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Homoclinic Orbits for Schrodinger Systems

MARTIN SCHECHTER & WENMING ZOU

1. Introduction

We consider the following Schrédinger system:

{ O — Ayu+V(x)u = Hy(t, x,u, v) for (r.x)€R x RV S)

—o;v— A+ V(x)v=H,(t x,u,v)

whereV: R¥ — RandH: R xRY xR?M — R are periodic in andx; (, v) =

(0, 0) e R?M s a stationary solution. Our purpose is to find a nonstationary solu-
tionz = (u, v): R x RY — R?M of (S) satisfying:(, x) — 0 as|t| + |x| — oo.

In this case, it is called the homoclinic orbit that is homoclinic to the stationary
solution.

During the last ten years, the existence of homoclinic solutions has been studied
by variational methods (see e.g. [AB1; AB2; CR; ScZ; SZ; WZ] and the references
cited therein). Since there is no compactness of imbedding, the problem becomes
very complicated. The difficulty also occurs when we consider (S). Before stating
the main results, let us recall some well-known results related to (S). Brézis and
Nirenberg [BrN] considered the system

{ dJu—Aju=—v>+f

for (¢, 0, 7) x Q
—atU—Axvzu?’—i—g (t,x) e( ) X

satisfyingu = v =00n(0, T) x 3 andu(0, x) = v(T, x) = 0in Q. HereQis a
bounded domain dR" andf, g € L>°(£2). Using Schauder’s fixed point theorem,
they obtained a solutiof, v) with u € L*((0, T) x ) andv € L5((0, T) x ).

In [CFM], the authors studied the following problem:

{ u — Au = ]9 %

for (r,x) e (-T,T) x Q,
—BZU—AXUZ |u|p72u ( X) ( )

whereS is a smooth bounded domain® andN/(N +2) < 1/p+1/q < 1. By

the usual mountain pass theorem, they obtained at least one positive solution sat-
isfying u(z, -)|sq = v(t, -)|sq = Oforallr € (—T, T) and foru(—T, -) = u(T, )
andv(-T, ) = v(T, ).
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Very little is known for (S). In a more recent paper [BD2], system (S) was ex-
plored by a new linking theorem due to [KS] and [BD1]. The authors obtained one
nontrivial solution and, moreover, infinitely many solutions if the potential is even
in (u, v). In [BD1; BD2] (see also [KS]), the following Ambrosetti—-Rabinowitz
global superquadratic condition plays an important role:

O0<yH(t x,2) < H.(t,x,2)z VYt x)eR xR, Vz#£0, (1.2

wherey > 2 is a constant. In the present paper, we shall study the weak super-
linear case withouflL.1) and thesymptotically linear case. Witho(it1), theprob-
lem becomes quite different and complex. Because of the strong indefinite nature
of the energy functional, the main obstacle is the proof of the boundedness of the
(PS) (i.e. Palais—Smale) sequence. Itis also not easy to derive a (PS) sequence for
the asymptotically linear case. It should be mentioned that the methods used in
[BD1; BD2; J; KS; Z] cannot be applied to our cases. By virtue of the new theory
established in [ScZ], we can easily obtain a bounded (PS) sequence directly from
the weak linking theorem for the modified functional and thereby have a sequence
of critical points, which provides a nontrivial solution of (S).

Throughout this paper, we always assume thatnd H satisfy the following
conditions.

(V) VeC(RM R), andV is T;-periodic inx; for j = 1,..., N; furthermore, G¢
o(—Ax +V), whereo denotes the purely continuous spectrum-af, + V.
(H) H € CYR x RY x R R) is To-periodic int and Tj-periodic inx;, j =
1 ..., N;also,H(t, x,z) > 0 forall (¢, x, z), wherez = (u, v) e R?M.
By [RS],o(—A, + V) is bounded below and consists of closed disjoint intervals.
We permit— A, + V to have essential spectrum below O.

