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Sharp Sobolev Inequalities
in Critical Dimensions

YuxIiN GE

1. Introduction

Let K e NandQ c RY (N > 2K + 1) be a regular bounded domain®?. We
consider the semilinear polyharmonic problem
(—A)Xu = qu + Jul*"%u in Q, 1)

where
2N

TN -2k
denotes the critical Sobolev exponent. Koe= 1, Brezis and Nirenberg [3] stud-

ied the existence of positive solutions of (1) with homogenous Dirichlet boundary
conditions

u=0 onog. (2)

They discovered the following remarkable phenomenon: the qualitative behavior
of the set of solutions of (1) and (2) is highly sensitiveMpthe dimension of the
space. To state their result precisely, let us denote;by O the first eigenvalue
of —A in Q. Brezis and Nirenberg showed f& = 1 that: (a) in dimensiow >
4, there exists a positive solution of (1) and (2) if and only. i€ (0, 21); while
(b) in dimensionV = 3 and wher2 = B; is the unit ball, there exists a positive
solution of (1) and (2) if and only if. € (A1/4, A1).

Pucci and Serrin [13] later considered the general polyharmonic problem (1)
with K > 1 and with homogenous Dirichlet boundary conditions given by

DYt =0 ongQ for k=0,...,K —1 ()

Here D*u denotes any derivative of ordérof the functionx. Pucci and Serrin
were interested in the existence of nontrivial radial solutions of (1) subject to the
boundary conditions (3) in the caSe= B;. They introduced the notion afiti-
cal dimensiongor (1) and (3) as the dimension&for which radial solutions exist
only for » > A* wherex* > 0. Moreover, they conjectured that, givéh> 1, the
critical dimensions are given byR2+1 < N < 4K — 1 Itis shown in [7] that
the dimensiongv > 4K are not critical, and the conjecture of Pucci and Serrin
has been partially solved; see [1; 4; 8; 13; 14] and the references therein.

The critical dimensions are intimately related to the existence of sharp Sobolev
inequalities. Indeed, motivated by the nonexistence results in [3], Brezis and Lieb
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[2] proved that, for any bounded s@tin R3, there exists a constaft > 0 (de-
pending or€2) such that

SERIN f sy + ClLf 173 g < IVf 172, Vf € Hp(<), (4)
where: ,
IVF 112, Nl
S(R? := inf inf  —2
rets@\or || f12e feHl(lR3)\{0 /1176

is the best Sobolev constant for the embeddi§g) — L8(Q); || f|Laq) iS the
L7-norm; andL% (©2) denotes the weak?-norm, defined by

Ifligie = _sup_ [AIT0 [ 7). (5)
ACQ,|A|>0 A

This result has more recently been generalized by Gazzola and Grunau [5] to any

HE for K > 1 More precisely, for any bounded domanc RY with 2K +1 <

N < 4K —1, they proved that there exists a consté@nt 0 (depending oV, K,

and) such that

Sk RN f sy + CIF W win-am g < Ik 20 Y €Hg(R).  (6)

In (6) we have, by definition,

/(( AMMf)2dx  if K =2M iseven,

”f”KZQ . (7)
/lV(—A)Mﬂ dx if K=2M +1isodd,
Q

and

2
Sk(RY) = inf ”f”“Q= inf I/l 2m0 (8)

fEHK(Q)\ ”f”LJ(Q) fEHé((RN)\{O ”f”LS(]RN)

is the best Sobolev constant for the embeddiffg2) < L5(£2). Recall that the
exponents is defined by = 2.

In this paper, we pursue the study of these sharp Sobolev inequalities for some
function spaces that are naturally associated to variational problems. More pre-

cisely, we consider the space

He @) = {UGHK(Q) | (~A)v=00ndQV0<i< [Kg_l}}

Where[’(z““l] = M+1if K =2M +1isodd and®] = M +1if K =

2M + 2 is even. This definition is motivated by the fact that Navier conditions
(—A)'u =0 onas,

forall 0 < i < K — 1, are natural boundary conditions for critical points of
variational problems involving higher powers-efA. Granted this definition, we
establish the following sharp Sobolev inequality.
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THEOREM 1. LetQ be aregular bounded domain R and let2K +1< N <
4K — 1 Then, foranyl < g < there exists a constaiit > 0 (depending
on, N, K, andg) such that

Sk R f 125y + Cll f 2oy < N f1Z 2.0 Vf € HNX Q). )

This result means that, on regular bounded domains, the classical Sobolev inequal-
ity associated to the embedding

HE(Q) — LY(Q)

N2K’

with optimal constantx (RY) can be improved by adding a remainder term of
L?-norm precisely whenR +1 < N < 4K — 1. Therefore, in some sense, this
result describes the relation between the sharp inequalities for a Sobolev embed-
ding and the critical dimensions conjectured by Pucci and Serrin [13].

