

and for which (7.6) holds.
Finally, we apply Lemma 2.1to thisgk and obtain a holomorphic maph : Ṽ → V,

a sequencẽwν ∈ Ṽ, and a functioñgk ∈O(U × Ṽ ) such thath(w̃ν) = wν and

Aν ⊂ A′ν ∩ {z∈U : g̃k(z, w̃ν) = 0}.
Sinceg̃k(zk, . . . , zm,0) 6≡ 0, the analytic set

A0 := A′0 ∩ {z∈U : g̃k(z,0) = 0}
is of pure dimensionn−k.After an appropriate change in the variableszk, . . . , zn,

we can replacẽgk by its Weierstraß polynomial inzk. Thus limAν exists and is
the union of some components ofA0.

In order to finish the proof of the lemma, it only remains to show that limAν is
an analytic set in the whole domainU ⊂ Cn. However, the preceding arguments
can be applied to an arbitrary point in limAν. Hence limAν is an analytic set of
pure dimensionn − k in a neighborhood of each of its points. At the same time,
lim Aν is closed inU.
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7.3. Proof of Theorem 7.4

Note that Theorem 7.4 is purely local. We may assume that 0∈ U, 0 ∈ V, and
V \ E 6= ∅. Furthermore, we need only consider the case 0∈ E. It then suffices
to show that, for any sequence(wν) ⊂ V \ E with wν → 0, there is a constant
c > 0 such that

vol2(n−k)(Awν ∩ Ũ ) < c.

Observe that it is enough to consider the situation wheregj(0,0) = 0. We put

Aν := {z : gj(z, w
ν) = 0}

and, after applying Lemma 7.7, we obtain new coordinatesw̃ (instead ofw) as
well as holomorphic functions̃gj(z, w̃)∈O(U1× Ṽ ) such that

Aν ⊂ {z : g̃j (z, w̃
ν) = 0 ∀j = 1, . . . , k}.

As in Lemma 7.7, we put

A0 := {z : g̃j (z,0) = 0 ∀j = 1, . . . , k};
we know thatA0 is a purely(n−k)-dimensional analytic set with the property that
the projectionπ ′ : Cn → Cn−k with π ′(z1, . . . , zn) := (zk+1, . . . , zn) is locally
proper onA0 near 0. As before, the limit limAν is the union of some irreducible
components ofA0 and thus is an analytic set of pure dimensionn− k. After an ar-
bitrarily small change of coordinates, we even have that, for any(n−k)-tupleI =
(i1, . . . , in−k) with 1 ≤ i1 < · · · < in−k ≤ n, the projectionπI : (z1, . . . , zn) →
(z11, . . . , zi(n−k) ) is locally proper onA0 near 0. Because of the analyticity of our
familyAw,Rouché’s theorem then implies that there existM > 0 andN > 0 such
that, for all multiindicesI as described previously and for allν ≥ N, the projec-
tionsπI : Aν → Cn−kI have local multiplicities≤ M near 0. Hence, the Wirtinger
theorem implies

vol(Aν ∩ Ũ ) ≤ c ∀ν ≥ N
for a suitable constantc > 0. This finishes the proof of the theorem.

8. Conjecture 6.1 for Large Dimensions

In Lemma 5.9 we constructed for anya ∈ M \ 6 a neighborhoodV 3 a and a
sequenceσν ⊂ V of analytic sets such that

(i) dim σν = p ≥ 1,
(ii) a ∈ cl(σν), and

(iii) cl (σν) ⊂ E := M \6 ⊂ M.
In order to finish the proof of Theorem 1.1 it therefore suffices to show that, for
any sequenceσν ⊂ V of analytic sets satisfying (i) and (ii), condition (iii) can not
be satisfied. (Then it follows thatM = 6.) This statement can easily be shown
for the casep = n−1. However, from Lemma 5.9 we know only thatp ≥ 1.

Our goal is thus to establish for which dimensionsp ≥ 1 we really can exclude
(iii); then we can refine the construction of Lemma 5.9 in order to obtain analytic
setsσν with sufficiently large dimensionp.
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The following result of Tumanov [33] will give us lower estimates for thosep

that still allow us to exclude condition (iii).

