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Regularity of Continuous CR Maps
in Arbitrary Dimension

KrLas DIEDERICH & SERGEY PINCHUK

1. Introduction

In this article we come back to one of those questions of complex analysis that
are at the same time natural, important for applications, easy to formulate, and yet
quite intriguing in the sense that they have given rise to much research without hav-
ing been solved completely. More specifically, we mean the following problem.

GENERAL PrOBLEM. Let D, D’ cc C”" be domains and lef: D — D’ be

a proper holomorphic map. Suppose th&x anddD’ have a certain regularity
property (e.g.C*-smooth for somé& = 1,2, 3, ..., oo, w). Does the magf ex-
tend automatically to a map: D — D’ with some regularity depending on the
regularity of the boundarieaD, aD'? (For instance, for whick do C*¥-smooth
boundaries imply thaf is C*?)

Forn = 1there is a quite precise understanding of these questions, whereas good
answers fon > 1 are known only under additional hypotheses. The answers to
the general questions are unknown everkfes oo andk = w.

The question of boundary regularity of proper holomorphic mappings is not
only natural but also important as a tool for other questions. Namely, if any proper
holomorphic mapf: D — D’ automatically has a sufficiently high boundary
regularity, then this will imply that the local biholomorphic invariants of a real
hypersurface are part of the geometry of the domains bounded by them. This can,
for instance, be very useful for studying the existence of certain proper holomor-
phic maps and many other problems.

Extensive research has been done in the area of the General Problem. We can-
not mention it in full detail. Instead, we refer the reader to existing survey articles
on the subject (e.g. [8; 22]).

In this article we deal, more specifically, with the c&se- w of the General
Problem. We want to know whether this implies thanecessarily i€ or, in
other terms, whether all proper holomorphic mgpsD — D’ extend holomor-
phically to an open neighborhood &f if D andaD’ areC®-smooth. We will
show that the answer to this question is indeed “yes” if one knows already that
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extends to a continuous mafy D — D’ (see Theorem 1.4). (The question of
whether all proper holomorphic mags D — D’ extend continuously up t@D
remains open; it might require totally different methods.)

Our specific problem and the method we use also have a long history. It started
with the articles by S. Pinchuk [28] and H. Lewy [25], both of whom developed
the first generalization of the Schwarz reflection principle to strictly pseudoconvex
domains in several complex variables. The first steps toward an extension of this
method of a “geometric” reflection principle to the case of degenerate Levi forms
were made by S. Webster [34] and by K. Diederich and S. Webster [21]. The tech-
nigue was further developed step-by-step in [16], [17], [18], and [19]. This article
builds on the work of all these previous papers.

From the viewpoint of results, the next major steps in the real-analytic case after
[21] were done in [3], [5], and [16]. At this stage it had been completely proved
that any proper holomorphic mafy. D — D’, aD andaD’ C”-smooth, extends
holomorphically to a neighborhood @ if D is pseudoconvex (and hence also
D’). A major advantage for showing this was that, owing to a long and different
development ending with [15] and [7], it was already known that stietitend in
aC> way up todD. This facilitated the application of the method of a geometric
reflection principle and also made it possible to apply a more algebraic version of
a reflection principle as used in [5]. After this, the situation wheres not nec-
essarily pseudoconvex had to be dealt with. In [17] the holomorphic extendability
of f to a neighborhood ab was shown for. = 2 and under the hypothesis that
is already known to be continuous upad. In [18] for n = 2 this additional con-
tinuity hypothesis was eliminated. (Now, far> 2, we have to make it again.)
The article [19] contains a result that (together with [30]) is a very important tool
for the use of the reflection principle in this article.

The question posed in the General Problem is essentially global in nature, and
in Section 6 we will give a proof of Theorem 1.4 that also is global at a crucial
step. Of course, the problem immediately becomes a local one if continujty of
up toaD is supposed. We show here a strong local result in ThebreEmhere we
simply assume continuity of the given CR m@pForn = 2 this result has been
proved in [23] based on the ideas of a preliminary version of [18].nFsr2 it is
shown here for the first time even under the additional hypothesigfreatd M’
are pseudoconvex (see our Theorem 1.2, for which we will give a simpler proof
than needed for the general Theorérty for aquite special recent result in the
same direction, see [24]). In fact, all previous global results also give certain local
versions (see e.g. [3; 5; 16; 17; 18]). But in the local situation of a continuous CR
map f: M — M’ from a (germ of a) real-analytic smooth hypersurfa¢eo a
(germ)M’ of the same kind, many other questions—as variations of the original
General Problem—can be asked. Namely, it now makes sense (a) to strengthen the
hypothesis ory and ask for weaker hypothesesdnM’ that still imply holomor-
phic extendability off and/or (b) to take into account algebraic hypersurfaces.
Much research has been done in this direction. In particular, the following two
cases have been studied in recent articles.
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(1) The mapf is aC* CR map (see [2; 12]).

(2) The mapf justis a formal CR map from the gere¥, 0) to the germ(M, 0')
(without assuming that it is known to be continuous, but also in higher codi-
mension) (see [1; 4; 26; 27]).

The cited articles all contain more detailed bibliographies in their area, to which we

refer the reader interested in the respective specific question. Sometimes certain

additional nondegeneracy hypothesesfoare made in such work. Our decision

in this article is to avoid any further assumptions pbesides continuity.

The main results of this article are as follows.

TaeoreMm 1.1. LetM Cc W C C" (resp.M’ ¢ W' c C") be real-analytic
smooth closed real hypersurfaces of finite type in some opéil $etsp.W’) in
C"andletf: M — M’ be a continuous CR map. Thegnextends holomorphi-
cally to a neighborhood af/.

Although it is obviously just a special case of Theorkf weformulate the fol-
lowing theorem separately because it treats a particularly important case that so
far has not been known in general.

THEOREM 1.2. LetM C W C C" (resp.M’ c W’ c C") be pseudoconvex
real-analytic hypersurfaces of finite type in some opemsétesp.W’) in C" and
let f: M — M’ be a continuous CR map. Thegnextends holomorphically to a
neighborhood oi.

ReEMARK 1.3. (@) Even the special case of this theorem in whids, in addition,
already known to b€ has not been known before.

(b) We will give (in Section 6) a simpler proof for Theorem 1.2 than the one that
shows Theorer.1.

The following natural global statement also follows from Theofielywhich (as
a local statement) is, of course, much stronger. However, we will also give a sim-
pler proof for this global case.

THeOREM 1.4. LetD, D’ cc C" be domains with real-analytic smooth bound-
aries, and letf: D — D’ be a proper holomorphic map extending continuously
to D. Thenf extends holomorphically to a neighborhoodiof

The structure of this article is as follows. In Section 2 we introduce our basic
notation and concepts, also reminding the reader briefly of the machinery of the
geometric reflection principle by the use of Segre varieties (for details, however,
we must refer to our previous articles [18; 19]). Section 3 contains the proaof that

in any case extends holomorphically past a dense open subdeildiis is needed

to get the reflection principle started. Section 4 then contains a slightly changed
variant of the method: how to obtain a candidate for an extending holomorphic
correspondence for the map by using Segre varieties. In addition, we intro-
duce the important notion of a “pair of reflection”, which is used in Section 5 to
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study and introduce a new extension technique (as a correspondence) along Segre
varieties. This finally, leads to the construction of certain sequences of analytic
setso, of dimension> 1 that allow us to reduce the task of proving Theorems
1.1 and 1.4 to showing that the cluster set of the sequéngeas not completely
contained inM (resp.dD) (see Lemmas 5.9 and 5.10). In the general case, this
seems to be difficult (see Conjecture 6.1). However, it turns out to be possible in
the global situation of Theorem 1.4 and under the additional pseudoconvexity hy-
pothesis of Theorem 1.2; for the details, see Section 6. In order to deal with this
difficulty in the general situation, we are led to studying the question of conver-
gence of families of analytic varieties. In Section 7 we prove a new criterion for
this (see Theorem 7.4) which also might be of interest for other applications. In
Section 8, using a recent result of A. Tumanov [33], we can verify Conjecture 6.1
when the dimension of the, is large enough by using a decisive generalization
of this given in Proposition 8.3. In order to apply this to the proof of Thedtdm

we must study (in Section 9) intersections of Segre varieties. Finally, Section 10
contains the construction of the needed new complex-analytioseit higher
dimension and the end of the proof of Theoremh

2. Notation and Preliminaries

Observe that Theorem 1.4 follows directly from Theorem 1.1 since, according to
[14, Thm. 4], the boundarie®) anddD’ in Theorem 1.4 are smooth real-analytic
hypersurfaces of finite type (not necessarily pseudoconvex). Hence, it suffices to
prove Theorem 1.1 in this article. We will therefore consider, for a large part of
the article, the following situationd, M’ are smooth real-analytic hypersurfaces
of finite type as in Theorerh.1, andf: M — M’ is a continuous CR map. We
will use the complete machinery of Segre varieties and mostly remain close to the
notation used in our previous articles [18; 19]. We ask the reader to look there for
further detalils.