This paper is organized as follows. In Section 2, we study the best constant in-
volving the critical exponent in the Sobolev inequality. Section 3 is devoted to the
proof of Theorem 1.

2. Best Constants for Sobolev Inequalities

In this section, we analyze the best Sobolev constants for functions defined either
on the whole space or on the half sp&#® = {x = (x1,...,xy) | x1 > O}.

Using this, we obtain the best Sobolev constants for functions defined in bounded
domains. By definition, the spa@®2(R") (resp.DX2(RY)) is the completion

of C(RY) (resp.C§°(RY)) for the norm|| - || o gy (resp.||- ||K2RN) We also
define

DEZ(RY) —{M|RN | ue DX2(RY) and (—A)u =0 onx; =0

vo<i < [“1“.
2
Finally, we set

Sk, o(RY) 1= inf{[lul% , v | u € DFARY) and [lull oy = 1},

Sk.o(RY) := Inf{”u”KZ]RN | ue D**(RY) and llull Lsryy = 1},
Sko(RY) = inf{llull% , e | u €Dy *(RY) and flull sy = 1.
Using the strategy developed in [18], we can show the following.
THEOREM 2. Assume thalv > 2K + 1; then the following equalities hold
Sk (RY) = Sk,0(RY) = Sk,0(RY) = S,o(RY).

Moreover,Sk.o(R") is achieved by a family of functions given by
g(N=2K)/2

Uk,e,y(x) == Cyk (10)

(82 + |x _ y|2)(N72K)/2’

wherey e RV, ¢ > 0, and the constanty, ¢ is chosen so thatUx ¢,y ll Lsgrvy = 1.
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The proof of this result is based on Talenti’'s comparison principle. Recall that, for
any functiong, the Schwarz symmetrization ¢fis defined by

¢*(x) :=inf{y > 0| u(y) < onlx|V},

whereu(y) ;= meagx € Q | |¢(x)| > y} andoy is the measure of tha/-
dimensional unit ball. Observe that, when the functhda defined over a bounded
setQ, its Schwarz symmetrizatiop* is defined on the bal2* chosen so that
measg2) = meagQ2*). Granted these definitions, Talenti's comparison principle
can be stated as follows.

ProposITION 1 [15]. Assume thaf2 is a regular domain irR" and letu be a
weak solution of the problem

—Au= finQ,
{ u=0 ono, (1)
with f € L2VWV+2(Q). Then
u* <v a.e. inQ (12)
wherev is the weak solution of
—Av= f* in Q
{ v=0 onaJR* 13)

This result can be easily generalized to give our next proposition.

PropPoSITION 2. Let f € C(RY) anda € N. Assume thai is a weak solution
of the problem

(=A)%u = f inRY,
{ U= (-MNu=---=(-A)*1u=0 ondRY. (14)
Then
u* <v a.e. inR", (15)
wherev € D?*2(R") is the weak solution of
(=A% = f* in R". (16)

Proof. The proof is by induction oa. Whena = 1, the result simply corresponds
to Talenti’s comparison principle. Now assume that the result is true ferk.
Fora = k + 1, using the above hypothesis together with the fact thab €
D?2(RN) yields

(—Au)* < —Av a.e.inR". 17)

Let w be the solution of the problem
—Aw = (—Aw)* in RY (18)

that satisfiesv — 0 as|x| — oco. Since—A is a positive operator, the maximum
principle yields
v>w a.e.inR". (19)
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Applying Talenti’s comparison principle, we obtain
u* <w a.e.inR", (20)
The result of the proposition follows at once from (19) and (20). O

Let us now recall another result of Talenti.

ProposITION 3 [16]. Assume: € W4(RV) for anyq > 1. Then
V@) Laryy < 11Vull Loy (21)

REMARK. Using a simple density argument, it should be clear that this inequality
also holds whem € DY2(RV).