1.1. TheSuperlinear Case
From now on, the lettar will be indiscriminately used to denote various constants
whose exact values are irrelevant. We need the following assumptions:

(S1) H.(t, x,z) = o(|z]) asz — 0 uniformly inz andx;

(Sp) |H.(t, x,z)| < c|z|* forall (¢, x) and|z| > Ro, whereRo > 0 andu > 0
are constants, & 4 < (N + 4)/N;

(Se) 3H.(t,x,2)z— H(t,x,z) > c|z|? for all (¢, x, z), where we also havg >
max(2, (2N + 4)(u? — 1)/(Np + 4 — N)}.

Our main result is as follows.

THEOREM 1.1. Assume thafS,)—(S3) hold. Then(S) has at least one nontrivial
solution.

As an immediate consequence, we have the following corollary.

CoroLLARY 1.1. Assume thaf is of the form

H(t,x,2) = Aolz|"T + G(t,x,2), Ao>0, 1< pu < (N +4)N,
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where|G,(t, x, 2)| < (n—DAg/D)|z|* forall (¢, x, z). Then(S)has at least one
nontrivial solution.

Next, we consider the second case. The potential satisfies local conditions at zero
and at infinity.

(F1) Thereexist > p > 2, v < (2N + 4)/N, andcy, ¢z, c3 > 0 such that
alzl" < H (t,x,2)z < |H(t, x, 2)||z| < c2lz]” + c3lz|”

forall (r, x,z) eR x RN x R?M,
(F2) H,(t,x,2)z — 2H(t, x,z) > Oforall (¢, x, z) # (0,0, 0).
(F3) There existy > 2 such that

HZ(t’ x’ Z)Z >

liminf > Yo

lzl>00  H(t, x,2)
uniformly for (¢, x) e R x R,
(F4) There exists ar > p such that

H.(t, x, — 2H(t, x,
Lt x,2)z (XZ)ZC>0
|z|*

lim inf
z—0
uniformly for (¢, x) e R x RV,

THEOREM 1.2. Assume thatF;)—(F,) hold. ThenS) has at least one nontrivial
solution.

Remark 1.1. Compared with [BD2] (see also [BD1; KS; SZ]), our assumptions
are quite weak. In [BD2], besidg$.1) andothers, the following condition was
imposed:

|H.(t,x,2)|* < cH.(t,x,2)z forall (1, x) and|z| > 1,

wherea’ = a/(e — 1) anda € (2, 2N + 4)/N).

1.2. The Asymptotically Linear Case

We make the following assumptions.

(Ty) H(t, x,2) = 3Bolzl> + K(t, x, z), whereK, (1, x, z) = o(|z]) as|z| — oo
uniformly for all (¢, x); moreover,8¢ > n1, whereu; is the smallest posi-
tive point in the spectrum 6f A, + V.

(T2) There exisin € (2, (2N + 4)/N) andRgy > 0 such that

clz|™ < H.(t,x,2)z < |H (t, x, 2)||z| < c|z|™

forall (r, x) e R x RY and|z| < Ro.
(T3) K,(t,x,2)z—2K(t,x,z) > Oforall (z, x, z) # (0,0, 0).
(T4) There exists & > 2 such that
liminf Heb X2z _
=0  H(t,x,2)
uniformly for (¢, x) e R x R,
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(Ts) There exists am € (0, 2) such that

K, — 2K (t
fiminf Xl = 2K@ X9 g

|z|—>00 |z|¥

uniformly for (¢, x) e R x RV,

REMARK 1.2. Conditions (7)—(Ts) imply that (S) is asymptotically linear at in-
finity and superlinear at the origin.

We shall prove the following result.
THEOREM 1.3. Assumé T1)—(Ts). Then(S) has at least one nontrivial solution.

ACKNOWLEDGMENT. The second author, Wenming Zou, thanks the Department
of Mathematics at the University of California (Irvine) for offering a visiting po-
sition from 2001 to 2003. During that period, this work was done.