We may assume that® M, 0’ € M’, and f(0) = 0’, and it suffices to work
near 0 and 0 By p(z, 7) (resp.p’(z/, 7’)) we denote real-analytic defining func-
tions of M (resp.M’) near O (resp. 0. Wherever needed, we may assume that
we have chosen normal coordinatesndz’ such that

p(2.2) = 2%, + Y po(2. /D) (2yn)" (2.1)
v=0
with p,('z,’0) = 0 for all v (and analogously foM’, p’,z’). By U, DD U130
(resp.U; DD U; > 0') we denote standard pairs of neighborhoods of 0 (re9p. 0
For anyw € Us, the Segre variety

Qv ={z€Uz:p(z,w) =0}

is a well-defined closed smooth complex hypersurfadéinFor anyw € U\ M,
we define the symmetric poinp as the unique intersection between the complex
line throughw normal toM andQ,,. Forw € M we put,w := w. We call
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Uji ={zeU:=xp(z,7) > 0}.

Forw e U1+, we define the canonical componed of Q,, as the connected com-
ponent ofQ,, N U, containing the symmetric pointy. For any point; € Q,,,
we denote byQ,, the germ ofQ,, at¢.

We denote by * the set of strictly pseudoconvex points &hand byM ~ the
set of strictly pseudoconcave points #h(in the sense that all eigenvalues®f
on 7'M are negative). B}/ * we mean the set of all points whefg has eigen-
values of both signs ofi'°M, and byM ° we mean the set of points dd where
L, has at least one eigenvalue 0BHM. Notice thatM © is a closed real-analytic
subset ofM of real dimension at most2— 2. We have

M=MTuM-uUM*uMC
By D we denote the envelope of holomorphyf and we calls the set of all
points in M such thatf extends holomorphically to a neighborhood %f(our
goal, of course, is to show that = M).

A fundamental fact for our proof is the result of A. M. Trépreau stating that,
sinceM is minimal, every point € M has a neighborhood such that any con-
tinuous CR functiorg on M extends holomorphically either t6+ := {z € V :
p(z,Z) > 0torV-:={zeV :p(z,7) < 0}, where this side of extension does
not depend on the choice gf

We assume that the sign pfhas been chosen so that the mapxtends holo-
morphically toU, , and we denote its extension againfyVe need only consider
the case where 0 is not contained in the envelope of holomorpby oiWe may
assume thaf (U, ) cC Uj.

As a warning to the reader we would like to point out that,#or 3, it can
happen that G# 02‘ even though there are no strictly pseudoconvex points on
M N Us.

3. Extending the Map to a Dense Subset a¥f

In this section we want to show that is dense inM. For this we may assume
(throughout the section) thgtis nonconstant unless otherwise stated. Note first
that(M~-UMHNU, C 02‘ so that automatically € O(M~ U M*). Hence,

it suffices to show thaf extends holomorphically to a neighborhood of a dense
subset of¥/ *. We may therefore assume tha¢ 0/ *. We will shrink the sets/;
andU; as convenient in the sequel without pointing it out each time. We consider
two different cases.

(a) Assume that0= f(0) € M't U M'~. It then follows directly from the result
of [29] that Oe X.

(b) Assume next that'G= £(0) € M'%; in this case we claim thaf is constant.
For suppose that is not constant. Then there exists a peirt U; as close
to M as we want such that := f(a) € U;~ or € U,*. This follows from the
following lemma.

Lemma 3.1. If f(U, ) C M’, thenf is constant.
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Proof. By looking at a point € U, where the functional matrix of has maxi-
mal rank, we see that(U, ) contains a positive-dimensional germ of a complex-
analytic set iff is not constant. This, however, contradicts the fact #ats of
finite type. O

In order to continue case (b), it suffices to considee U;~. We observe that,
because of 0= M*, there is a closed complex-analytic subhdgt C U; of dimen-
sion1lsuchthat’e A, andA, N M’ = @. Nowwe haver € A, := f Y Ay) C
U, . However, since @ M *, the complex-analytic set, must have limit points
on M N U,. Hence, the same must be true fy, a contradiction. Next we show
the following lemma.

Lemma 3.2. Let0Q’ e N’ ¢ M’ be a realC?smooth generic manifold, where
dimg N’ < 2n — 2, and letU be any neighborhood o® € M *. Then it follows
that f(M NU) £ N'.

Proof. Without loss of generality we may assume that giv = 2n — 2. There
exists a complex plang’ > 0’ with dim¢ L’ = 2 such that.’ N N’ is a totally real
manifold of real dimension 2 near.G~ora’ € C" let L, be the plane parallel to
L’ and passing through'. For small enouglt//, all intersections.,, N N'N U,
are totally real and of real dimension 2. Lt be a strongly plurisubharmonic
function inU; such that:

(i) par = 0;

(i) oo =00nS, ==L, NN'NU,.

Notice that such a functiop, can be defined by, = " 27%(p}), where
{p; )72 is a defining system fo§,,. We may assume th@t; N M c M+ and
f(U;) C U; and that

0(z,7) = 2x, + 212+ 0(z]?). (3.1)

Forac Uy, letw, :=={z€ U :z, = a,}andA, = w, mf—l(L’f(u)m U;). Notice
thatw, is a complex manifold of dimension— 1, w, CC U, and f(dw,) C M'.

If Lemma 3.2 is false then we would hay&dw,) C N’. Since diny L},(a) =2, it
follows thatA, is an analytic set i/, of dimension> 1 anda € A,. The func-
tion ¥, = @@ o f is plurisubharmonic and nonnegative &p, andy,|dA, =0
becausef(dA,) C N'N L. Hencey,|A, = 0. But ¢y, is strongly plurisub-
harmonic. Thereforef|A, is constant with image iV’ C M'. Sincea € U]
was chosen arbitrarily, it follows thgt(U; ) C M’, a contradiction to Lemma 3.1.
This proves Lemma 3.2. O

As an immediate consequence we now have the following result.
CoroLLARY 3.3. The setX is dense inV.

Proof. The real-analytic se¥’° can be stratified by smooth generic submanifolds
of dimension< 2n — 2. By applying Lemma 3.2 to each of them, we see that
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fmty € M’'°. Hence there exist points aif + arbitrarily close to 0 that are
mapped taV'+ U M'~ U M'*. According to case (b) described previously, such
points cannot be mappedié’* becausef is assumed to be nonconstant. There-
fore, according to case (a), the point must belongto O

CoroLLARY 3.4. If f is not constant thefi) the Jacobi determinant; of f is
not identically0 and (i) f is locally proper near all points € M with J(z) # 0.

Proof. We move to a point of£. Then it follows from a result of Baouendi and
Rothschild [6] that/; # 0 and thatf is locally proper near any such point. [

4. An Important Brick for the Holomorphic Extension
of the Map f

In this section, = M is arbitrary and 0= f(0) € M’. We assume that the stan-
dard neighborhoods); ande’ have been chosen in such a way tiiat/, ) cC
Uj. Furthermore, we assume thatis not constant. The following set will be an
important brick for the holomorphic extension gfto a neighborhood of O:

Fti={(w,w)elU] xU: f(Q5 C 0} (4.)
Definer: F* — U by n(w, w’) = wandzx’: F* — U] by n'(w, w') = w'.
Lemma 4.1. The setF T is analytic inU;" x Uj.

Proof. According to (4.1),(w, w') € Fiff p'(f(z),w’) = 0forallz € Q.
Furthermorez € Q,, iff p(z, w) = 0. And this is the case if and only i, =
h('z, w), whereh is a function holomorphic iy and antiholomorphic inv. So
for any pair(w®, w’®) € U;" x Uj, the setF* is defined nea(w®, w'®) by

0'(f(z, h(’z, w)),w') =0 for 'z close to/w®.

This is a family of (anti)holomorphic equations far, w'. O

We must now study the set
a:={wel; : Jy=00nQL}. 4.2)

SinceM is supposed to be of finite type, it also is essentially finite (see [21] and
[3]). Hence it follows from Corollary 3.4 that must be discrete.
We putU* :=n(F*) c U".

LemMa 4.2. The mapr|(F+ \ 7 X(«)) is locally proper.

Proof. We have to show that, for any® € U™ \ «, the setr Y(w®) N F* =
{(w® w’) € F*}is discrete. For this we move to a poinbn Q¢ o whereJy(b) #

0. Then the image undef of ,Q¢, is a complex-analytic germ of dimension
n — 1. Hence the inclusiorf(Q¢,) C Q,,, completely determines the Segre set
Q... The lemma then follows from the fact that’ is essentially finite. O
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COROLLARY 4.3. The dimension of T is n.

Proof. According to Lemma 4.2F * has dimensiork » at all points not lying on
7 Y@); sincex is discrete, the dimension &+ must be< n everywhere. How-
ever, the dimension of © must actually ber, since F* contains the graph of
near all points ofz. U

We next modify the sef'* by excluding from it all irreducible components of
dimension< n. Furthermore, we choo€é so small that the Segre map U; —
N(U;) c S8’ is proper.