Proof of Theorem 2Givenu € DK 2(IR{ ), we definef = (— A)[ }u Observe
that f € L2(RY) whenKk is even wherea$ e DL2(RY) whenK is odd.

A classical density argument ensures the existence of a sequence of functions
(fu)n C CS(RY) such that

fa— [ in L'(RY),

where )
o 2 when K is even,
| &, when K is odd.

We setM := [%§] and consider the problem

(=A)"u, = f, inRY,

{un = (_A)M,, == (_A)M71M,1 =0 on 8RN (22)

It is clear thatf, € L”(RY) for any p > 1 Therefore, applying standard elliptic
estimates, we see that for alk N with |«] < M and for all 1< p,

”(_A)aun”LfI(Rl‘b < C(p, 05)||fn||Lp(]Rﬁ),
where the exponeitis defined by the identity
1 1 2M—oa)

q P N
and where the constagt p, «) is independent of.
Now, let us define, to be the solution of the problem

{(—A)Mvn = f* inR",

n

v, € D*M2(RN). 23)

Using the contraction property of the Schwarz symmetrization, we obtain

lvn = vl poviv-260wyy < CILEE = fllryy < Cll fu — fm||Lt(1M)-

As n andm tend tooo, the right-hand side of this sequence of inequalities con-
verges to 0. This implies thab,), is a Cauchy sequence i?Y/NV—2K)(RN),
which is complete. Hence, there exists sameL?"/V-2K)(RN) such that
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v, — v in L2VWV=2K) RNy,
Moreover, we can also assume that (up to a subsequence) we have
v, — v a.e.inkRY.

On the other hand, observe that the sequéngg is bounded ifD%2(R") and,
sinceDX2(RV) is reflexive, we can always assume that (up to a subsequence)

v, — v in DE2(RY).
Furthermore,
Ifa = f vy < Wfa = Fllory.
which implies
fr— f*in L'(RY).
Thus
(=MMy = £* in D/(RM).
Standard elliptic estimates imply that
uy, — u in DERY),
u, — u in LZN/(N_ZK)(R’_X),
which in turn yield
ut — u* in L2NW-2ORNY,
ub — u* a.e. inR",
We now use the result of Proposition 2, which gives
u, <v, a.e. inRY.
Letting n tend to infinity in this inequality, we conclude that
u* <v a.e.inR",

In the case wher& = 2M is even, we find

el s ryvy = ||M*||LS(RN) < vllseryy
+
and
M M
||M||1<,2,R1}; = [[(=A) M”LZ(R]X) = [|[((=4) M)*”LZ(]RN)
M
= [[(=4) v”LZ(RN) = ||v||K,2,RN~

Similarly, in the case wher& = 2M + 1is odd, we set
- (—M)Mu(x) if xeRY,
(—A)Mu(x) = { . .
if xeRN\RY,
and we see that—-A)Mu € DY?(RN). This time, it follows from Proposition 3
that
”””LS(R’b = ||’4*||LS(RN) < vllseryy



Sharp Sobolev Inequalities in Critical Dimensions 33
and
lullk,2,my = V(=) Mu| 2y > [V(=A)Mu)* || L2(rny
= IV(=2)Y )|l 2er) = IV(=2)" ]l 20y = V]l 2.8
From these relations, we obtain

IIMIIKZRN lv]|2
> K,2,RN -

iz 2 Sk.o(RY),

”Ml'Lv(RN)

S(RV)
which already implies that
Sk.o(RY) > Sk o(R™). (24)
Granted thaD*2(RY) ¢ DK Z(R ), it should be clear that
Sk,o(RY) = Sk o (RY). (25)
Hence, in order to complete the proof of the theorem, it remains to show that
Sk,0(RY) = Sk o(RY).
Toward this end, assume that C(R") with suppuz) C B(0, R) for some
R > 0; we setv(x) = u(x + 2Rey), wheree; = (1,0, ..., 0). Obviously,v
C&°(RY) and

2
||u||K72’RN ”v”[(ZRN
2
vl

2 SK O(R+)
||M||LS(RN)

S(BY)
Minimizing over all functions: on the left-hand side, we see that
Sk.o(RY) = Sk o(RY). (26)
Combining this inequality with (24) and (25), we conclude that
Sk,0(RY) = Sk o(RY) = Sk,0(RY).

Observe thaCP(RY) ¢ HEXRY) c DX2(RY) and also thatC{°(RY) is
dense inD%2(RN). Therefore, we also have

Sk (RV) = Sk o(RY).