Theorem 8.1 (Tumanov). LetN ⊂ U ⊂ Cn be a closed real-analytic subman-
ifold of finite type of an open setU. ThenN can be stratified asN = ⋃m

j=1Nj
such that each stratumNj is a real-analytic CR manifold and locally is contained
in a Levi nondegenerate real real-analytic hypersurface.

We need to apply this to a situation somewhat more general than our given hyper-
surfaceM from Theorem1.1. Namely, we suppose thatN ⊂ V ⊂ Cn is a closed
real-analytic submanifold, pick ana ∈N, and assume that there is a sequence of
closed analytic setsσν ⊂ V such that

(i) dim σν ≡ p ≥ 1,
(ii) a ∈ cl(σν), and

(iii) cl (σν) ⊂ N.
Proposition 8.2. LetN anda be as before and suppose thatσν ⊂ V ⊂ Cn is a
sequence of analytic sets satisfying the conditions(i) and (ii) just stated withp ≥
n/2. Thencl(σν) " N.

Proof. Consider Tumanov’s stratification ofN and rewrite it in the formN =⋃2n−1
j=1 Nj,whereNj is the union of all strata of dimensionj from Tumanov’s orig-

inal stratification. EachNj is locally contained in a real-analytic hypersurfaceM̃j

with nondegenerate Levi form. Assume that cl(σν) ⊂ N and letj0 be the largest
index such that cl(σν) ∩ Nj 6= ∅. Then cl(σν) ∩ Nj0 6= ∅, but cl(σν) ∩ Nj = ∅
for all j > j0. We pick a pointb ∈ cl(σν) ∩ Nj0. After replacingV by a small
neighborhoodV1 of b, we will have

cl(σν) ∩ V1⊂ Nj0 ∩ V1⊂ M̃j0 ∩ V1. (8.1)

Without loss of generality, we may assume hereafter thatb = 0 andb ∈ σν for all
ν (this is the case after small translations ofσν that do not destroy property (8.1)
and follows from the fact thatb = 0∈ cl(σν)).

SinceM̃j0 has a nondegenerate Levi form, there exists a complex linear sub-
spaceL3 0 of dimensiond ≥ (n+1)/2 such thatL is transversal toM̃j0 at 0 and
L ∩ M̃j0 is a strictly pseudoconvex hypersurface inL near 0. For̃σν := σν ∩Lwe
have

(1) σ̃ν 3 0,
(2) dim(σ̃ν) ≥ 1 at 0, and
(3) cl(σ̃ν) ⊂ M̃j0 ∩ L.
This, however, contradicts Lemma 6.3 and Proposition 6.4(1).

The next statement generalizes the previous proposition.

Proposition 8.3. LetV ⊂ Cn be an open set,N ⊂ V a Cω real hypersurface
of finite type,A ⊂ V an analytic set of dimensionp ≥ 1, and (σν) a sequence of



Regularity of Continuous CR Maps in Arbitrary Dimension 133

analytic sets inV of pure dimensionp1 ≥ p/2. Suppose that∅ 6= cl(σν) ⊂ A.
Thencl(σν) " N.

Proof. We stratifyA in the formA = A0 ∪ A1 ∪ · · · ∪ Ap, where eachAd is a
complex manifold of dimensiond. Since cl(σν) ∩A 6= ∅ we have cl(σν) ∩Ad 6=
∅ for somed. Without loss of generality we may assume that cl(σν) ∩Ap ∩N 6=
∅. LetAp ∩N = N0 ∪N1 ∪ · · · ∪N2p−1 be a stratification of the real-analytic set
Ap ∩N such that eachNj is a real-analytic manifold of dimensionj, let j0 be the
largest index such that cl(σν) ∩ Nj0 6= ∅, and leta ∈ cl(σν) ∩ Nj0. Furthermore,
choose a holomorphic projectionπ : V → Ap after possibly shrinkingV 3 a.
Thenπ : V ∩ σν → Ap is proper forν � 1 and soσ̃ν := π(σν) ⊂ Ap are ana-
lytic sets of pure dimensionp. Since cl(σν) ⊂ Ap ∩ V (we shrinkV ), we also
have cl(σν) = cl(σ̃ν) ⊂ Ap. BecauseNj0 is a real-analytic manifold of finite type,
Proposition 8.2 tells us that cl(σν) = cl(σ̃ν) " Nj0 neara. Sincej0 was chosen to
be maximal, it follows that cl(σν) " N.

