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Affine Dimension: Measuring the
Vestiges of Curvature

DANIEL M. OBERLIN

1. Introduction

The purpose of this paper is to introduce a set function, which we call affine di-
mension, and then apply it to the study of convex curveRinThough we be-

lieve the geometric results obtained here—as well as questions concerning their
higher-dimensional generalizations—to be intrinsically interesting, the original
motivation for introducing affine dimension stems from its connection (as a natu-
ral necessary condition) to certain important problems in harmonic analysis. This
connection is spelled out in Proposition 2 at the end of this section (see also Propo-
sitions 3 and 4 in Section 3). For earlier applications to harmonic analysis of spe-
cial cases of the affine measures introduced here, see [1; 2; 7; 8].

The definition of affine dimension is largely analogous to the definition of
Hausdorff dimension. But there is an important difference that, as we shall see,
renders affine dimension sensitive to curvature. For example, the Hausdorff di-
mensions of a circle and a line segment are equal, but their affine dimensions will
differ. The following observation is intended to motivate the definition of affine
dimension: Forp > 2, consider the smallest rectangle containing the portion of
the curve(s, t”) corresponding to X ¢t < ¢; that rectangle has measure on the
order of¢¥*7 which tends to 0 ap increases—that is, as the curger”) be-
comes “flatter”. Thus, foE € R"” anda, § > 0, we consider sums of the form
Y IR;|%/", whereE C |J R;, eachR; is a rectangle of diameter §, and|R;| is
the Lebesgue measure Bf. By analogy to the definition of Hausdorff measures,
we defineA§(E) to be the infimum of such sums. Next we define

A%(E) = lim AS(E).

One sees in the usual way th#tt is an outer measure @& that restricts to a mea-
sure on ther-algebra of Borel subsets &". We will refer to this measure as
dimensional affine measure @&1. The equivalent definition with parallelepipeds
instead of rectangles is clearly invariant under equiaffine transformations (as de-
fined in [5], these are the affine mappingsi®hthat preserve Lebesgue measure).
Finally, we define dim(E) to be the infimum of > 0 : A*(E) < oo}. If
dim(E) stands for the Hausdorff dimension BfC R”, then it is clear from the
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definitions that dim(E) < dim(E). It is easy to check that if is contained in
an (n — 1)-dimensional hyperplane then djif) = 0. On the other hand, if’
is any sufficiently smooth curve iR? that is not a line segment, we will see that
dim,(I') = 3

The main results of this paper deal with a class of convex cuhviesR?. The
curves we consider will be graphs over finite closed interval®] of continuous
convex functiong. Any suchg will be absolutely continuous with nondecreasing
derivative¢’. WhenT is (say)C @, there is a well-known relationship between
the curvature of" and¢”. Under our less restrictive requirement tiahe contin-
uous and convexp” will still exist pointwise a.e. with respect to Lebesgue mea-
sure. However, the role @f” in considerations of curvature will be taken by the
Lebesgue—Stielties measykeinduced on(a, b) by the nondecreasing function
¢’. (Technically, agp’ may exist only almost everywhere om, p], we consider
u([x, y)) to be defined by the equation

p(x, y)) = ,i"} ¢'(1) — t[r?_ ¢'(1)

fora < x <y < b.) Inwhatfollows, [z, b], ¢, ', andu will be as just described.
We will also use the notation L{g) to stand for the space of functiofson [a, b]
satisfying a Lipschitz condition of orde.

Tueorem 1. The inequalitydim,(I") < 2 holds.

THEOREM 2. Suppose that, for some g € (0,1), we havep’ € Lip(«) and
dim(suppp)) = B. Thendim, (') < 22 .

THEOREM 3. If dim,(I") < 2, thenyu is singular with respect to Lebesgue mea-
sure on[a, b].

CoroLLARY. If ¢” exists everywhere da, b] and if dim,(T") < % thenlisa
line segment.

THEOREM 4. If ¢’ € Lip(a) for somex € (0, 1) and if dim,(T") < F’ thenl
is a line segment.

THEOREM 5. There is a constan@ such that—ifgp € C @, A is the measure on
given bydx = ¢”(x)Y3dx, and v is the restriction tol" of 2 3-dimensional affine
measure—thed@ A <v < C - A.

ComMENTs. (@) It follows from the Corollary to Theorem 3 thatlifis a (not
necessarily convex @ curve with dim,(I') < % thenT is a line segment. This
is analogous to the fact that if is any curve (continuous image of [@]) with
dim(I") < 1thenr is a point.