2. The Superlinear Case

0 —I 0 I
‘7':<1 0)’ ‘70':<1 0)’

andA := Jo(—A+V). Then (S) canberewrittend®,z = —Az+H, (¢, x, z) for
z = (u, v). In this way, (S) can be regarded as an unbounded infinite-dimensional
Hamiltonian system i.?(RY, R?M).

Let Ho := L%(RY,R?M): thenD(A) = D(JA) = W22(RN,R?M) andH :=
L3R, Ho) = L%(R x RN, R?) (cf. [BD2]). By (V), there is an associated or-
thogonal decompositiofl = H~ & H* with z = z~ + z*, wherez* e H=*. Let
E := D(]L|¥?) be equipped with the inner product

(z1, 22) = (IL1Y?21, |L1Y?22) 2

and norm||z|| = (z, z)Y2, whereL = J3, + A. We then have the decomposi-
tion E = E* @ E—, whereE* = E N ‘H* are orthogonal with respect to both
(-, ),z and(-, -). By [BD2], E is continuously embedded itf (R x RY, R?M) for
anyr > 2if N = 1and forr € [2,2(N + 2)/N]if N > 2. In particular,E is
compactly embedded ihf,.(R x R, R?M) for anyr > 2 if N = 1 and forr €
[2,2(N + 2)/N) if N > 2.

Let

Let

D(z) 1= %(Mz*n2 —llz711?) - / H(t, x, 2).
RxRN

Then, under the assumptions of Theordms1.3,® € C1(E, R) and the critical
points of® are weak solutions of (S).

Our results stated in Section 1 shall be proved with the help of the following
critical point theorem (cf. [ScZ]).

Let E be a Hilbert space with nortn|| and inner product, -), and letN C E
be a separable subspage= N @ N1. SinceN is separable, we can define a new
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norm|v|, satisfying|v|, < |lv| for all ve N and such that the topology induced
by this norm is equivalent to the weak topologyfon a bounded subset of
(cf. [DS]). Forz=v+we E=N® N+ withve N andw € N+, we define
122 = [v|? + [lw]|® Then|z|, < |z|| forallu e E.

In particular, ifz, = v, + w, is bounded and,, — z is in the norm-|,,, then:
v, — v weakly inN; w, — w strongly inN*; andz, — v + w weakly in E
(cf. [DS]).

LetQ c N beabounded open convex subsetangdet O be afixed point. Let
F be a|-|,,-continuous map front ontoN that satisfies the following conditions:

(1) F|o =id andF maps bounded sets to bounded sets;
(2) there exists a fixed finite-dimensional subspBAg®f E such that
Flu—v)—(Fu)— F(v)) CEy Yv,uek;
(3) F maps finite-dimensional subspacesmto finite-dimensional subspaces
of E.
Set
A:=90, B = FY(po).
REMARK 2.1. There are many examples.

(YLet N = E-andN*+ = Etfor E=E-@E™*,andletQ :={ucE~:
lul| < R} with po =0€ Q. Foranyu = u~ @ u* € E, defineF: E — N by
Fu :=u~. ThenA := dQ andB := F "Y(po) = E* satisfy conditions (1)—(3).

(i)Let E = E-®ET andzp € ET with ||zo]| = 1. Foranyu € E, we writeu =
U Bszodwtwithu e E-, seR, andwt e (E- ®Rzp)t = E1+ LetN =
E-®Rzp. FOrR > 0,letQ :=={u:=u" +szg:5s€R,u" € E~, ||lu|| < R}
with pg = sgzo€ Q. Let F: E — N be defined byFu := u~ + s|jzo + w||zo.
ThenF, Q, po satisfy the conditions (1)—(3) with

B = FY(s0z0) = {u :=sz0+sw" s > 0,w" € E, ||lul| = so}.