LemMma 4.4. The mapr: F* — U™ is proper and henc& * C U;" is open.

Proof. (a) We first show thatr: F* \ 7% (@) — U™ \ « is proper. For this
we need to show that * \ 7 ~%(«) has no limit points onU * \ «) x dU;. Let
(w', w”) € F*\ 7 X«) be a sequence such thett - w®e Ut \ o andw’> —
w'%e Uj. Sincew® e U+ \ « there exists a poinw?, @'°) € F* \ 7 Y(a) with
w'% € U] as well as a sequence”, w'") € F*\ 7 X(a) with w"” — ©’'%; this
follows because (by Lemma 4.2) the maps locally proper away fromr ~(«).
By (4.1), f(Qy) C Q,,» N QL. and sincew” ¢ a we haveQ, ,, = Q. ,,. Now
the properness of together withw'® € U] means that alse’® € U;.

(b) Notice that, having eliminated low-dimensional components ffoh we
have F* = F+\ m—1(«a) because any “vertical” component 6f* over a point
from « would have dimensiors n — 1 and thus would also have been eliminated.
Furthermore, by part (a) of the proof, the $&t is (overU * \ @) contained in a set
whosew’-coordinates are given by a system of monic polynomials inthé =
1, ..., n) with coefficients holomorphic i € U ™\ .. Since all these coefficients
extend holomorphically acroesand sinceF * is (overa) contained in the set given
by these extended polynomials, the properness:of © — U * follows. O

The next step is to show the following lemma.
LEmma 4.5. The mapr’: Ft — Uj is locally proper.

Proof. We need to show that any poia°, w'®) e F* is isolated int’~1(w'%) =
{(w,w?) e U x U] : f(Q5) C Q) The setz'~}(w’?) is an analytic
set. If 7/~Y(w'?) is not discrete, then dimz’'~Y(w’®) > 1 and hence the set
U, w0yex-170y @5, CONtains an open subset of . This would imply that
f(U;) C Q) 0, Which contradicts the fact thay # 0. O

Lemmas 4.4 and 4.5 together say tidt induces a holomorphic correspondence
F*:UT — U] defined byF + =z’ o =L In other words,

Frw)={w'elUj: Q. > f(Q5)} for weU™.
Define another holomorphic correspondette: U — Ujby

Fo(w):={w'eU]: Q) = Qju)
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We putU := U; UU T U(Z NUy). By the invariance property of Segre varieties,
the correspondencést andF ~ coincide near any point frorB N Ur. Therefore,
together they g|ve a holomorphic correspondeficd/ — U, with FIlUt =F~
andF|U = F~. Let

F:={w,w)eUxU:weF(w)

be the “graph” off. Itis an analytlc seti x U] of pure dimensiom with proper
projectionz: F — U, andF = n' o 7%

By the definition of £, all values fX(w), ..., f™(w) € F(w) have the same
Segre varieties. ThereforQ,}’a(w) is well-defined for alw € U.

Lemma 4.6. If, for a w € U, there exists av’ € U] such thatf*(w) € Q. for
some valuef“(w) € F(w), then f!(w) € Q/,, for all other valuesf(w) € F(w).
Hence, in this case we can writgw) C Q..

Proof. Notice thatf*(w) € @/, iff w’e Q}k(w). As just observed, we also have
Q}’,k(w) = Q},(w). Together this is the case if and onlyfif(w) € Q.. O

It will be convenient to introduce the following terminology.

DEFINITION 4.7.  We say that a paiw®, z°) € U x (Q,0 N U) is apair of re-
flectionif there are open neighborhoogw?) of w® andQ(z°) of z° such that,
for all w € Q(w?),

ﬁ(Qu) N Q(ZO)) - Q;:“(u))'

REMARK 4.8. A typical example of a pair of reflection is the situation when
w® e U andz® € Q¢,. Another simple example is the paiw®, w°) for w® e

¥. Notice, however, that a paiw?®, z°) is not necessarily a pair of reflection if
we just havew® € U* andz® € 0,0 N U, since 0,0 N U may (of course) be
disconnected.

We have the following symmetry relation.

Lemma 4.9. If (w9, z°) is a pair of reflection, then als¢z°, w°) is a pair of
reflection.

Proof. We takez € 2(z°) andw € Q. N (w®). Thenz € 0, NQ(z%) and hence
F(2) C Qpy- From this it follows (as already used) thAtw) C Qe and

henceF(QZ N Q(wo)) C Q;( " Therefore(z°, w?) is a pair of reflection. [

LeEmMA 4.10. We have
(i) clz(w®) c aU; foranyw® e dU N U;;
(i) clz(0) C Qfss
(iii) if clz(0) = {0’} thenO e X;
(iv) F is aclosed analytic subset ¢t/1\ (M \ X)] x Uj.
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Proof. (i) Let (w”, w’’) € F with (w”, w"") — (w° w'®) € AU NU;") x U] as
v — oco. Foranyv =1, 2,... we havef(Q¢,) € Q. .. If w'®e Uj, we can pass
to the limit and so obtain

f(Q50) C Qo

But this would mean thatw®, w'®) € F and hence thab® € U, a contradiction.
Hence we must have'® € 3U;.
(i) Let w” e U, w” — 0. Itis enough to consider the following two cases:

() weU; U(ENUy) forallv;
(b) w*e U™ forall v.

Since f is continuous up td(, in the first casef(w”) — 0 and, for anyw'” €
F(w"), we haveQ, ,, = Q}(wv). Since we may assume that the equality, =
Q¢ holds only forw” = 0 (w’ € Uj), this means thaty’'® — 0. Therefore, it
only remains to consider the case whemall € U*. We havef(Q.) C Q).
for anyw’” € F(w"). Suppose thab" — w’® € U}; thenQ!,, — Q! ,. Since
w" — 0, also distQy,,, 0) — 0. Hence distQ;, ., 0") — 0, implying Oc Q' ,
and thereforew’® € Q.

(iii) If cl 5(0) = {0}, then by (i) we have Oc U and hence Oc X, or
dist(0, 3U N U;") > 0. Thus it remains to consider the case disbU N U;") >
0. We choose a small open neighborhdadcc Uy of 0 such that/;" N U = ¢.
ThenU," c U; henceU > U\ (M \ ¥). We now replacé/; by U;. The corre-
spondencé’|U;" is a component of the zero set of a system of pseudopolynomials
with bounded holomorphic functions @f" as coefficients. According to the the-
orem of Trépreau, all these coefficients extend holomorphically;toThe zero
set of the extended system of pseudopolynomials contains a component that is an
extension ofF|Ufr to U;. Since, howevery C M is dense, this component must
agree withF+ overU;, giving thereby an extension @ over all of U; that we
will still call F. The projectionr: F — U is again proper. Hence, it follows
from [19] that Oc X.

(iv) This is a corollary of (i). O

5. Extension along Segre Varieties

We now want to study the possible extensionfadlong Segre varieties. For this
we observe the following. For any® € U we can find a neighborhoo@ =
'Q x Q, cc U of w® and a neighborhoo®f ¢ U; of Q,,0 N Uy such that, for
z €V, the intersectiorQ, N Q is connected and nonempty. For such a pairV)
we define

F=Fw®Q,V)={z:)eVxU:FQ.NQcCO.) (1
Such a construction also has been used in [31].

LeEmMMA 5.1. The setF is analytic inV x U;, anddim F < n.
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Proof. Notice thatz € O, N Qiff p(¢,z) = 0 and’¢ €’Q. This is again equiva-
lentto, = h(’z, z7) and’c €'2. Furthermore, o defined as in Section 4 (after
Lemma 4.4) we haveF(g) c Q. iff P z") =0forall ¢ € F({) Finally,
e F(;) iff (¢,¢’) e F. We putt’ := ¢’ and consider

A={(z,7,t)eV x U/ xU*:p'(t,7)=0, (¢,h(¢,2), 1) e FY'C €'Q}.

(HereU;* means the set of all conjugates of pointdifi) The setA is analytic
because it is locally defined by a holomorphic family of equations (after conju-
gation). Letj: (z,z’,t") — (z, z’) be the natural projection. We obviously have
j(A) = F. SinceQ cc U, the projectionj: A — V x Uj is proper. Namely,

¢ € Qimplies¢’ € F(Q) cc Uj andt’ € F(Q)* cc Uy*. ThusF = j(A) is an
analytic set inV x Uj, since it is obviously closed iV x U;. We claim that
dim F < n. Notice for this that the set

={zeV:J(Q.NQ) =0} (5.2)

(defined similarly as in (4.2)) is discrete for the same reasons as for the set from
(4.2), and we havé” C (o x UpHu (F N7~V \ @)). The first parx x Uj has
dimension:. Furthermorerr: F — V is locally proper ovei \ «, since in this
situationﬁ(Qz N ) has dimensiom — 1 and hence there are only finitely many
possible pointg” with F(QZ N Q) c Q.. Therefore, the dimension of the sec-
ond partF N7 XV \ a) <n. Together then, we have dif < n. O

We now assume additionally that® € U. Then, by Lemma 4.9, the sefsand

F coincide near the points of the foruw?, w’®) with w’® € F(,w®). We delete

from F those components that do not contain at least one of these points and de-
note the new analytic set again By Then dimF = n. By the uniqueness theorem

we now have the following lemma.