9. Intersections of Segre Varieties

In this section we study intersection properties of Segre varieties of a closed real-
analytic smooth real hypersurfaceM ⊂ W ⊂ Cn of finite type. We may assume
that 0∈M and set up the machinery needed for the Segre varieties as in Section 2.
(We will later apply what we do here to the target manifoldM ′ of Theorem1.1.)

We introduce the following polarization process.

Definition 9.1. Let 0∈ S ⊂ Q0 ∩ U1 be an arbitrary subset. The set

S ∗ := {w ∈Q0 ∩ U1 : Qw ⊃ S}
is called thepolarizationof S.

Lemma 9.2. The polarizationS ∗ of S can be characterized as

S ∗ =
⋂
z∈S
Qz ⊂ Q0.

Proof. Notice thatw ∈ S ∗ iff Qw ⊃ S. This means thatz ∈ Qw for all z ∈ S,
which is equivalent to havingw ∈Qz for all z ∈ S. This, however, is the same as
w ∈⋂z∈S Qz.

We have the following consequence.

Corollary 9.3. The polarizationS ∗ ⊂ Q0 ∩ U1 is a complex-analytic set.

Next we define the Segre completion of a setS ⊂ Q0.

Definition 9.4. Let 0∈ S ⊂ Q0 ∩ U1 be an arbitrary subset and let

IS := {S̃ ⊂ U1 : S̃ is closed complex-analytic withS ⊂ S̃}.
The analytic set
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Ŝ :=
⋂
S̃∈IS

S̃

is called theSegre completionof S.

Lemma 9.5. One always hasS ⊂ Ŝ and Ŝ ∩ S ∗ ⊂ M.
Proof. The fact thatS ⊂ Ŝ is obvious. Next, takew ∈ Ŝ ∩ S ∗. ThenQw ⊃ S

and hence, according to the definition ofŜ, we have that evenQw ⊃ Ŝ 3w. This
showsw ∈M.
SinceM is supposed to be of finite type, we obtain the following.

Corollary 9.6. After possibly shrinkingU1 3 0, we haveŜ ∩ S ∗ = {0} and
hence

dim Ŝ + dimS ∗ ≤ n− 1.

In particular: If S contains a germ of a complex-analytic set at0 of dimensionp,
thendimS ∗ ≤ n− p − 1.

We now come to a more specific study of intersections of Segre varieties. For this
we assume again that 0∈ S ⊂ Q0 ∩U1 is a closed subset and denotem := dim Ŝ.
Furthermore, for anyk-tuple(w1, . . . , wk) of points inS we define

qk :=
k⋂
j=1

Qwj , q̃ k := qk ∩Q0. (9.1)

Lemma 9.7. Suppose thek-tuple(w1, . . . , wk) of points fromS has been chosen
in such a way that

dim0(Ŝ ∩ qk) = m− k.
Then, for every irreducible componentq# of qk at 0,

dim0(q
#) = n− k and dim0(q̃

k) = n− k − 1. (9.2)

Proof. Obviously dimq# ≥ n − k. In order to show that dimqk = n − k, we
choose an irreducible componentŜ # 3 0 of Ŝ of dimensionm. If dim q# > n− k
then one also has dim(Ŝ # ∩ q#) > m − k. This, however, contradicts the choice
of thek-tuple(w1, . . . , wk), which was done in a such a way that dim0(Ŝ ∩ qk) =
m− k. Thus dimq# = n− k.

In order to show that dim̃qk = n − k − 1, we assume by contradiction that
dim q̃ k = n − k. This would mean that there is a componentq# of qk at 0 such
thatq# ⊂ Q0. SinceŜ ⊂ Q0, we have

dim(q# ∩ Ŝ ) ≥ dimq# + dim Ŝ − dimQ0 = n− k +m− (n−1) = m− k +1.