For ® e CY(E, R), we define
I':={h:[0,1xQ — E andh is |-|,-continuous; for any(so, uo) € [0, 1]x 0,
there is & - |,,-neighborhood/(,, ,,) such that
{u—h(t,u): (t,u) € Usguo) N ([0,1] x 0)} C Efin,
h(0,u) =u, ®(h(s,u)) < ®u) Vue Q}.
Here and henceforth, we u#gy, to denote various finite-dimensional subspaces
of E whose exact dimensions are irrelevant. Note that ¢ since ide T".
The variant weak linking theorem may be stated as follows.
THEOREM 2.1 [ScZ]. Let
O;(u) = Iu) —rAJ(u) YAe[l,2], uckE)
be a family ofC*-functionals and assume that

(@) J(u) = Oforall u € E, whered, := &;
(b) I(u) — coor J(u) - oo as|ul|| — oo;
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(c) @, is|-|w-upper semicontinuousy’; is weakly sequentially continuous, and
®; maps bounded sets to bounded sets
(d) sup, @, < infg @, forall A €[1, 2].
Then, for almost alk € [1, 2], there exists a sequen¢e,) such that
Sun'”n” < 00, CD;L(MI’!) - O? (D)L(un) - C)u

where
C, := inf sup®;(h(L u)) € [inf D, supCD].
herueQ B 0

In order to study (S), we consider

1 1
¢M@:=§HHH2—A<§MV+—/ i
RxR

By (S1) and (S), for anye > O there exists &, > 0 such thatH (¢, x, z) <
¢lz|2 + C.|z|*L. Therefore,

D,(z7) = 3lzFI2 = rellz 13— Collz*ll 1 = >0 Ve[l 2]

H(t,x,z)), ueck.

forb>0andze B :={z:z€E™, |z|| = ro}. The constants andrg are inde-
pendent of.. Here and in the seque|;||, denotes the usual norm &f(RV),
On the other hand, by ($and (S), H(z, x, z) > c|z|? for all (¢, x, z). Then, for
fixedzp € ET with ||zo|| = 1andz =z~ + szo, we have

Dy(2) < 32— 3z 12 —clzllf <0

forze A:=0{z =2z +sz0: |zl < R, R > 0, s € R}, givenR large enough.
Moreover, it is easy to check thd, is |-|,,-upper semicontinuous and thaf is
weakly sequentially continuous. Combining the argument here with Remark 2.1
and Theorem 2.1, we have the following lemma.

LemmMma 2.1. Foralmostalli € [1, 2], there exis{z,,} C E suchthat,aga — oo,

suplz,ll < oo, @i(zx) = 0, ®i(z,) — Ci€[b,d],

n

whered := sup; ® andQ :={z=z +sz0:5€R,z-€E~, |zl < Ro}.

Lemma 2.2. For almost allA € [1, 2], there exists av, such that®)(w;) = 0
and ®;(w;) <d.

Proof. For{z,} in Lemma 2.1, writez,, := z,7 +z,; with z:f € E*. We claim that
there existx > 0 and a sequende, } € R such that lim_, fB(y,,,l)'ZlJ”Z >

o > 0, whereB(y, r) denotes the ball centeredatvith radiusr. In fact, if this

is not true then, by a variation of Lions’s concentration compactness lemma [L],
we have that,” — 0in L/(R*")for2 < ¢t < (2N +4)/N. By (S;) and (S), for
anye > 0O there exists &, > 0 such that

58/ Iznllzn+|+Cs/ lzal*12 1,
RL+N RL+N

Hz(ta xa ZH)Z:

‘ R1+N
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which implies that the left-hand side converges to 0. Consequently,
20,(z,) < llzf 1P = j(z)zf + A H.(t,x,2,)z} — 0,

RI+N

a contradiction. Therefore, our claim is true, and we may assume that there exist
r > 0 (independent of) andy* := (¥o, y1, ..., yn) € ToZ x - - - x TyZ such that
Json|Z 12 = a/2, wherez, i= Z;} + 2, = z,(t + Yo, X1+ J1, .-, Xn + In).