LEMMA 5.2. If (w z0) is a pair of reflection, thed = F(w®, €, V) contains
F near every pointz?, z’%) € F.

Proof. Let (z,z') € F with z € Q(z% and takew € Q. N Q(w°). Thenz e Q,, N
Q(z% andF (0, N Q((z%) C 0} .BylLemmad.9we havé(Q.NQ(w?) C

QF( 5= = Q.. Hence(z, z') € F. O

As an immediate consequence we obtain our next result.

CoroLLARY 5.3. In the situation of Lemma 5.2, after deleting low-dimensional
components fronk one hasddim F = n and F > F N (V x Uj). More precisely,
F N (V x Uj) is the union of suitable irreducible componentsFoh (V x Uj).

Let w® ,V, F be as before and suppose tfiat°, z°) is a pair of reflection
with z2° € ¥ = M N U. Let us denote by (w?, z°) the irreducible component
of F N[(Q,0 N Uy x U{] containing the germ of the graph gfat (z°, £(z°)).
Obviously,S(w?, z°) does not depend on the choices@br V and is an analytic
set of dimensiom —1in (Q,0 N U1) x Uj.
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Lemma 5.4. Let (w? z°) be a pair of reflection with® € . Then
(i) S z% C [(U1N Q,0) x (U] x Qf o)1 NE;
(i) S(w? z%) isananalytic setiisNQ,0) x (U;N Q/ )andn(S(wo, 22NN
(M\X) =10
(iii) the projectiont: S(w°, z%) — 7(S(w% z%)) Cc U N Q.0 is proper.

REMARK 5.5.  We do not claim that the projectiant S(w®, z%) — UyN Q0 is
proper.

Proof of Lemma 5.4Part (i) follows immediately from the uniqueness theorem,
Lemma 5.2, and’(Q,0 N 2(z%) C Ql’ﬁ(wo). Part (ii) follows from (i), Corollary
5.3, and Lemma4.10(iv). Part (iii) follows from the properness o — U. [

The setS(w?, z%) may be considered as the maximal analytic continuation of the
germ of the graph of at(z°, £(z%) alongQ,0 N Uy. From Lemma 4.9 and the
definitions of F andS(w?, z°), the next lemma follows immediately.

LEMMA 5.6. For anyz e n(S(w?, z°)), the point(w?, z) is a pair of reflection.
We remind the reader of the following notation.

DEerFINITION 5.7. LetA, be a sequence of (closed) subsets of a domam C”
(orR™). We define

cl(A,) :={zeD:3z,€ A, : z is apoint of accumulation ofz,)}.

Next we want to show holomorphic extendability of our mApM — M’ in
certain points inM by studying cluster sets of sequences of certain sequences
S(w’, z").

ProrosiTiON 5.8. Let (w”, z") € U x X be a sequence of pairs of reflection
and choosew’” € F(w"). Assume thatw’, z) — (0,0) andw’” — w'®e Uj.
Suppose, furthermore, that the cluster Set= cl(S(w", z”)) contains a point
(€% ¢'%) e Uy x U] with go e U. ThenOe .

Proof. Let (¢”, ¢’") € S(w”, z¥) be chosen such that: — ¢% and¢’’ — ¢°

for a certain subsequence,). By Lemmas 4.9 and 5.6; "+, w") is a pair of re-
flection for anyu. Let Q C U andV C U; be connected open neighborhoods of
¢%and Q.0 N Uy (respectively) such that, for all € V, the intersectiorQ,, N Q

is connected and nonempty. ThE?, ©2, V) is an analytic set itV x U;. After
shrmkmgUl we haver ' € QandQ v NUL C V for u>>1, v(p) =y, and thus
by (5. 1)F(; Q.V)=F(@', Q,V). By Lemma 5.2, the seft (¢, 2, V) con-
tains the graph of near(z", f(z"#)) and hence(¢°, Q, V) contains(0, 0') =
lim,(z", f(z"*)). This means that the graph gfextends as an analytic set to a
neighborhood of0, 0"). From the result of [30] it then follows that®. O

Unfortunately, the situation of Proposition 5.8 cannot always be established, since
m(S(w', z¥)) cannot always be shown to be analytic because we do not know that
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is proper on these sets. Therefore, we now begin with the construction of some new
sequences of analytic sets that will, at the end, allow us to overcome this difficulty.

LemMma 5.9. There exist sequencés’, z') e U x T andw’’ € F(w") and ana-
lytic setso,, C U; such that

(1) (w", z") is a pair of reflection for any;

(2) (w", z") — (0,0);

() w" — weU;

(4) there is an integep > 1 such that ther, are analytic sets of pure dimen-
sion p;

(5) z¥ €0, C 7 (S(w’, ")) forall v.

Proof. Choose an arbitrary sequenges X, z” — 0. If there is a radius > 0
such that, for any > 1, the setr(S(z", z")) containsQ,» N B(z", r), then (after
shrinking U;) properties (1)—(5) of the lemma are satisfied dor= z*, w'" =
f(z"), ando, = Q,» N U;. Thus we may now assume that there is no such ra-
diusr. This means that, for any (small enougti)> 0, there exists a sequence
(w”, w’’) € §(z*, z") such thaw’ — Oandw’” — w’°with |w’®| = r’. The con-
ditionsw” = z” andw’” = f(z") of course no longer hold; moreoves’ c U ™.

By Lemma 4.10(ii) we have'® € Q(, N U;. Sincer’ > 0 is arbitrary and’ is

of finite type, we may assume th@t , # Q. By Lemmas 4.9 and 5.6w", z")

is a pair of reflection for every. We putS, := S(w", z").

It remains to show that (S, ) contains an analytic set c Us, z¥ € 0,, of some
fixed pure dimensiop > 1. Sincew’® e Qy we haveQ,0 > 0" SinceQ/ , #
Q. there exists a normal coordinate system in the image space such ihah0
isolated point ofQ! , N {z" : z; = --- = z, = 0}. Hence there exists an> 0
such that, after shrinking, the intersectiog'® := Q! (N{z'€ U] :zh =" =
z/_1 =0, |z,| < &} has no limit points 0@U;. Notice that;'® > 0’ and is an ana-
lytic set of dimension 1i/; N {|z,| < e}. Thus, forg"” := f(z") andv > 1, the
sets

gV =0, N{ZeU]:z=¢"fork=2,...,n =1 |z,| < ¢}
containg’’ and are analytic sets of dimension 1N {|z/,| < ¢} without limit

points ondU;. SinceS, C (U1N Qy») x (U N Q;,,) ands, > (z", f(z")), the
intersections

sy =8, N{(z,z2) iz =¢"fork=2,....n -1}

are analytic sets of dimensioa 1in Uy x (U] N{|z,| < €}). Since the setg"”
have no limit points 0dUj, the sets, have no limit points ori; x (3U; N{|z),| <
e}). By Lemma 4.10, we have gl0) C Qg = {z, = 0}. Thus, for small enough

U > O, thes, have no limit points or; x (U] N {|z,,| = €}). This means that,
forv > 1 the projectionsr : s, — Uj are proper and the images := 7 (s,) are
analytic sets of dimension 1in U; with z” € o,. OJ

The following lemma, which is now easy to show, is crucial for our further
considerations.
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LemMma 5.10. Letw', z", w’”, o, be sequences with all the properties stated in
Lemma 5.9. Assume th@e M \ X. Thencl(o,) C M\ X.

Proof. Suppose there is a poigt € cl(o,) N (U1\ (M \ £)). By Lemma 5.9 there
is a sequencéw’, z") € U x  with (w”, z") — (0, 0) and a sequenag"’, {'") €
S, = S(w", z") with ¢" € o, such that” — ¢, ¢"” — ¢'® e Uj. Sinces” e U
we haves® € U N Up. Butsincec® ¢ M \ X, Lemma 4.10 implieg’® € 3U;, a
contradiction. O

6. Final Steps for Proving Theorems 1.2 and 1.4

What must still be done in order to finish the proofs of Theor#&rhsl.2, and 1.4?

Let us suppose that, in the situation introduced at the beginning of Section 2, there

is a pointa € M \ T left. Using Lemma 5.10, we shall derive a contradiction.
Notice that this would be done if the following conjecture were known to have

a positive answer.

ConNJECTURE 6.1. LetN ¢ W c C" be areal-analytic CR manifold of finite type
in the sense that there are no complex-analytic germs of positive dimension in
and letA, c W be closed complex-analytic sets of pure fixed dimengionl.
Thencl(A,) € N.