(b) It follows from Theorems 2 and 4 thatdf € (0, 1), dim(suppgu)) = «,
and¢’ € Lip(«), then dim,(I") = 2+a Thus, for example, i’ |s the Can-
tor—Lebesgue function on [@] (see e.g. [3, p. 38]) then diil') = |0918 More
generally, for anyr € [0, 3] there will beT" with dim,(T") = . The curves"
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produced in this manner will have the property that{] has a dense open sub-
set such that, over each of its componentss a line segment. Rather different
examples of” with dim,(T") = t will be the subject of Section 3.

(c) We will see in Section 3 (comment (i) after the proof of Proposition 4) that
there are curveb with dim,(T") = % andyu discrete. This bears on the question
of a converse to Theorem 3.

(d) The measure in Theorem 5 is calledffine arclengttmeasure oii"; The-
orem 5 is the statement that, on cur¥esffine arclength is uniformly equivalent
to %—dimensional affine measure. This is analogous to the relationship between
Euclidean arclength and 1-dimensional Hausdorff measure.

(e) We will address questions concerning higher-dimensional analogues of some
of these results in a later paper.

The remainder of this paper is organized as follows. Section 2 contains proofs for
the results just stated, and in Section 3 we construct some interesting curves and
look at certain of their geometric and harmonic-analytic properties. In the balance
of this section we complete the comparison between affine dimension and Haus-
dorff dimension and then point out the relationship between affine dimension and
certain problems in harmonic analysis.
ProposiTION 1. Suppose > 2andE C R”". Then

max0, n(dim(E) — n + 1)} < dim,(E) < dim(E).
Proof. It is enough to establish the lower bound for ¢iftf). Suppose that

dim,(E) < a < n. Then, for anys € (O, 2) there is a covering of by a
countable collection of rectangléy such that eacl®; has diameter bounded by

§ and such that
DOIRM <1

Let §; be the smallest of the side lengths®f and choose nonnegative integers
N/ such that, ifs, ..., s, are the other side lengths &f, then

(N} =18 < s < Njo; for 1=2,....n
M; = HNlj
1=2

M; <8 Y 6]

Let

and note that

sinceN/s; < 1(since the diameter a&; is bounded by%) Now R; is contained
in the union ofM; cubes of side length;. If we setg = «/n +n —1, then it
follows from (1) that

M;8! < (M8,

ThusM; 8f’ < C|R;|*/" for some constar® depending only on. ThenE is con-
tained in a union of cubes; such that eacld’; has diameter bounded lByand
such that
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Y diamco? < €Y IR < C.

Since this is true for ever§ € (0, %) and for every with dim,(E) < o < n, it
follows frompB = a/n +n — 1thatdimE) < dim,(E)/n +n — 1 O

It is neither very difficult nor very interesting to check that the bounds in Proposi-
tion 1 cannot be improved.

Next we consider a relationship between affine dimension and two problems in
harmonic analysis. Let be a nhonnegative Borel measure®h The two prob-
lems are:

(C) determine the indices andg such that the convolution estimate

A% fllg < COL p, DI (2)
holds for f € LP(R");
(R) determine the indices andq such that the Fourier restriction estimate
1 llzacy < COw pa @I f e €)

holds for f € L?(R").
We have the following result.

PRrROPOSITION 2.  Suppose the nonnegative and nontrivial Borel measusesup-
ported onE. If (2) holds, thendim,(E) > n(1/p — 1/q). If (3) holds, then
dim,(E) = ng(1—1/p).

Proof. Assume that (2) holds. Le® be a rectangle ifiR” and setR’ = R — R.
Then
[RI(h, x&) < (M xR * X&) = (A% Xy X&) < CO-, py @) RIVPIR' Y.

Thus, ifa = n(1/p — 1/q) then there exists @ such that.(R) < C|R|*/". So if
E C |JR;, it follows that||Al| < C Y |R;|*/". Hence dim(E) > n(1/p — 1/q)
as desired. The second assertion will follow similarly from the inequali}) <
C|R|7~9/7. And this is a consequence of (3) and the existencg stich that

xx < f and |Ifll, < CIR*.