By periodicity, {z,,} is still bounded and we have lim ., ®,(z,,) € [b,d] and

lim . ®(z,) = 0. Without loss of generality, we may suppose that— w;"

andz, — wj. The compactness of the embeddingf into L .(R*") for

2 <t < 2(N +2)/N implies thatw,” # 0, and consequenthy; := w} + w; #
0. Evidently, ®;(w,) = 0. Finally, by (S) and Fatous’s lemma, we have

D (wy) = Dp(wy) — 3(PL(w;), wy)

= K/ (3H.(t, x, w;) - wy, — H(t, x, wy))
RI+N

1+N n—>00

=)\./ lim (%Hz(t,x,fn)-in—H(t,X, zn))
R
< lim (@4(Ea) — F{®}En). Zn)
= lim ®,(z,)
n—o00
<d. u

LemMma 2.3. There exisk,, — landw, # 0such tha@;n(wn) =0, &, (wy) <
d, and {w,} is bounded.

Proof. By Lemma 2.2, we need only prove the boundednes$uqf. Since
@, (wy) — 5(P) (wy), wy) < d, condition (S) implies that [,y [wa|? < c.
By (S2)—(S3), we may assume that < u + 1. We have

f D
R1+N
A=A+ w)/B Nt(u+1/(2N+4)
5( f |wn|ﬂ> ( / |wn|<2N+4>/N>>
R1+N R1+N

t(u+1)

< C”wn”(zl;v_*_@/]v
1

< cflw, |+,

. _(@N+4A+p—p)
wherer ;= arm@EN 1N € [0,1). Therefore,

2
llw, 1° = knf H(t, x, wy)w,
RI+N

§ce/ |wn||w,;*|+c/ fwa ||
R1+N R1+N

2 1
< cellw, I1° + llw, "
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From the arbitrariness afand the fact thafu + 1 < 2, we conclude thatw;},
and hencdw,}, is bounded. O

Proof of Theorenl.1. Since®; (w,) = 0, we see that

2
”w;:—” = )"H/ HZ(t9xs wn)w;:—
RI+N

scf (elwa] + Colwn ™) w] |
R1+N

2 1
< cellwy I + cllw, [1**

Therefore|lw/ || > ¢ > 0. We know that there exisp > 0 and a sequende,} C
R/ such that lim_ « fB(y,,,l)'wjl_l > g9 > 0. Otherwise, by Lions’s concentra-
tion compactness lemma,” — 0in L/(R*") for 2 < ¢t < (2N + 4)/N. This

is impossible becaugpw; || > c. Therefore, by standard arguments, there exists
az* =zt +z suchthat* # 0 and®’(z*) = 0. O

Proof of Theorem 1.2Under the assumptions {}(F;), the conclusions of
Lemmas 2.1-2.3 are still true. It suffices to prove the boundednegs, fin
Lemma 2.3. Now

12 = a2 = [ HGxowgw, el @)
RI+N
By (F3), there existRy > 0 andeg > 0 such thatg — g > 2 and

H,(t, x, wy)w, > (ro —eo)H(, x,w,) for |w,| > Ryg. (2.2)
By (F2) and (R), there exists a > 0 such that

H. (t, x, w,)w, — 2H(t, x, w,) > c|lw,|* for |w,| < Ro. (2.3)
Since®;, (w,) < d and®; (w,) = 0, it follows that

(% - ﬁ)(nw:nz — hnllwy %)

1
+)‘-ilf ( )(Hz(tvxv wn)wn_H(tax’wn)) Sd
RN \F0 — €&
Therefore, by (I,

2 -2
llw, 11 = A llw, |

1
§C+C</ +/ )(H(t,x,wn)— Hz(t,x,wn)wn>
lwal<Ro  J|wa|=Ro (ro—¢)