Finally, the last statement in Theorem 2 follows from [14] and [19]. O
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We now turn to the study of the best Sobolev constants for bounded domains. Let
Q be a regular bounded domainRt. We define

011 2.0
Sk.0(Q) = 2
veHK @O} [V]175(q)
and
IvlZ 2.0
S[go(Q) = T

ve HE(Q)\(0} ||U||is(sz)

Granted these definitions, we will establish the following theorem.

THEOREM 3. Assume thalV > 2K + 1. Then
Sk,0(R2) = Sk.6(R2) = Sk (RY). (27)

Moreover, the infimunSk 4(2) (resp.Sk o(2)) is not achieved—that is, it is not
achieved by any functione HX(Q) (resp.u € HX(Q)).

The proof of this result requires two technical lemmas, the first of which relies on
Lions’s concentration compactness principle.

LemMa 1. Assume thalV > 2K and thatS 4(Q2) < Sx (RY). Then every min-
imizing sequenceéy, ), of S ¢ () is relatively compact iri X ().

Proof. Let (u,), be a minimizing sequence fdfx ¢(2) in Hg((sz); that is,
lunll 2.0 = Sk.6(2) asn — oo and|lu, ||Ls@) =1

In particular,(u,), is a bounded sequenceff (), which is reflexive. There-
fore, we can extract a subsequence (still den@tgy,) such that

u, — u weaklyin HX(Q) and u, — u weakly in L*(Q).

Let us denote byM (R") the space of nonnegative Radon measureRbrhat

have finite mass, and leg, denote the indicatrix function of the s@t We define
Wn = Cq Fx (u,) dx andv, := qlu,|* dx, where

(=A)My)2  if K =2M iseven

IV(—A)YMy)?2 if K =2M +1is odd.

It is easy to see that the sequences of meagutgs, and(v,), are bounded in
M(RY). Up to a subsequence, we may always assume that

Fx(v) = {

Up—p and v, —~v

weakly in the sense of measures for some bounded nonnegative mgasurés
v onRY,

It follows from the concentration compactness principle of Lions [11] (see also
[6] for a simplified blow-up analysis in the case of bounded domains) that there
exists a seff (at most countable) and a set of poifits | j € J} C Q such that

Y = §Q|I,{|S dx —i—ZUijj

ieJ
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and
= Loy dx + ) wby,

ieJ
wherep; > vV 2 Ng (RV) if x; € @ andpy > vV sy o (RY) i x; €
9$2. According to Theorem 2, we find
V(RY) =1= [lullysq + D v
ieJ
and also

W(RY) = Sk o(Q) = lull2 0+ Y

ieJ
> Sk.o () ([lull} ) VN + Sk (RY) " (vy) V2RI,
ieJ
Finally, the functiory — r(¥=2K)/N is concave and so we have
lullLs@ =1
Hence, it follows at once from weak lower semicontinuity that
2 A i 2
lullg, 2,0 < iminf flu,llg 2 o = Sk,6(S2).
This completes the proof of Lemma 1. O

The second technical lemma reads as follows.

LEMMA 2. Letu be any weak solution of
{ (=A)Xu = Mul972u + |ul*"%u in Q,
u=(CFNu=---=-AN)1=0 on 9%,
where2 < g < s and € R. Thenu is smooth.

(28)

In [18], Vorst proved this lemma for the cagke= 2. Since his proof can easily be
adapted to treat the general case, we omit the details.
The next lemma is a consequence of the well-known Pohozaev identity.

LEmMA 3. Let Q = Bj be the unit ball inR”, and assume tha¥V > 2K +1
and 2 < ¢ < s. Then there existdg := Ao(N, ¢, K) > 0 (depending only on
N, ¢, and K) such that(28) has no positive radial solution € C?%(Q) that is a
decreasing function of = | x|, provided one of following conditions is satisfied.
1 xr<o

(2) 2k <N <4K,2<q < £, and1 € (0, 1o).

Proof. First we observe that
(=A)YXu > 0 in By.