(If R is centered at the origin and has axes parallel to the coordinate axes, then
such anf can be obtained by taking = []; exp(—a,-x,.z) for suitableq;; one
deals with the general case by translation and rotation.) O

2. Proofs

Proof of Theorem 1

By replacing(a, b) with any (a’, b) such thats < a’ < b’ < b, we may assume
that¢ is Lipschitz on fi, b]. Supposer < ¢ < d < b. Consider the regioR’ in
R? given by
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¢d) —¢(o)
d—c

and the smallest rectangR containingR’ and whose top edge is the segment
forming the top part of the boundary &f. (Such anr will exist if, for example,
¢ is monotone ond, d].) We will say that ‘R is the rectangle over[d]". Then

é(d) —d(c)
d—c

d) —
¢(;_¢<c> )

{(x,y)ICSXSd, ¢(X)§y§(¢(6)+(x—6)

d
IR| < 2IR| =2f <¢(C)+(x —c)

c

d x
<2[ |
2 d x
d—c/c /c

< 2(d - o)*u([c, d)).

- ¢(X)) dx

ds dx

d
= / (¢'(t) — ¢'(s)) dt| ds dx

Now fix § > 0 and let{x;} be a partition of ¢, b] such thaty; — x;_; < § for
all j and such thap is monotone on eachx[_,, x;]. Let R; be the rectangle over
[Xjfl, )Cj]. Then

DOIRIVE <Y (g — x50 Pu(xi1 x))Y? < (b — @) u(a, b)Y
by Holder’s inequality. Since is Lipschitz, the diameter oR; is O(8). Thus
dim,(T") < 2. O
Proof of Theorem 2

Fix 8’ > B. Since dimsup i) < B, for anys > 0 one can find a finite covering
of supf i) by disjoint intervals §;, b;] with eachb; — a; < § and with

Z(bj —ap? <1, 4)
say. If R; is the rectangle over}, b;] then, as in the proof of Theorem 1,
IR;| < (b — a))’u([a;. by)) < C(b; — ap) @+,

where the last inequality follows from the assumptigre Lip(«). Thus

ﬁ/
D IRz < C (5)

by (4). Note also that, singgis Lipschitz, eaclR; has diamete©(5). NowT" ~
(U R; is a finite union of line segments and can therefore be covered by a finite
union of rectangles; each having diametet § and such that

,8/
doIsilzE <1

With (5) this shows that dign(T") < 22%. Sincef’ > B was arbitrary, dimp(T") <

28 -
214 A8 desired. O
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Proof of Theorem 3

We will require an elementary covering lemma whose proof we omit.

LeMmMmA. Given a finite collection of closed intervals, there is a subcollection
with the same union and with the property that no point belongs to more than two
intervals of the subcollection.

Find§ > 0 such that dim(T") < 3%5 Writing m for Lebesgue measure @
assume that

(sxe)dm < dp (6)

for somes > 0 and some Borek C R. It will be enough to show that(E) =
0. Fix ¢ > 0 and find a finite collectioiy/;} of pairwise disjoint closed intervals

such that
m(EA(U Ij>) < €.

Let 8 be the infimum ofldist(/;, Ii) : j # k}. CoverI by a finite collectior{R;}
of closed rectangles each having diametamin(e, 8) and such that

1
DoIRI <1

This is possible since digiI") < 3%5 Let{[a;, b;]} be the collection of intervals
obtained by projecting the intersectioins R; onto thex-axis. EachR; will give
rise to at most three such intervals. Suppeself;] and R; are associated in this

way. Since the map
(x,y) = (x =y, 0(x) —P(y))
takes f;, b;] x [a;, bj] into R; — R; and has Jacobian equal|i(x) — ¢'(y)|, it
follows that
by by
f lp'(x) —¢'(¥)|dxdy < |R; — Rj| = 4|Rj|.
aj aj

Because

b pbr
/ lp'(x) — ¢'(y)|dxdy = /[ (br — u)(u — a;) di(u),
aj y a

1,b1)
it follows that

Z(/[ (b — w)(u —a:)du(u))s” <cY IRl <C
ar,br)

(whereC = Zﬁ). Now each §,, b;] intersects at most one of the intervd}s
since the diameter of eadty is < g. By applying the covering lemma and then
shrinking or discarding each remaining [b;] as necessary, we replafe;, ]}

by a collection{[cy, di]} satisfying
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Z Xlck,di] =< 27
Ulk = U[Ck, di],

Z( /[ ) (dk—uxu—ck)du(u))m <c. )
¢k, di)

Let [¢x, di] have the same center as [d,] but = the length. We will need the
fact that

and

Zm([Ek,aN’k] NE) > gm(E) — 2e. 8
To see this, note that
D i —c0) 2 my.