This contradicts the fact that dim(q# ∩ Ŝ ) = m− k.
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Lemma 9.8. LetS be as in Definition 9.1 and denote bym the dimension of the
Segre completion̂S of S at 0. Then, after possibly shrinkingU1, there are points
w1, . . . , wk ∈ S (k ≤ n− 1) such that one of the following two cases holds true:

(1) k = m anddim(Ŝ ∩Qw1 ∩ · · · ∩Qwk) = 0; or
(2) k ≥ 2m− n+ 1 anddim(Ŝ ∩Qw1 ∩ · · · ∩Qwk) = m− k.
Proof. Let 0≤ k ≤ m be the largest integer for which thek-tuplew1, . . . , wk ∈ S
can be chosen in such a way that

dim(Ŝ ∩ qk) = m− k. (9.3)

If k = m then there is nothing to prove, so we assume thatk < m. From (9.2) we
have that dimqk ≡ n − k and dimq̃ k = n − k − 1. The maximality ofk means
that for any (additional)z∈ S there is at least one irreducible component(qk ∩ Ŝ )#
of qk ∩ Ŝ of dimensionm− k such that(qk ∩ Ŝ )# ⊂ Qz. If we therefore denote
byQk the collection of all irreducible components ofqk ∩ Ŝ of dimensionm− k,
then using Definition 9.1 immediately yields

S ⊂
⋃

q#∈Qk

q#∗;

because (according to Corollary 9.3) the setsq#∗ are complex-analytic, by Defi-
nition 9.4 we can even surmise that

Ŝ ⊂
⋃

q#∈Qk

q#∗. (9.4)

Let nowŜ # be an irreducible component ofŜ of dimensionm. Then (9.4) implies
that there is one componentq# ∈Qk such that even

Ŝ # ⊂ q#∗.

Notice that dimq# = m− k. Hence, using Corollary 9.6 we obtain the following
estimates for dimensions:

m = dim Ŝ # ≤ dimq#∗ ≤ n−1− dimq# = n−1− (m− k).
This implies

k ≥ 2m− n+1

and so finishes the proof of Lemma 9.8.

10. Proof of Theorem 1.1

We now have all tools needed for finishing the proof of Theorem1.1. After these
preparations, we may assume that we are in the situation of Lemma 5.9. We want
to show that 0∈ 6. For this we choose a sequence of pointsaν ∈ 6, aν → 0,
and putSν := S(aν, aν) ⊂ U1 × U ′1 as defined after Corollary 5.3. According to
Proposition 5.8, it would suffice to show thatπ(cl(Sν)) ∩ U 6= ∅.
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PutS ′ := π ′(cl(Sν) ∩ ({0} × U ′1)) ⊂ Q′0 andm := dim Ŝ ′, whereŜ ′ is given
by Definition 9.4. Ifm = 0 then 0′ is an isolated point ofS ′. After shrinkingU1

andU ′1, the cluster set cl(Sν) ⊂ U1 × U ′1 has no limit points onU1 × ∂U ′1 and
the projectionsπ : Sν → U1 are proper forν � 1. Thusπ(Sν) = Qaν ∩ U1 and
π(cl(Sν)) = Q0 ∩ U1. If 0 ∈ M \ 6 then Lemma 5.10 applied toσν := π(Sν)

would imply thatQ0∩U1= cl(σν) ⊂ M \6 ⊂ M. However, this is not the case,
sinceM is of finite type. We must therefore haveπ(cl(Sν) ∩ U) 6= ∅ and 0∈6
in this case(m = 0).

From now on we may assume thatm > 0 and apply Lemma 9.8 toS ′. There
are two possibilities which we will consider as separate cases.

Case 1.There arem pointsw ′1, . . . , w ′m ∈ S ′ such that

dim(Ŝ ′ ∩ q ′m) = 0 (10.1)

for q ′m := Q′
w ′1∩ · · ·∩Q′w ′m. In this case, for everyν ∈Nwe can find, associated

to the givenm-tuple(w ′1, . . . ,w ′m),m-tuples(w1ν, . . . ,wmν)and(w ′1ν, . . . ,w ′mν)
such that(wµν, w ′µν)∈ Sν ⊂ Qaν ×Q′f(aν) andwµν ∈U, with

wµν −−−→
ν→∞ 0 and w ′µν −−−→

ν→∞ w ′µ for µ = 1, . . . , m.