Using the maximum principle for the operaten inductively, we obtain for any
i=0,..., K that
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(=A)u >0 in B;.
Applying the Hopf lemma, forany=0, ..., K — 1 we have

0 .
—8—(—A)’u > 0 ondB;. (29)
,

Now considen, a radial solution of (28). Multiplying (28) byd,u and inte-
grating by parts, we obtain the following Pohozaev formulas (see [12]):

<E — N- ZK)A/ ul(x)dx
q 2 By

M-1

=Y [ = oe-a i wde @)
B1

k=

if K =2M is even, and

M-1
(5 N2k )A f Wi dx =3 [ (0 ) O=5 )W) do
q 2 By =0 Y
N N (31)
2 0B1

if K =2M +1isodd. Here and belowgdenotes the partial derivative with respect
tor, namelyo,.
Assume that. < 0. Then (30) and (31) imply that

—((=M)'w)'1) =0 (32)

foralli =0, ..., K —1, which clearly contradicts (29).
Having ruled out the case wheke< 0, we now assume for the balance of the
proof thath > 0. For anyi € N, consider the problem
(=A)'w; =1 in By,
{ w; = —Aw; = --- = (—A)"lw; = 0 ondB;.
Obviously,w; is radial, positive, and decreasingrinFurthermore, the maximum
principle and the Hopf lemma together imply that, for akkQ;j < i, the function
(—A)/w; is decreasing im € (0,1) and also that(—A)/w;)'(1) < 0. Similarly,
the functionu is a decreasing function efe (0, 1). Hence, it follows from (28)
that (—A)Xu is also a decreasing function of (0,1). Letting0<i < K — 1,
we have

(33)

(=AY uwyw;(x) dx
B1

= [ (D) W(=D)'w)(x)dx = [ (=2 "u(x)dx
By By

=— | (=D D) do = —on_1((=D) uy@),  (34)
0By

whereoy_; denotes the measure of the unit spher& Collecting (30), (31),
and (34), we obtain
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(ﬂ — N - 2K>k/ ul(x)dx
q 2 By

> | (=2 ) Ou'(D) do

0B1
_ 1 (=AY ) (@) do / W'D do
ON-1 JoB, 9B1
1 K K
=— | ((=4) u)(x)dX/((—A) u)(x)wg—_1(x) dx
ON-1JB, By
1 K K
> — | (-4) u)(x)dx/ (=) w)()wg_1(x) dx
ON-1JB, |x|<1/2
o wkal/2) (—A)Ku(x)dxf (—A)YKu(x) dx
ON-1 B1 |x|<1/2
wea@/2) ([ g ’
= Vw1 ( Bl( A) u(x)dx)
2
= C( Bl|(—A)’<u(x>|dx) > Clull? wov—2x0,, - (35)

It follows from (28) that
(=) u > uw,

which in turn implies that

2
; / ui(x) dx = c( |<—A>Ku<x>|dx) > Clul; g, (36)
By B
First assume that = Nf’gK and 2k < N < 4K. Using a classical interpola-

tion inequality, we can write
q N(N—2K)/8K? (N+2K)(4K—N)/8K?\q
< (halls g™ el 65, )

N/2K (N+2K)(AK—N)/2K(N—2K)

= luell s oy 12l L2y

[Jull
4 4K—N)/4
= C()\”””zq(Bl))N/ K(}‘”u”‘zq(gl))( K=n/aK

= C)\”u”[[{fl(gl)s

wheres; 1= ﬁ Choosingr small enough yields = 0. The proof is therefore

complete in this case.
In the general case, when2g < N‘l’;K and X < N < 4K, it follows from
(35) that

2
k/ u(x)dx > C( I(—A)KM(X)IdX> = Cllullit(Bl), (37)
By B
wherer = Zss_fq_z < Nf’z,(. On the other hand, a classical interpolation inequality

gives



38 YuxIiN GE

||Lt|| L4(By) = (”u”L‘(Bl)”u”Ls 1(31))q (38)
where7 := M

Finally we use (36), (37), and (38) to conclude that
”u”Lq(Bl) < Ci(Alull q(}gl))lq/z()‘”u||L£q(31))(l_t)w2(v V= Cl)\-”u”Lq(Bl)
Again we see thatt = 0, provided A is chosen small enough. The proof of
Lemma 3 is thus complete. O

We are now in a position to prove Theorem 3.