SO
~ 1
Y m(lew, di] ~ [é di]) < c > mIp).

Then

m(E n U[Ek,&k]) > m(U IrN U[Ek,gk]> — &
= m(|J 10 Ulex did) = Yo mlex, did ~ (6 did) — &
> m(U LN U[Ck,dk]> - %Zm(lk) —&

— gm(U Ik) —e> g(m(E) —e) s

NO;V(|6€)t'C = % so that 23t — 2) = % and 21— 1) = 5. Then, by (8)
and (6),

w([E, di] N E))l"
S

4 ~
gm(E) —2e < Y om(& ddNE) <) (di - ck)’<

~ 3 1-t
= Z(dk - Ck)rz(lr)(—'u([Ck’ AN E) (di — Ck)z)

N

C 1-7
=< - Z(dk - Ck)st_z(/[ e —uw)(u — ck)d,u(u)> .
Ck»di)

By the Schwarz inequality and the definitionwfthis last sum is dominated by

1 1 1
- (Z(dk - ck>5133)2 (Z ( /[Ckydk)(dk 0 - c@du(u))s” ) ©)
Since we have; — ¢, < ¢ for eachk (the diameter of eacR; is < ¢),
Sl — B <655 Y (dy — ) < 2655 (b —a),
With (7) and (9) this leads to
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4

Zm(E) 26 < e85 (b —a)?.

Slfr

Sincee is arbitrary, it follows thain (E) = 0 as desired. O

Proof of Corollary

If ¢’ is differentiable at each point of[ b] then it follows thatdu = ¢”(x)dx.
O

Proof of Theorem 4

Suppose O< B < «/2. Sinceg¢’ € Lip(x) it is easy to see that there exist€a
(depending o andg) such that, it < ¢ <d < b, then

¢ dp(u) 2
/c @—wu—o)f = Cld—c)" . (10)

Now fix v with dim,(I') < v < 2 and fixs > 0. CoverI" by rectangles;
each having diameter § and such that

YOIR A <1

Let the intervalg[a,, b;]} be the projections of the intersectiolis" R; onto the
x-axis. Then each of the], b;] has length< § and, as in the proof of Theorem 3,

Hélder’s inequality implies that

b du(u)
o ((bp—uw)(u —ap)r’
if » andr’ are conjugate exponents.(ff, 1) = (4, 1— %) andy = J thenyr' =

r’r

5 < 5 While yr =1anda — 2yr’ =t > 0. Thus (10), (11), and; —a; < §

lead to

by v/2
(b —u)(u — az)du(u)) <C. 1)

ap

1/r

r’ by
u(lar, bi]) < ( ) ( ((br—u)(u—ap)”" dM(“))

wula, b)) <Y nlabi]) < €877,
Since this holds for any > 0, it follows thatu = 0. O

Proof of Theorem 5

Supposer < ¢ < d < b. If the rectangleR contains the arf(x, ¢(x)) :c < x <
d} of T, it follows as in the proof of Theorem 3 that

d
[ ¢"(x)(d — x)(x —c)dx < 2|R|.
Thus ‘

d d
/ ¢//(x)1/3dx — / ¢//(x)l/3((d —xX)(x — C))l/?:((d —x)(x — C))_1/3dx

d 2/3
< (2|R|)”3(f ((d — x)(x — c))“dx) = 2V3g23|RV3,
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where the first inequality is a consequence of Holder’s inequality. With a regular-
ity argument, this shows that< 2%3y.
For the reverse inequality, fix § > 0 and , f] C [a, b]. Write y([e, f]) for
the portion ofl" over [e, f]. It will be enough to assume thatis monotone on
[a, b] and to show that

f
A2y (e, 1)) < 23 / 6" (OV3dx + 253 —a).  (12)

Choose’’ € (0, §) so small that if §, d] C [a, b] andd — ¢ < &' then the rectan-
gle R over [c, d] (see the proof of Theorem 1) has diametes. Recall from that
proof that we then have

IR| < (d — ¢)*n([c, d]).

Now cover E, f] N {¢” < €} by a finite collection of intervalsd];, b;] such that
bj —aj < 8, [aj, bj] - {(]5// < 2¢}, andZ(bj — aj) < 2(b —a). Then, |ij is
the interval overd;, b;], it follows that

Zurejﬁ/3 < 243Y3(p — q). (13)

Next, cover g, f]1 N {¢” > &} by a finite collection of intervalsc, di] C [e, f]
such that, for each, we haved, — ¢, < 8’ and

maxX{¢”(x) : x € [cr, di]} < 2min{¢p”(x) : x € [ck, di]}.