1
§C+C/ (H(thv wn)_—HZ(tv-xv wn)wn>
|lwa|=Ro ro—¢

§c+6/ H,(t, x, w,)w,
|wn|§R0

< c+c[ (wnl” + [wal?).
|wn|§R0
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On the other handp, , (w,) — %d)/’\n(wn)wn < d and hence—by (2.2), (2.3), and
(F1)—we see that

cz / (FH.(t, x, ww, — H(t, x, w,)) > c/ lwn|® (2.4)
RI+N |

wy|<Ro
and

c> f (3H(t, x, wy)w, — H(t, x, w,))
RI+N

zc/ <r0_80—1>H(t,x,wn)
|wn|>Ro 2

> c/ |w,|". (2.5)
[wn|=Ro

Consequentlyjlw”PRomn|f’ < c¢. Assumptions () and (F) imply that either
V>a>pora>v>p.
If p < a < v, then by (2.4) we havg

|lw,|" < ¢ and, forr small enough,

wp|<Ro

/ |w,|? =/ |w, |07 [w, |7
|lwn|=Ro |lwy1<Ro
A-t)p/a 1/q
= (/ |wn|a) (/ |wn|tpq)
|lwa|<Ro |lwa|<Ro
1/q
SC(/ |wn|"”1>
|lwa|<Ro

< cllwall”, (2.6)

where¥g + (1—t)p/a =1
If p <v <athen, by (2.4) and (2.5), we have that

/ lwa [P < cllw, |, / [wal” < cllwa ™. (2.7)
|wn|<Ro |wn|<Ro

Combining (2.4)—(2.7) yields the following estimates:

2
| =An/ H. (1, %, w)w,
R1+N

-1 -1
< C/ (w7 4w, 1P H |,y |
R1+N

(v=D)/v
scnw:n(/ |wn|”+f |wn|”>
|wy |=Ro |lwy|<Ro
(p=D/p
+c||w;:||(f |wn|f’+f |wn|")
‘wn‘zRO ‘wn‘<R0

—1) —1
< cllw; (e + w7 + fJw, [P79).

Sincer can be taken arbitrarily small, it follows thgtw;" ||}, and hencé||w, ||},
is bounded. O
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3. Asymptotically Linear Case
In order to prove Theorem 1.3, we first check the conditions of Theorem 2.1.

LemMma 3.1. There existg > 0andb > 0 (independent of) such that®d, |z >
bforall A €[1,2], whereB = {z:z€ E*, |z|| = ro}.

Proof. The proof is similar to the argument in the previous section. O

LeEmMA 3.2. There existo € E™, |lzoll = 1, andR > ro (independent of.)
such that®; |4 < 0, whereA = d{z =z~ +sz0:2 € E~, ||lz| <R, R > 0O}.

Proof. SinceBg > u1, We can find & € £7\{0} such that the quadratic form
corresponding to-A, + V — Bo is negative orRzo @ E~. Hence, ||Zo]?> —
Bo [run 25 < 0. We choosezg = Zo/|Zoll. Now we need only prove|, <

0 for large R, since H is positive. If this is not true, then we may find, =
snzo + w, with [Jw,|| — oo such that®(w,) > 0. Settingz, = s,/|lw,|| and
u; = wy/|lw,|, it follows thatz, > |lu;||. Sincet? + |lu; ||> = 1, we may as-

sumet, — t, > 0 andu,; — u~ weakly in E. Denotex = t,zo+ u~. Since
(zo,u™ )2 =0, we have

2 —n2 2 —n2 _ _
2 —ﬁo/ wew =12 — Ju-| —ﬁo/ (tazo+u™)(ts 20+ 1)
RI+N RI+N
2 —n2 2 2 —\2
<2 —ﬁot*/ Zo—ﬁo/ W)
R1+N R1+N

<i? <1— ﬂo/ 2(2)>
R1+N

< 0.