Proof of Theorem 3Assume that2; ¢ Q> c RY are two domains iR". We
claim that
Sk,0(821) > Sk 0(R22). (39)
Indeed, for any € DX2(Q,), define
_ v(x) if xeQy,
v(x) = :
0 if xe Q) \ Q1.
The claim follows immediately from the fact thatx) € DX2(Q,).
Let B(x, r) denote the ball of radius centered at, in RY. Forallri, r, > 0

and allv € DX2(B(0, r1)), we definet(x) = v(rix/rz). A direct computation
shows that

||5||§<,2,B(0,r2) ||U||1<2 B(0,r1)

”ﬁ”i‘V(B(O,rz)) ”””LwB(ml»
Hence,Sk 0(B(0, r1)) = Sk.0(B(0, r2)). This, together with (39), implies that
Sk.0(B(0,r)) = Sk.o(RY) (40)

forallr > 0.
Conversely, given any > 0, it follows from the definition ofSk o(Ry) that
there exists & € C5°(RY) such that

< Sg,o(RY) +&.
||u||LA(RN)

Let R > 0 be chosen so that the support of the functida included inB(0, R).
It should be clear that

2
”M”KzRN ||M||1<23(o R)

k,0(B(0, R)).
||M||L;(RN) ”u“LS(B(O R))
As a consequence,

Sk,0(B(0,1)) = Sk,0(B(0, R)) < Sk,0(RY) +&.
Lettinge — 0, we obtain

Sk.0(B(0,1)) < Sk o(RY). (41)
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Therefore, we conclude so far that
Sk.0(B(0,r)) = Sk,0(B(0,1) = Sk, o(RY) Vr > 0. (42)

Now let 2 be any regular open bounded domain. We choose andr; >
rp > 0in such a way thaB(x, rp) C Q C B(x, r1). It readily follows from (39)
that

Sk,0(B(0,r2)) = Sk, 0(B(x,r2)) > Sk,0(£2)

> Sk,0(B(x,r1)) = Sk,0(B(0, r1)). (43)
This, together with (42), implies that
Sk,0(Q) = Sk,0(R"). (44)
Observe that the inclusioH & (2) ¢ HX(2) implies that
Sk.6(R) < Sg.0(Q) = Sk (RY). (45)

For anyu € HX(Q), we considew the solution of
(=M)My = ((=M)Mu)* in QF,
{ v=—Av="---= (A" =0 on ¥, (46)

whereM := [£]. As in Theorem 2, we can use Talenti’s comparison principle to
deduce that

lullk20 > lIvlkz2e« and |lullzs@) < llvllzs@*,

which implies immediately that

1320 _ IV1Z20-

Il g ~ M0l qey
Therefore, we have obtained
Sk,0(2) = Sk0(27). (47)

It now remains to show thal ,(2*) > Sk (RY). In order to prove this inequal-
ity, we argue by contradiction. In this case, we can apply the result of Lemma 1,
which guarantees that we can minimize the functional

2
||v||[(,279*

Ex(v, Q%) = . ve HF(Q").

[EIFe
Letu € HX(Q2*) be a minimum ofEk. It is common knowledge that we can as-
sume without loss of generality thatis positive, radial, and decreasingsin=
|x| (observe that we can consider the solutiarf (46) to be the minimizing func-
tion u). And, after a suitable dilation, we see thasatisfies the Euler-Lagrange
equation (28) withh. = 0. However, by virtue of Lemmas 2 and 3, this leads to a
contradiction. Hence, we conclude that

Sk,0 (%) = Sk (RY). (48)
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Combining (45), (47), and (48), we have proved that
Sk.0() = Sg(RY).

It remains to show thaSk ,(€2) (resp.Sk,0(€2)) is not achieved. Again, we ar-
gue by contradiction and assume that the infimum is achieved by some function
u. As before, we considar e HX(Q2*) to be the solution of (46) for suah The
functionv is positive, radial, and decreasingrinmoreover, it minimizeEx in
HX(Q2*). After a suitable dilation, we see thatvould be a radial and positive so-
lution of (28) forA = 0, which (again) would contradict Lemmas 2 and 3. This
completes the proof of Theorem 3. O

3. Critical Dimensions

In this section, we are interested in the critical behavior of certain dimensions for

the semilinear polyharmonic problem. We will try to give further evidence toward

the conjecture of Pucci and Serrin. As we will see, these critical dimensions play

an important role in deriving sharp Sobolev inequalities—in the spirit of what can

be done in the case of complete manifold with the negative curvature (see [9; 10]).
Givens > g > 2 andx > 0, we consider the functional

lull% 5.0 — MullZ,
K28 K@ forany u e HX(Q).