Furthermore, we claim that we may also assume that

qmν := Qw1ν ∩ · · · ∩Qwmν has dimensionn−m. (10.2)

Indeed, suppose that, for somek ∈ {1, . . . , m−1},we already have dim(Qw1ν ∩· · ·
∩Qwkν ) = n− k. If

dim(Qw1ν ∩ · · · ∩Qwkν ∩Qwk+1,ν ) = n− k
for the next pointwk+1,ν, then for some irreducible componentq#ν

w of qkν :=
Qw1ν ∩ · · · ∩Qwkν we have

wk+1,ν ∈ (q#ν
w )
∗. (10.3)

Let, furthermore,q#ν be any irreducible component ofqkν. Since dimq#ν =
n− k ≥ n− (m−1) ≥ 1, by Corollary 9.6 we have dim(q#ν)∗ ≤ n− 2. Hence

dim
(⋃

(q#ν)∗
)
≤ n− 2,

where the union is taken over all irreducible components ofqkν. Notice, however,
thatwk+1,ν ∈π(Sν) and thatπ(Sν) ⊂ Qaν ∩U is relatively open. We can therefore
move the original pointwk+1,ν slightly to obtain a pointwk+1,ν ∈π(Sν) \⋃(q#ν).

Because of (10.3), we then have

dim(Qw1ν ∩ · · · ∩Qwkν ∩Qwk+1,ν ) = n− k −1. (10.4)

The propertyw ′k+1,ν −−−→
ν→∞ w ′k+1 will not be destroyed by this if we move by

only a sufficiently small amount. Afterm − 1 steps we will have dim(qmν) =
n−m. This proves (10.2).

We now consider

Smν :=
m⋂
µ=1

S(wµν, aν) ⊂ (qmν × q ′mν) ∩ (U1× U ′1).
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Since dimŜ ′ = m and dim(Ŝ ′ ∩ q ′m) = 0, by Lemma 9.7 we have

dimq ′m ≡ n−m. (10.5)

Subcase 1a:m = n−1. In this situation we obviously havêS ′ = Q′0′ and, as a
result, dim(q ′n−1) = 0 such that Lemma 9.8 implies dim(q ′n−1∩Q′0′) = 0. Since
cl(q ′n−1,ν) ⊂ q ′n−1 and cl̂F (0) ⊂ Q′0′ (see Lemma 4.10(ii)), it follows that 0′ is
an isolated point of

S ′n−1 := π ′(cl(S n−1
ν ) ∩ ({0} × U ′1)) ⊂ q ′n−1∩Q′0′ = {0′ }.

By Lemma 4.10(ii), this means that (after shrinkingU1) the projections

π : S n−1
ν → U1

are proper forν � 1 and thus

π(S n−1
ν ) = qn−1,ν ∩ U1.

At this point, the convergence criterion for families of analytic sets (from Theo-
rem 7.4) becomes important. It tells us that, after passing to a subsequence, the
sequenceqmν∩U1—which does, indeed, (anti-)analytically depend on them-tuple
of points defining it—converges to an analytic setA ⊂ U1 of pure dimension 1
with 0∈A. SinceM is of finite type, the setA contains a pointζ 0 /∈M and

ζ 0 ∈π(cl(S n−1
ν )) ⊂ π(cl(S(w ′ν, aν))).

Together with Lemma 5.10, this yields 0∈6.
Subcase 1b:m < n− 1. We remind the reader of our notationSν = S(aν, aν)

and putS̃ mν := Smν ∩ Sν. We have dimS̃ mν ≥ n − m − 1> 0. Since we still are
in Case 1, the point 0′ is an isolated point iñS ′m := π ′(cl(S̃ mν ) ∩ ({0} × U ′1)) ⊂
q ′m ∩ Ŝ ′ = {0′ }. Hence, for appropriate choices ofU1 andU ′1, the projections
π : S̃ mν → U1 are proper. We also haveπ(S̃mν ) = qmν ∩Qaν ∩ U1 and, after pos-
sibly passing to a subsequence, the setsqmν ∩Qaν ∩ U1 converge to an analytic
setA of positive dimension. The same arguments as in Subcase 1a now show that
0∈6. This finishes Case 1.