Unfortunately, this important conjecture is in general open. It amounts to hav-
ing a kind of more global uniform Lojaziewicz inequality. One of the difficulties
with Conjecture 6.1 arises becauses;l) need not contain any even 1-dimensional
complex-analytic germ, as examples of Wermer [35] and Stolzenberg [32] show.
(If this were the case then Lemma 5.10—together with the factMhat of finite
type—would give a contradiction.)

However, under suitable extra hypothesed\grihe conjecture can be proved.
This is, for instance, the case if the pairg N is a peak point for the restriction to
N of continuous plurisubharmonic functions @ Then the maximum principle
for plurisubharmonic functions will yield the desired conclusion. We will use this
to bring the proof of Theorem 1.2 to a quick end. The same strategy together with
a small additional argument can also be used to finish the proof of Theorem 1.4.

For proving the general Theorelni, a nevstrategy will have to be used. Itisre-
lated to the theorem of Bishop [9], which states that any sequence of analytic sets
A, of purep dimension (as considered in Conjecture 6.1) contains a subsequence
converging to a complex-analytic set of dimensjwiif, for any relatively com-
pact subseY cc W, the 2p-dimensional area of, NV is uniformly bounded in
v. Namely, we will prove in Sectio 7 a newcriterion for uniform area bounded-
ness of certain sequences of analytic sets. Later in the article we will replace the
sequenceés,) from Lemma 5.9 by new sequences with sufficiently large dimen-
sions for which we can then prove a variant of Conjecture 6.1. The details needed
to carry out this strategy will, however, still be considerable.

We now come to the proofs of Theorems 1.2 and 1.4. First we introduce the
following simple way of speaking.



Regularity of Continuous CR Maps in Arbitrary Dimension 125

DEFINITION 6.2. LetU < C” be an open set, lete U, and leta € B C U be

a closed subset. Suppode C U are closed complex-analytic subsets of pure
dimensionp > 1. We say that the sequencd,) clusters alongB ata if a €
cl(A,) C B.

LemmMma 6.3. Suppose that, for a poiate B C U, there is a continuous plurisub-
harmonic functionp € PSHU) such thatp(a) > ¢(z) for all z € B \ {a}. Let
(A,) be a sequence of closed complex-analytic subsets af pure dimension
p > 1 Then(A,) does not cluster alon@ ata.

Proof. SupposdA,) were to cluster alon@ ata, and fix an open neighborhood
W cc U ofa. ThenA, N oW # @ for all v and hence ¢4,) N oW # @.
Therefore alsdB N oW # @. One has sup(z) : z € BN aW} < ¢(a). Hence,
because of the continuity @f, there is a sufficiently small open neighborhdéd
of BN dW so thatc := supe(z) : z €V} < ¢(a). Next we can choose an open
neighborhoodV; of a such thatp(z) > ¢ on V;. Note, however, that for suffi-
ciently large,A, N oW C V andA, N Vi # (. But this is a contradiction to the
maximum principle applied to the plurisubharmonic functiga,,. O

It is now important to observe for which as in Lemma 6.3 the required plurisub-
harmonic peak functiong are known to exist. Here is a list of the most important
cases.

ProprosITION 6.4. Leta € B C U be aclosed subset. Then there is a continuous
plurisubharmonic peak functiop on U with ¢(a) > ¢(z) forall z € B\ {a} in
each of the following cases

(1) B is aC?-smooth strictly pseudoconvex hypersurface
(2) B is asmooth totally real submanifald
(3) Bis acC>-smooth pseudoconvex hypersurface of finite type.

Proof. The cases of strictly pseudoconvex hypersurfaces and of totally real man-
ifolds are well known and easy. B is aC*>-smooth pseudoconvex hypersurface
then, according to Catlin [10B is B-regular. (IfB is even aC“-smooth hyper-
surface, this result was first shown in [14] together with [13].) O

COROLLARY 6.5. LetB C U c C? be aC®-smooth hypersurface of finite type.
Then Conjecture 6.1 holds for = B.

Proof. According to Proposition 6.4(2) and (3), the conjecture holds if the point
a lies in either the pseudoconvex or the pseudoconcave regiBn b it remains

to consider the case whetds a point of degeneracy of the Levi fordy of B.

The setE of these points, however, is itself real-analytic and carCinbe strat-

ified by totally real manifolds of dimensions 2, 1, and 0. If we now assume that
cl(A,) C B then, fora € E, the set c{A,) must lie in E because otherwise we
can move on @lA,) to a point in the pseudoconvex or pseudoconcave region. By
the same argument, we can then work our way down the strafa of O
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We now want to apply these considerations on special cases of Conjecture 6.1 to
the holomorphic extendability of CR mags M — M’ under the hypotheses

of Theorem 1.2 and Theorem 1.4. From Lemma 5.10 and Lemma 6.3 applied to
A, =0, andB := M, we immediately obtain the following technical result.

ProposITION 6.6. Leta € B := (M \ X) be arbitrary. Then there is no open
neighborhoodJ of a with a continuous plurisubharmonic functignon U such
thatp(a) > ¢(z) forall z € B\ {a}.

Proof. Lemma 5.10 tells us that necessarilye cl(o,) C B. According to
Lemma 6.3, however, this is impossible. O

The proofs of Theorem 1.2 and Theorem 1.4 are now obvious.

Proof of Theorem 1.2SinceM is supposed to b&”-smooth, pseudoconvex, and
of finite type, there are (by Proposition 6.4) plurisubharmonic peak functions for
everya € M. Hence, according to Proposition 6.6, the Batnust be all ofM.

O
Proof of Theorem 1.4We putM := dD andM' := dD’. Then all considerations
of this article apply tof|M: M — M’. Notice, however, that in this case the set
E := M\ X C M iscompact. Let us assume that it is nonempty. Then we can
choose a suitable origin of a global coordinate system and take asipoifitthe
(unigue) point onE of farthest distance from this origin. The functignz) :=
|z|? is a plurisubharmonic peak function as needed:ferE. This is a contradic-
tion to Proposition 6.6. O

7. A Convergence Theorem for Families of Analytic Sets

As explained at the beginning of Section 6, we will need a criterion telling us when
certain sequences of complex-analytic sets contain convergent subsequences with
complex-analytic sets as limit sets. We published our result in this direction in
[20]. For the convenience of the reader and the completeness of this article, we
repeat the proof here.

In general, the cluster set of a sequence of analytic subdsets U of dimen-
sionp > 0 (U c C”" open) need not contain a gernof an analytic subset of
positive dimension—even if alll, pass through a fixed poiat € U. This can
already happen in codimension 1 and if &l are of the formA, = {z € U :
gv(z) = 0} for suitable holomorphic functiong, # 0 with g, — 0 onU. For
examples see [35] and [32].

Probably the most important positive result in this direction is the theorem of
Bishop (see [9] and also [11, Thm. 15.5]), which can be formulated in the follow-
ing way.

THEOREM 7.1. LetA, C U be a sequence of puge-dimensional analytic sub-
sets of a complex manifold converging to some set ¢ X and such that, for
any compact subs& C X, there exists a constadty > 0 with
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voly, (A, N K) < Mg
for all v. ThenA is also a purep-dimensional analytic subset &f.

Theorem 7.1 immediately implies the following.

CoroLLARY 7.2. Let A, C U be a sequence of pure-dimensional analytic
subsets of a complex manifafdwith locally uniformly bounde@p-dimensional
Hausdorff measures

voly, (A, NK) < Mg Vv

for a suitable constan¥x associated to an arbitrary compact subg&et- U. Then
we can extract a subsequence frai,) converging inU to a purep-dimensional
analytic subse#A C U or to .

For the convenience of the reader, we formulate here explicitly what is meant by
saying that the sequenc¢a,) converges to the set.

DEeFINITION 7.3.  We say that a sequence of subggts™ U converges to a set

E c U if (a) E consists exactly of all the limit points of convergent sequences
(xy;) with x,, € E,, and (b) for any compact subsetsC E and anys > 0, there
exists an index (e, K) such thatk belongs to the-neighborhood of, in U for

allv > v(e, K).

The goal of this paper is to show that a strong analogue of Montel's theorem holds
for families of analytic setst,, ¢ U depending holomorphically on a parameter
w eV c C™. Precisely speaking, our result will be as follows.

THEOREM 7.4. LetU C C" andV C C™ be open sets, and lgt(z, w) €
O x V) forj=1,..., kwith a positive integek < n. For w € V, put

Ay ={zeU:gj(z,w)=0forj=1... k}.

LetE := {w eV : dimc A, > n —k}. Then, foranyU cc U andV ccC V,
there exists a constant= ¢(U, V) > 0 such that

VOIZ(n—k)(Aw N 0) <c

forall w e V \ E. In particular, we can extract from any sequeneg,, ), w, €
V \ E, a subsequence converginglihto an analytic subset of pure dimension
n — k. (Observe that the sequenge,) might converge to a point ift’.)