Ek g.,0) = 5
”u”LX(Q)
Let us define

Sk,q,2.,6(82) 1= inf Eg g o).
ucHS (\(0)

Using a proof similar to that in [3], we show the following lemma.

LemMa 4. Let Q be a regular bounded domain iRY, and assume that
Sk 4.2,0(R2) < Sk (RY). ThenSk 4 1,0(S2) is achieved by a functiom e HGK(Q).

Proof. Let (u,), be a minimizing sequence fdix , 5 ¢ in HGK(Q). That is,
luallzsey =1 and flual% 50 — MualZoq) = Sk.q..0(R) + 0(D).

In particular,(u,), is a bounded sequence ¥ (L2). Up to a subsequence, we
can assume that

u, — u weakly in HX(Q),
u, — u weakly in L*(Q2),
u, — u strongly in L4(Q2),
so that
lunl% 2.0 = lltn = ull . + lul% 2 o + 0,
lnllzee) = 1= lup — ullpsq) + lullzsq) + o), (49)
lunllLa = llullLag) + o(D).



Sharp Sobolev Inequalities in Critical Dimensions 41

We setv,, := u,, — u. It should be clear that
Il 20 — MulZaq) > Sk.q.00(DllullZsq)- (50)
Combining (49) and (50), we obtain
lvall% 2.0 = MulZaq) — lull% 2.0 + Sk.q.0,6(2) + 0(D)
< kg0 (A — [ulfsq) + o). (51)
Assume thafSx , ,.0(€2) < 0. Then (51) leads to

. 2 o
Tim 0,13 5.0 =0, (52)

since||u||%s(m < 1 Thereforeu is a minimizer.
Assume thafSx , »,0(€2) > 0. It follows from Theorem 3 that

val 5 q
Sk(RY)

Using the fact 1< +2/* + (1— 1)/ holds for all 0< ¢ < 1, we get from (49), (51),
and (53) that

”Un”[z)(g) = (53)

2 2
”vn”[(,zﬂ =< SK,q,A,@(Q)”Un”Ls(Q) + o

Sk,q,2.,6(82) 2
< annnlgz,g +o(),
which also implies (52). Again, this proves thais a minimizer. This completes
the proof of Lemma 4. O

We now turn to the proof of Theorem 1.

Proof of Theorem 1Assume that is chosen sufficiently small so that
||U||§<,2,Q - )L”U”%q(sz) >0 VveHf (Q).
As in Theorem 3, we have
Exg5,00) = Exg0:(0") Yve HF (). (54)

Therefore, without loss of generality, we can assume hat a ball. Inequality
(9) is equivalent tdSk ;1,0 () = Sk (RY) for some positive.. We argue by con-
tradiction. Assume that

Sk,4.2,0(R) < Sk(RY)

forall A > 0. According to Lemma 4, we see th& , , »(R2) is achieved by some
u;. It follows from (54) that we can assunag is positive, radial, and decreasing
in r foranya > 0 sufficiently small. After a suitable dilation, we obtain a positive
radial solution of

aud™t
(=) Ku, = us ™+ —AH in Q,
””M”Lq(g) _ (55)
u, >0 in €,

u, € HE(Q).
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However, we can apply Pohozaev's identity as in Lemma 3 to find that

N N-2K ) R
— = 2 )\”uA”Lq(Q) >C [(—A) us|
q Q

2 2
> C||Mx||LN/(N—2K)(Q) = C”’/M”Lq(gy (56)

Therefore, necessarily> A > 0, which is clearly in contradiction with the fact

that we can chooseas small as we want. This completes the proof of Theorem 1.
O

In order to describe the relations between inequality (9) and critical dimensions,

we introduce the following.

DeriniTION 1. We will say that the dimensioN is weakly critical if, for any
bounded regular domaff, there exists a\ > 0 such that, for alk € (0, A),

Sk.2,,6(R) = Sg(RY).
Granted this definition, we prove the following theorem.
TueorEM 4. Let Q be a regular bounded domain R", and let

ull 2 o

Ai,o(82) =
werf@\©) [ull?5 g

be the first eigenvalue of the operateeA)X in H9’<(§2). Then the following al-
ternatives hold.