Case 2.There existk < m pointsw ′1, . . . , w ′k ∈ S ′ such that dim(Ŝ ′ ∩ q ′k) =
m− k andk ≥ 2m− n+1 (q ′k := Q′

w ′1 ∩ · · · ∩Q′w ′k ).
As done in Case 1, we can find two sequences ofk-tuples(w1ν, . . . , wkν) and

(w ′1ν, . . . , w ′kν), ν = 1,2,3, . . . , such that one has, for allν andµ = 1, . . . , m:

(i) wµν ∈Qaν ∩ U, wµν → 0 asν →∞;
(ii) w ′µν ∈Q′f(aν), w ′µν → w ′µ asν →∞;

(iii) (wµν, w ′µν)∈ Sν ⊂ Qaν ×Q′f(aν);
(iv) the setsqkν := Qw1ν ∩ · · · ∩Qwkν andq̃ kν := Qaν ∩ qkν have dimensions

n− k andn− k −1, respectively (Lemma 9.8).

Analogously, we put

q ′kν :=
( k⋂
µ=1

Q′w ′µν
)
∩ U ′1 and q̃ ′kν := q ′kν ∩Q′f(aν).
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By Theorem 7.4, we may assume that the sequence(qkν) converges to an ana-
lytic setA ⊂ U1 and that the sequence(q̃ kν) converges to an analytic setÃ ⊂ U1,

where
dimA = n− k and dimÃ = n− k −1. (10.6)

We introduce

S kν :=
k⋂
µ=1

S(wµν, aν) ⊂ (qkν × q ′kν) ∩ (U1× U ′1).

Sincek < m, the inequalityk ≥ 2m − n + 1 implies thatm < n − 1 andk <
n− 2. Thus dimS̃ kν = n− k −1> 1. Since dim(Ŝ ′ ∩ q ′k) = m− k, there exists
a coordinate system inCn such that

Ŝ ′ ∩ q ′k ∩ {z ′ ∈U ′1 : z ′1= · · · = z ′m−k = 0} = {0′ }.
Now we consider the sets

Tν := {(z, z ′)∈ S̃ kν : z ′1= a ′ν1 , . . . , z ′m−k = a ′νm−k},
wherea ′ν = (a ′ν1, . . . , a ′νn) := f(aν). Since dimS̃ kν = n − k − 1 and(aν, a ′ν) ∈
S̃ kν , the setsTν are analytic sets inU1× U ′1 of dimensionn− k − 1− (m− k) =
n−m−1> 0. We also have

s̃ ′m := π ′(cl(Tν) ∩ ({0} × U ′1)) ⊂ Ŝ ′ ∩ q ′k ∩ {z ′ : z ′1= · · · = z ′m−k = 0} = {0}.
Consequently, for appropriateU1 andU ′1, the projectionsπ : Tν → U1 are proper.

We now redefine the setsσν from Section 5 by putting

σν := π(Tν).
We have:

(1) the setsσν are analytic inU1;
(2) σν ⊂ q̃ kν;
(3) dimσν = n−m−1 whereas dim̃qkν = n− k −1;
(4) cl(σν) ⊂ Ã.
Property (4), together with (10.6) and Lemma 9.8, yields the following estimates
of dimensions:

2(n−m−1) = 2n− 2m− 2 ≥ 2n− 2− k − n+1= n− k −1,

implying that
dimσν ≥ 1

2 dim Ã

Therefore, applying Proposition 8.3 withN := M immediately gives

cl σν 6⊂ M. (10.7)

We are now in the following situation: the sequences((w1ν, aν)) and(σν) satisfy
all the properties stated in Lemma 5.9. Hence Lemma 5.10 applies, and this to-
gether with (10.7) implies (by contradiction) that 0∈6. This finishes the proof of
Theorem1.1.
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