REMARK 7.5. (a) Theorem 7.4 is in some sense purely local so that it easily ex-
tends to open subselts V of complex manifolds.

(b) For the proof of Theorem 7.4, we may assume that are polydiscs cen-
tered at 0 and thaf;(0,0) =0 forall j =1,..., k.

In Section 7.1 we will first show a crucial lemma that is equivalent to Theorem 7.4
in the casé = 1. In Section 7.2, we generalize this lemma to arbitrary codimen-
sion. The proof of Theorem 7.4 will then be given in Section 7.3 using the lemma
from Section 7.2.
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7.1. ALemma in Codimension 1

The casd& = 1 of Theorem 7.4 is equivalent to the following lemma.

LemMma 7.6. LetU c C"andV c C™ be polydiscs centered @t Letg(z, w) €
O x V) be afunction such that(z, 0) = 0 and

g(z,w) =) ap(w)z’.
p

Suppose that there is a sequeriaé) C V, w” — 0, and thatg(z, w") # O for
all v. Then there exist a multindéx= (I, ..., 1,,), an open neighborhoo&’ of
0e C", aholomorphic map: V — V, and a sequenceb,) C V, w’ — 0, such
that (after possibly passing to a subsequénce

(1) w¥ = hw") forall v,

(2) B,() = a,(h(D))/a;(h(D)) € O(V) for all p, and

() gz, w) =3, B,(0)z" € OU x V).

In particular, sinceb; (w) = 1, it follows thatg(z, 0) # O.

Proof. After shrinking the polydisd’ a little bit, we have in particular, e O(V)
for all p. Because (according to a theorem of Frisch and Siu) the@ig) is
Noetherian, the ide& ¢ O(V) generated by the functions, is spanned as an
ideal by finitely many of them. Singg(z, 0) = 0 we conclude from this that there
is a positive integes such that, for each multiindex, we have a representation
of the form

a,(w) = Z By (w) e (w) (7.1)

1=ljl=s

on V with holomorphic functiong,,; € O(V).
After passing to a subsequencgef’), there is a multindexwith |/| < s such
that

loj(w")| < | (w*)| Vv, V[j| <. (7.2)
From (7.1) and (7.2) webtain that, for allp,
oty (w")]
——<C, Wv 7.3
|y ()] — 7F (&5

for suitable constant§,, > 0. Since, moreovery;(0) = 0, it follows from (7.3)
that O is a point of indeterminacy of the meromorphic functiepsy; for all p.
Let ji, ..., jy be any numbering of the multiindicgswith |j| < s. We put

G(w) = (ﬂ ﬂ) LV s (PHY
o o)
as a meromorphic map amtdl:= {w € V : o;(w) = 0}. Thena& is holomorphic
onV \ A and the grapiiy; ¢ V x (P} of the meromorphic mag is given by
Fo ={(w,§) e (V\A) x (PHN 1 & = a(w)},

which is a complex-analytic subset Bf x (P1)" of dimension:. We denote by
m1: Ty — V the projection to the first coordinate and by: I'; — (PYHY the
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projection to the second coordinate. Both are, of course, holomorphic maps. By
(7.3) we may assume, after passing again to a subsequefwé)pthat

lim &(w") = ¢ = (éy,...,¢y) €CV.
V—00

In general, the graph; will be singular atr ~1(A). Yet according to the Hiro-
naka theorem there is a neighborhdbdaf (0, ¢) € Ty and a complex manifold
X of dimensionm together with a proper holomorphic map X — V such that
oloton MV \A) o on (V\ A) — 7%V \ A)is biholomorphic. After
passing again to a subsequence we find a convergent sequ&ace v’ — x,
with o(@") = (w’, &(w")). Henceo(x) = (0, ¢). Let V be a small coordinate
neighborhood of on X with x = 0. Call the coordinate$. On V we define the
maph () := w1 o o(W): V — V. Itis holomorphic:2(0) = 0 andh(w”) = w".
Next we define the holomorphic map

(i) 1= 1z 0 o (D). (7.4)
On(my00) XV \ A) NV we have
B) = G(h(w)) (7.5)

andB(0) = ¢ e CV, so we may assume that V. — W(¢) c CV, an open
neighborhood oﬁ.~ Hence all components;(k(w)), i =1, ..., N, are holomor-
phic functions on. Together with 7.1) it follows that, for all multiindicegp,

o, (h(w))

a(h(w))

may be considered as holomorphic functionsioiThis proves Lemma.l. [

ﬂp(w) =

7.2. A Lemma in Arbitrary Codimension

LEMMA 7.7. LetU < C" andV c C™ be polydiscs centered &, and let
gi(z,w) e O(U x V), j =1 ...,k for somek < n, be holomorphic functions
with g;(0, 0) = 0. Let (w"); C V be a sequence with* — 0 and put

A, ={zeU:gi(z,w")=0Vj=1.. k}

Assume thatl, C U is an analytic set of pure dimensian— k for all v. Then

there exists a subsequence @f"), which we again denote b§w"), such that

(A,) converges to an analytic subsétc U of pure dimensiom — k. Moreover,

there exist a holomorphic coordinate systenﬁ?ihwith the same origin, a polydisc

Ui cc U with center0, a nelghborhoodV c C™ of the origin, a holomorphic

maph: V — V, a sequencew”) C V, W' — 0, and holomorphic functions

gi(z, w) e O(Uy x V) such that

1) h(@") = w";

(2) foreachj =1, ..., k, the functiong; is a polynomial inz; with coefficients
holomorphicinz;j1a, ..., z,, w and leading coefficiert;

(3) A,NULC{zelUi:§j(z,®") =0Vj=1..k = A, forall vandA, is
of pure dimension — k;
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(4) Ag:={zelU1:gi(z,0) =0Vj =1, ..., k} is an analytic set ir; of pure
dimensiom — k; and
(5) Ap D lim(A, N U)—in particular, this limit exists.

REMARK 7.8. In general we do not hawe, = A, in Lemma 7.7(3), because
we pass at a certain step of the following proof to a resultant of two pseudopoly-
nomials that might add some additional roots.

Proof of Lemma 7.7The proof is given by induction ovér. Namely, fork = 1

the claim follows from Lemma 2.1. By the induction hypothesis we then may as-
sume that, forj = 1,...,k — 1, theg; are already Weierstra3 polynomialszin

with coefficients holomorphic g, ..., z,, w. We put

A i={zeU:gi(z,w)=0Vj=1...,k—1 Vv,
Ay:={zeU:gi(z,0)=0Vj =1,....k—1},

and we have
A, C A N{zeU: gz, w") =0} (7.6)

The A are analytic sets itV of pure dimensiom — k + 1 andAj = lim A). By
Lemma 2.1 we may also assume tpatz, 0) # 0. Since the analytic sets

A, N{zeU : gz, w") =0}

are of pure dimension — k, the functionsg (-, w")| A}, are not identically O for
anyv.

Replacingg by g« + g1 if necessary, we may assume tpatzs, 0, ..., 0) # 0.
After that we replacg; by the resultant of; and the Weierstral3 polynomial gf
(with respect taz;). The newg, is obviously holomorphic i/ x V (with possi-
bly smallerU > 0) and does not depend ap. At the same time, (7.6) still holds.
After repeating this procedure consecutivelyfor. .., zx_1, we obtain a function
holomorphic inU x V, again denoted by, that does not depend an, ..., zx_1
and for which (7.6) holds.

Finally, we apply Lemma 2.1 to thig and obtain a holomorphicmap V — V,
a sequence’ € Vv, and a functiorg; € O(U x V) such that(%") = w” and

A, C A N{zeU: gz, w,) =0}
Sincegi(z«. .-, zm. 0) # 0, the analytic set
Agi=AyN{zeU : g(z,0) =0}

is of pure dimension — k. After an appropriate change in the variabdes. . ., z,,,
we can replacg; by its WeierstraR polynomial ig,. Thus limA, exists and is
the union of some components 4§.

In order to finish the proof of the lemma, it only remains to show thatdinis
an analytic set in the whole domalihc C”". However, the preceding arguments
can be applied to an arbitrary point in lity,. Hence limA,, is an analytic set of
pure dimensiom — k in a neighborhood of each of its points. At the same time,
lim A, is closed inU. O
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7.3. Proof of Theorem 7.4

Note that Theorem 7.4 is purely local. We may assume thatlQ 0 € V, and
V \ E # §. Furthermore, we need only consider the casef) It then suffices
to show that, for any sequen¢e”) C V \ E with w’ — 0, there is a constant
¢ > 0 such that

VO|2(n_k)(va n 0) <cC.