Hence, there exists a bounded @efuch that? — [|u~||> — Bo [, u* < 0. Onthe
other hand® (w,) > 0 implies that

1 1 H(t, x,w,)
12— 5 lu, ||2—/ —a
RV [lwyll
H(ta-xawl‘l)
llwn 12
2 _ }HM*”Z_/ %:30|wn|2+K(t, X, W)
27" llwn 12

t
By (Ty) and the Lebesgue dominated convergence theorem,

im / K@, x, wy) _ o
o0 Jo o lw,ll?

Hencer? — |lu~||? — Bo [,u? > 0, and we have a contradiction. Consequently,
there exists alR > 0 such thatb,(z) < ®(z) <Oforallze A. O
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LemMma 3.3. There existr, € [1,2] and w, € E\{O} such thati, — 1,
®;,(w,) <d,and @ (w,) = 0. In particular, {w,} is bounded.

Proof. We only prove the boundedness{af,}; the proofs of the existence af,
anda, are similar to those in Section 2. Sinég, (w,) < d and@;“(wn) =0,
we have

(3= 2)Uw 17 = aullw, 12
+ AHA RN(%HZ(L X, wﬂ)wﬂ - H(t’ X, wn)) S d. (31)

On the other hand, by ¢)—(Ts) we may assume that
H,(t,x,2)z > uH(t,x,z) for |z] < Ro, 3.2
K. (t,x,2)z — 2K(t,x,z) > c|z|* for |z| > Ro. (3.3)
Therefore, by (3.1) and (3.2),

2 —12
llw, I = A llw, |

§C+C/ (H(ta X, wil)_le(ta-xa wn)wn)
RxRV o
:c—i—c(/ —i—/ )(H(t,x,wn)—1Hz(t,x,w,,)w,,)
m
|lwa|<Ro |wn|>Ro
§C+/ (H(taxv wn)_%Hz(tvx» wn)wn)
|wn|>Ro

§c+/ (3= 5 H6 x, w)w,
|w,|>Ro

< c+c/ |w,,|2.
|wn|=Ro

Since®;,, (w,) — 3(P}, (w,), w,) < d, it follows that

c= / (Hz(taxawn)wn —ZH(I,X,wn))
RxRYN

= </ +/ )(Hz(t,x, wn)wn_ZH(ts X, wn))
|wn|<Ro |wn|=Ro

> C/ |w, |™ +C/ |w,|*. (3.4
[wn|<Ro lwy|>Ro
Choose .= (N +2)(2—a)/(2(N +2) —aN). Thent € (0,1) and

/ |wn|2=/ [w, |02 w, |
|wn‘2RO Iwn|ZR0

1-1)2/a 2tN/(2N+4)
2N+4)/N
5(/ |wn|“> (/ " “/)
|wy |>Ro |ws |>Ro

|2 (3.5)

=< cllwn]
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Combining (3.1)—(3.5), we have the following estimates:

2
I 12 = A f Ho(t, %, wn)w
RxRN

< C</ +/ )IHz(t,x, wy)|[w;) |
|w,|>Ro |lw,|<Ro

-1
scf |wn||w:|+c/ ™|
|wy|>Ro lw,|<Ro
(m=21/m 1/m
SC(/ |wn|'") (f |w:|'")
|wy|<Ro lwa|<Ro
1/2 1/2
2 2
|w,|>Ro |w,|>Ro

< cllw | + cllwa " lw, |,
which imply that{w;}, and hencédw,}, is bounded. O

Proof of Theorem 1.3By the assumptions of Theorem 1.3, for any 0 we have

2 2
w1 = [ Hx )l < el el
R+

w2 = —/ H (., woywy < ellwll? + cllw 7,
RI+N
wherep > 2. It follows that||w, || > ¢ > 0. Similarly, there exists a* # 0 such
that®(z*) = 0. O
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