(1) If N > 4K, then
Sk.2.5.,0(Q) < Sg(RY)

for all & € (0, Ak »(£2)). In addition, Sk 2., »(£2) is achieved by a functiom
in HX(Q) that does not change sign {2. Finally, « is radial if € is a ball.
(2) If 2K < N < 4K, then there exists & € (0, Ak »(€2)) such that

Sk.2.3.6(R) = Sk.0(Q) = Sk (RY)

forall A € (0, A). In addition, Sk, 2,6 (£2) iS not achieved.
The proof of Theorem 4 relies on the following result of Troy.

LeEMMA 5 [17]. Let Q := By, the ball of R of radius R and centered at the
origin. Letu; (i =1, ..., n) denote aC?(Bg) solution of

_Aui = fi(ula ceey un)
in Bg, where the functiong; are C* functions that satisfy

ofi
l(ul,...,u,,) >0 fork+#£i,1<i,k=<n.
Buk

Assume that, foral =1, ..., n,

u; >0in By and u; =0 on dBg.
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Then, for eachi =1, ..., n, the functiony; is radially symmetric andi;‘T"(s) <0
for0<s < R.

We now turn to the proof of Theorem 4.

Proof of Theorem 4Assume thatB(x,r) C . As in [7] we chooset €
C&°(B(x, r)), afixed (radial) cutoff function that satisfies0¢ < 1onB(x, r/2)
and|VE| < 4/r. We definew, := &u, € C*(2), where

Cx KS(N—ZI()/Z
(€2 + |x|2)(N-2K)/2

U (x) =
and where the choice @y x is designed to ensure thﬁﬁgN|uE(x)|5 dx =1
A direct computation (see [7] for further details) leads to
Ex 2w < Sk(RY) —rc1e?® + 0V =2K) it N> 4K

and

Ex2.0w.) < Sk(RY) — rcoe?Xlloge| + 0(e%X) if N = 4K,

wherecy, ¢, are positive constants. Fixing> 0 sufficiently small, we conclude
that

Ek2:.0(w:) < Sg(RY),
which in turn implies that

Sk.2.,6(R) < Sg(RY).

It follows from the result of Lemma 4 th&k 2, »(2) is achieved by a function
uin HX(Q), providedN > 4K andx € (0, Ax»(2)). Letu be a such a mini-
mizer. We considev the solution of

_ M, __ 1(_ M i
e csmm oo o, 6D
whereM = [£]. Clearly,v € HX(Q). Moreover,
=M +u) = |(=A)Mu| £ (—A)Mu >0 in Q
and
viu=—-AWw=xu)=---=(=AMYv+tu)=0 ondQ.
Applying the maximum principle, we obtain
(=AM Yv+u) >0 in Q. (58)
Iterating this procedure, we conclude that
v+u>0inQ. (59)

Hencep(x) > |u(x)| forall x € Q.
On the other hand, we have

2 2
vlik 2,0 = llullk 2 q- (60)
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Hence, we deduce that
Ex20() < Eg 2 o).

This meanw is also a minimizer and thus = |u|. It follows from the strong
maximum principle that
v(x) >0 in Q.

Observe that—A)(v — u) > 0in Q andv — u = 0 on92. Using once more the
strong maximum principle, we conclude that eithéx) = u(x) in Q orv(x) >
u(x)in Q. Inthe first case, we find = |u| > 0 is positive inQ2. In the latter case,
we conclude that(x) = —u(x) in 2, that is,u is negative ire.

Now assume tha® is a ball inR¥. Further assume thatis a positive minimizer
(otherwise it suffices to replaeeby —u). After a suitable dilation, the functiom
satisfies the Euler—Lagrange equation

AN u=ru+u"1>0inQ. (61)
Therefore, we can apply the strong maximum principle and conclude that
(-A)u>0inQ VO<i<K-1

Settingv; := (—A)'u for0 < i < K — 1, we obtain a solution to the following
system:

(—=A)v; = fi(vo,...,vk_1) INQ VO<i<K-—1, (62)
where )
£ ) {v,url if i<K-1,
i(vo, ..., Vk—-1) = .
0 K=t |vo|"‘2vo +Avg fi=K-1
Obviously,g—f >0for0<i,j < K — 1 Making use of the result of Lemma 5,

we concludé that, is radial symmetric. In particular, = vg is radial and de-
creasing irr. This completes the proof of (1) in the statement of Theorem 4.

The proof of (2) is a simple corollary of Theorem 1 and Lemmas 2, 3, and 4.
We leave the details to the reader. O
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