Observe that it is enough to consider the situation wigei@ 0) = 0. We put
A, ={z:gj(z,w") =0}

and, after applying Lemma 7.7, we obtain new coordinatgsnstead ofw) as
well as holomorphic functiong;(z, w) € O(U1 x V) such that

A, Clz:gi(z,w")=0Vj=1 ... k}.
As in Lemma 7.7, we put
Ag:=1{z:8i(z,0)=0Vj =1,... k};

we know thatd is a purely(n — k)-dimensional analytic set with the property that
the projectiont’: C" — C"* with 7/(z4, ..., 2,) = (Zk41. --., Zn) IS locally
proper onAg near 0. As before, the limit limd,, is the union of some irreducible
components ofio and thus is an analytic set of pure dimension k. After an ar-
bitrarily small change of coordinates, we even have that, foxanryk)-tuplel =
(1, ..y ip_p) With1l < iy < --- < i,_x < n, the projectionr;: (z1,...,2,) —
(214, -+ Zi,,_yy) IS locally proper omAg near 0. Because of the analyticity of our
family A,,, Rouché’s theorem then implies that there esdst- 0 andV > 0 such
that, for all multiindices/ as described previously and for all> N, the projec-
tionsn;: A, — (C}"" have local multiplicities< M near 0. Hence, the Wirtinger
theorem implies

vol(A,NU)<c VYv=N

for a suitable constant> 0. This finishes the proof of the theorem. O

8. Conjecture 6.1 for Large Dimensions

In Lemma 5.9 we constructed for anye M \ X a neighborhood’ > a and a
sequence, C V of analytic sets such that

(i) dmo, = p > 1,

(i) aecl(o,), and
(ii) cl(o,) CE:=M\ X C M.
In order to finish the proof of Theorem 1.1 it therefore suffices to show that, for
any sequence, C V of analytic sets satisfying (i) and (ii), condition (iii) can not
be satisfied. (Then it follows thaf = X.) This statement can easily be shown
for the casep = n — 1. However, from Lemma 5.9 we know only that> 1.

Our goal is thus to establish for which dimensigns 1 we really can exclude

(iii); then we can refine the construction of Lemma 5.9 in order to obtain analytic
setso, with sufficiently large dimensiop.
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The following result of Tumanov [33] will give us lower estimates for thpse
that still allow us to exclude condition (iii).

TaeoREM 8.1 (Tumanov). LetN C U C C” be a closed real-analytic subman-
ifold of finite type of an open sét. ThenN can be stratified av = U}’LlNJ-
such that each stratum; is a real-analytic CR manifold and locally is contained
in a Levi nondegenerate real real-analytic hypersurface.

We need to apply this to a situation somewhat more general than our given hyper-
surfaceM from Theoremil.1. Namely, we suppose that ¢ V ¢ C” is a closed
real-analytic submanifold, pick ane N, and assume that there is a sequence of
closed analytic sets, C V such that

(i) dimo, = p > 1,
(i) aecl(o,), and
(iii) cl(o,) C N.

ProrosiTION 8.2. Let N anda be as before and suppose thgatc V c C"isa
sequence of analytic sets satisfying the conditiohand (ii) just stated wittp >
n/2. Thencl(o,) € N.

Proof. Consider Tumanov’s stratification @f and rewrite it in the fornv =
szil_ll\fj, where; is the union of all strata of dimensigrfrom Tumanov’s orig-
inal stratification. Eacly; is locally contained in a real-analytic hypersurfa\?tp
with nondegenerate Levi form. Assume thalogh) C N and letjp be the largest
index such that ¢b,) N N; # @. Then clo,) N Nj, # @, butcl(c,) N N; =@
forall j > jo. We pick a point € cl(o,) N Nj,. After replacingV by a small
neighborhood/; of b, we will have

cl(o,) N V1 C Njp N V1 C Mj, N Vi (8.1)

Without loss of generality, we may assume hereaftershatO andb € o, for all
v (this is the case after small translationsopfthat do not destroy property (8.1)
and follows from the fact thdt = 0 e cl(o,)).

Since M;, has a nondegenerate Levi form, there exists a complex linear sub-
spacel > 0 of dimensiord > (n 4+ 1)/2 such that is transversal t<n71j(J at 0 and
LN Mjo is a strictly pseudoconvex hypersurfacd.inear 0. Fob, := o, N L we
have

(1) 6,30,
(2) dim(5,) >1lato, and
(3) cl,) € MjNL.

This, however, contradicts Lemma 6.3 and Proposition 6.4(1). O
The next statement generalizes the previous proposition.

ProrosiTioN 8.3. LetV c C”" be an open sety C V aC® real hypersurface
of finite type,A C V an analytic set of dimensiop > 1, and (o,) a sequence of
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analytic sets inV of pure dimensiop, > p/2. Suppose thal # cl(o,) C A.
Thencl(o,) € N.

Proof. We stratify A in the formA = AU Ay U--- U A, where eachi, is a
complex manifold of dimensiod. Since clo,) N A # @ we have clo,) N A, #

@ for somed. Without loss of generality we may assume thabg) N A, NN #
@.LetA,NN = NgUN1U---U N,,_; be a stratification of the real-analytic set
A, N N such that eaclV; is a real-analytic manifold of dimensign let jo be the
largest index such that@h,) N N;, # @, and leta € cl(o,) N Nj,. Furthermore,
choose a holomorphic projection: V. — A, after possibly shrinking/ > a.
Thenz: V No, — A, is proper forv > 1and s, := 7 (s,) C A, are ana-
lytic sets of pure dimensiop. Since clo,) C A, NV (we shrinkV), we also
have clo,) = cl(6,) C A,. Because&V,, is a real-analytic manifold of finite type,
Proposition 8.2 tells us that@,) = cl(s,) Z_ Nj, neara. Sincejo was chosen to
be maximal, it follows that ¢b,) £ N. O

9. Intersections of Segre Varieties

In this section we study intersection properties of Segre varieties of a closed real-
analytic smooth real hypersurfagé ¢ W c C” of finite type. We may assume
that Oe M and set up the machinery needed for the Segre varieties as in Section 2.
(We will later apply what we do here to the target manifédd of Theorenil.1.)

We introduce the following polarization process.

DerFINITION 9.1.  Let0e S € Qo N Uy be an arbitrary subset. The set
S* ={weQoNUi: Q, DS}
is called thepolarizationof S.

LemmMma 9.2. The polarizationS* of S can be characterized as

$*=()0: C Qo

zeS

Proof. Notice thatw € S* iff Q,, D S. This means that € Q,, forall z € S,
which is equivalent to having € Q. for all z € S. This, however, is the same as

we(),c5 Oz OJ

We have the following consequence.
CoroLLARY 9.3. The polarizationS* C Q¢ N U; is a complex-analytic set.
Next we define the Segre completion of a Set Q.

DErFINITION 9.4. Let Oe § C Qo N U; be an arbitrary subset and let
Zs:={S C Uy : S is closed complex-analytic witlf c S}.

The analytic set
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is called theSegre completionf S.
LeEmMMA 9.5. One always has c S andS N S* c M.

Proof. The fact thatS c § is obvious. Next, takev € SN S*. ThenQ,, D S
and hence, according to the definition$fwe have that eve®,, > S > w. This
showsw € M. O

SinceM is supposed to be of finite type, we obtain the following.

CoroLLARY 9.6. After possibly shrinking/; > 0, we haveS N §* = {0} and
hence

dim$ +dimsS* <n —1.

In particular: If S contains a germ of a complex-analytic seBaif dimensiorp,
thendimS* <n—p—1

We now come to a more specific study of intersections of Segre varieties. For this
we assume again thatQS c Qo N U; is a closed subset and denate= dim S.
Furthermore, for ang-tuple (w?, ..., w*) of points inS we define

k
qk = m ijv q~k = qk N QO' (91)
j=1

Lemma 9.7. Suppose the-tuple (w?, ..., w*) of points fromsS has been chosen
in such a way that

dimo(S N g*) =m — k.
Then, for every irreducible componeyit of ¢g* at 0,
dimo(¢®) =n —k and dimo(G*) =n—k -1 (9.2)

Proof. Obviously dimg” > n — k. In order to show that dim* = n — k, we
choose an irreducible componéit s 0 of § of dimensionm. If dim ¢* > n — k
then one also has dig# N g") > m — k. This, however, contradicts the choice
of thek-tuple (w?, ..., w¥), which was done in a such a way that it N ¢%) =
m — k. Thus dimg® =n — k.

In order to show that dilp* = n — k — 1, we assume by contradiction that
dimg* = n — k. This would mean that there is a componefitof ¢* at 0 such
thatg® c Qo. SinceS c Qo, we have

dim(q#ﬂS’)zdimq#—l—dimS’—dion:n—k—i—m—(n—l)=m—k+1.

This contradicts the fact that digi* N $) = m — k. O
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LEmMa 9.8. LetS be as in Definition 9.1 and denote bythe dimension of the
Segre completiol§ of S at 0. Then, after possibly shrinking, there are points
w?, ..., w¥e S (k < n —1) such that one of the following two cases holds true
(1) k =m anddim$ N Q1N ---N Q) =0; or

(2) k=2m —n+1landdim SN Q,N---N Q) =m —k.

Proof. Let 0 < k < m be the largest integer for which thetuplew?, ..., wk e S
can be chosen in such a way that

dimS Ng*) =m —k. (9.3)

If kK = m then there is nothing to prove, so we assumethatm. From (9.2) we
have that ding* = n — k and dimg* = n — k — 1. The maximality of means
that for any (additional) € S there is at least one irreducible compongritn §)*
of g¥ N § of dimensionn — k such thatig* N §)* c Q.. If we therefore denote
by O the collection of all irreducible componentsgfn § of dimensionn — k,
then using Definition 9.1 immediately yields

sc | "™
q*e Qi

because (according to Corollary 9.3) the sgtsare complex-analytic, by Defi-
nition 9.4 we can even surmise that

Sc | 4™ (9.4)

q*e Qi

Let nowS* be an irreducible component §fof dimensionn. Then (9.4) implies
that there is one componegit € Q; such that even

S* c g™,
Notice that dimy# = m — k. Hence, using Corollary 9.6 we obtain the following

estimates for dimensions:

Hx

m =dim3’#§dimq Sn—l—dimq#zn—l—(m—k).

This implies
k>2m—-—n+1

and so finishes the proof of Lemma 9.8. O

10. Proof of Theorem 1.1

We now have all tools needed for finishing the proof of TheotelmAfter these
preparations, we may assume that we are in the situation of Lemma 5.9. We want
to show that 0= X. For this we choose a sequence of poitss 2, a, — 0,

and putS, := S(a,, a,) C Uy x Uj as defined after Corollary 5.3. According to
Proposition 5.8, it would suffice to show thatcl(S,)) N U # @.
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Puts’ := 7'(cl(S,) N ({0} x U})) € Qp andm := dim§’, where§’ is given
by Definition 9.4. Ifm = 0 then 0 is an isolated point of". After shrinkingUs
andUj, the cluster set ¢5,) C Ui x Uj has no limit points orl; x aU; and
the projectionsr: S, — U; are proper fow > 1. Thus=z(S,) = Q,, N U1 and
w(cl(S,)) = QoNU;. If0 e M\ T then Lemma 5.10 applied @, := 7(S,)
would imply thatQo N U; = cl(o,) C M\ ¥ C M. However, this is not the case,
sinceM is of finite type. We must therefore hawgcl(S,) N U) # ¥ and Oc X
in this casgm = 0).

From now on we may assume that> 0 and apply Lemma 9.8 t§'". There
are two possibilities which we will consider as separate cases.

Case 1.There aren pointsw’?, ..., w'” € §' such that
dim$'Nng™) =0 (10.1)
forg™ = Q/ .N---N Q! .. Inthis case, for every € N we can find, associated

to the givenn-tuple(w’?, ..., w'"), m-tuples(w?, ..., w™") and(w'®, ..., w"™")
such thatw™, w™) e S, C Q,, x Q}(av) andw™’ e U, with

w" ——0 and w"” —— w* for u=1,...,m.
V—>00 V=00

Furthermore, we claim that we may also assume that

g™ = Qv N---NQ,m hasdimensiom — m. (10.2)
Indeed, suppose that, for sone {1, ..., m — 1}, we already have diQ,,» N---
N ka\)) =n— k. If

d|m(Qw1v n---N ka\) N ka+1,v) =n— k
for the next pointw**1v, then for some irreducible componegif’ of ¢’ =
Q,vN---NQ,n we have
wh v e gy, (10.3)

Let, furthermore g** be any irreducible component gf’. Since dimg™ =
n—k>n—(m—1) >1 by Corollary 9.6 we have ditg”")* < n — 2. Hence

dim(U(q#”)*) <n-2,

where the union is taken over all irreducible componentg‘df Notice, however,
thatw**+% e 7(S,) and thatr (S,) C Q. NU is relatively open. We can therefore
move the original pointy**1" slightly to obtain a point***’ e 7 (S5,) \ U (¢™").
Because of (10.3), we then have

dim(lev Nn---N kav N ka-HLv) =n— k - 1 (10.4)
The propertyw’*+1V — w’*+1 will not be destroyed by this if we move by
only a sufficiently small amount. Aftern — 1 steps we will have dirgg™") =

n — m. This proves (10.2).
We now consider

S= ﬂ Sw™, a%) C (g™ x q"™) N Uy x Uy).
n=1
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Since dimS’ = m and dim§' N ¢’™) = 0, by Lemma 9.7 we have
dimg™ =n —m. (10.5)

Subcase lan = n — 1. In this situation we obviously haw& = @}, and, as a
result, din(g""~1) = 0 such that Lemma 9.8 implies digi" N Q(,) = 0. Since
cl(g"tv) c g’""*and ck(0) C Qf, (see Lemma 4.10(ii)), it follows that Gs
an isolated point of

§" =AY N ({0} x Up) € ¢t @y = {0},
By Lemma 4.10(ii), this means that (after shrinkitig) the projections
S /]
are proper fow > 1 and thus
(S = ¢ NUL.
At this point, the convergence criterion for families of analytic sets (from Theo-
rem 7.4) becomes important. It tells us that, after passing to a subsequence, the
sequence™’ NU;—which does, indeed, (anti-)analytically depend onvihtiple

of points defining it—converges to an analytic getc U; of pure dimension 1
with 0€ A. SinceM is of finite type, the sett contains a point® ¢ M and

Pencl(S" ) c ncl(Sw'™, a%))).
Together with Lemma 5.10, this yields=0x.

Subcase 1bn < n — 1. We remind the reader of our notatiéh = S(a”, a")
and putS” := §” N S,. We have dim§” > n —m — 1 > 0. Since we still are
in Case 1, the point’Gs an isolated point ig"” := n’(cl(ig”) N {0} x U;)) C
g™ N § = {0'}. Hence, for appropriate choices bf and Uj, the projections
T §;" — Uj are proper. We also have(S;") =q™ N Q. N Uy and, after pos-
sibly passing to a subsequence, the gétsn Q,» N U; converge to an analytic
setA of positive dimension. The same arguments as in Subcase 1a now show that
Oe X. This finishes Case 1.

Case 2.There exisk < m pointsw’s, ..., w’* € §’ such that dina$’ N ¢’*) =
m—kandk >2m—n+1(qg’* = 0 aN---NQ ).

As done in Case 1, we can find two sequencek-tfples(w?, ..., w*") and
W, ...,w*),v=123,..., suchthat one has, forallandx =1, ..., m:

(i) w*eQ, NU, w* — 0asv — oo;
(i) w™e Q}(av), w* — w* asy — oo;
(i) ", w™) €S, C Qu, X Qi
(iv) the setsg* := Qv N---N Quw andg*’ := Q,, N ¢*" have dimensions

n —k andn — k — 1, respectively (Lemma 9.8).

Analogously, we put

k
q/kv — <ﬂ Q;),Ml,> N Ul' and é/kv = q/kv N Q}(av)'

n=1
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By Theorem 7.4, we may assume that the sequént® converges to an ana-
lytic setA C U; and that the sequenc¢g*”) converges to an analytic sétc Uy,
where

dmA=n—k and dmA=n—k-1 (10.6)

We introduce
k
Sl]f = ﬂ Sw™, a") C (g% x ¢"*) N (Uy x U)).
n=1

Sincek < m, the inequalityk > 2m — n + 1 implies thatn < n — 1 andk <
n — 2. Thus dimS¥ = n — k — 1> 1. Since dim(8' N ¢’*) = m — k, there exists
a coordinate system ii” such that

Sng*niz’el):zj=--=z, ,=0={0).
Now we consider the sets
T,i={(z2) eS8l iy =ai’ ... = an_ ),

wherea! = (aly, ..., al,) = f(a,). Since dimS* = n — k —1and(a,,a!) €
Sf, the setdl, are analytic sets ib/; x U; of dimension —k —1— (m — k) =
n—m — 1> 0. We also have
M= a'(c(T,)N ({0} x Up) c §'Ng*N{z' 1 zy=---=2,,_, =0} = {0}
Consequently, for appropriat® andUj, the projectionsr : 7, — Uy are proper.

We now redefine the sets from Section 5 by putting

o, .= n(T,).

We have:

(1) the setw, are analytic inUy;

(2) oy, C ékv;

(3) dimo, =n —m — Lwhereas dij*’ =n —k — 1

(4) cl(o,) C A.

Property (4), together with (10.6) and Lemma 9.8, yields the following estimates
of dimensions:

2n—m—-1)=2n—-2m—-2>2n—2—-k—n+1=n—-k -1,
implying that
dimo, > 2dimA
Therefore, applying Proposition 8.3 witfi := M immediately gives
clo, ¢ M. (10.7)

We are now in the following situation: the sequenc@s”, a,)) and(o,) satisfy

all the properties stated in Lemma 5.9. Hence Lemma 5.10 applies, and this to-
gether with (10.7) implies (by contradiction) tha¢@. This finishes the proof of
Theoreml.1. O
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