By the covering lemma from the proof of Theorem 3 we can also assume that
Y Xewdy < 2. If Ty is the rectangle over}, d;], it follows that

|Ti] < (dr — c)* max{(x) : x € [cx, dil}
< 2(dy — c)> min{¢p”(x) : x € [cx, di]}
and so .,
T < 2”3/ "0V dx,

Then
dy
S <223 [ g an
ck

f f
=23 / ¢ (Y Xewayy dx < 2%3 / ¢"(x)"3dx.
e e

With (13), this gives (12). O

3. Some Examples

In this section we will construct a family of curvés= T, indexed by a param-
etern € (0,1). It will turn out that dim,(T},)) = ?2]1 and that, from the point of
view of the problems (C) and (R) mentioned in Section 1, these curves are as nice
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as possible given their affine dimensions. We will also observe that the diyves
possess a certain homogeneity property.

To begin, for a nonnegative integetet D, be the se{ 4 } ! Fix n € (0, 00)
and define the measure(= u,) by

H= Z n A+n) Z

xeD,

For0< x <1, define¢(x) by

o0 = [ (0.0, (14)
0
ThenT, the graph ofp over [0, 1], is a curve of the class described in Section 1.

LemMa. We havedim,(T") < m

Proof. Itis enough to show that there exist§' auch that, for any > 0, thereis a
covering ofl" by a finite collectior{ R;} of rectangles each having diamet@¢5)
and such thaE|Rk|Wln < C. So fixs. Choose a positive integerwith 27" <
8. Forj =0,...,2" — 1, choosey;, b; with 2 s o< a; <bj < 2,, !in such a man-
ner that the union of the 2" segments of" over mtervals of the fornﬁz,l , a]] or
[bj, ’”] can be covered by a finite collection of rectangfesvith ) " |S; |3 T <1
and such that eac$y has diametek §. (Slnceq’; is continuous, this is easily ac-
complished by taking; close toz,z andb; close to’;,jl.) As observed in the proof
of Theorem 1, the portion df over [a;, b_ ] lies inside a rectangl&; with
ITj] < (bj — a)’n([a), b))

It is easy to check that([a;, b)) < C27"+M so thatZ|Tj|fln < C. The fact
that¢ is Lipschitz shows that each of the rectandledas diameteOD(5). Now
let {Ry} = {Si} U{T;}.

That dim,(T") > ﬁ is a consequence of Proposition 2 and either of the next
two propositions. O

ProposITION 3. Let A be the measure oi®? given bydr = dx on T =

{(x, #(x)) : 0 < x < 1}. Then the convolution inequalit?) holds Wlth( ) =

4 2
(6:2”17 6—:2ﬂi1 )

The proof of Proposition 3 requires a lemma.

LemMma. There is a positive constant such that, ifc, d € R, then

1
/ et(cx+d¢(x)) dx
0

Proof. Split the integral into integrals over

< Cla| 7.

{le+dg'| <1d1Z7) and {lc+d¢'| = Id|?).
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Van der Corput’s lemma [9, p. 197] bounds the second of these. For the first, note
that

1
{lc+d¢'| <1d|?7} S [, Bl
where
L

¢'(B) — ¢'(a) < 2|d| 2.

One easily checks that, for some positive
(B—a)*" < C(9'(B) — ¢'(@)).

This leads tg8 — o < C|d|_ﬁ and the desired bound for the first integral.CJ

Proof of Proposition 3.The proof is a standard application of complex interpo-
lation; see [1, Sec. 2] for a similar argument presented in more detail. Define an
analytic family{®.} of distributions by

1

+1
r(%)
If Rz = 0, thend, is a bounded function oR? and so convolution witkb. maps

L' (= LYR?)) into L*®. If iz = —gfr—z then the formula (see [4, p. 359]) for the
Fourier transform of

1 00
(f, @) = /0 f f(x, d(x)+s)|s|* ds dx.

|s|*
()
r(s)
combined with the lemma just proved shows that convolution WittmapsL?
into L2. Stein’s interpolation theorem thus implies that convolution With maps
L” into LY when (%, 1) = (“*—” 24n ). Since®_ is a nonzero multiple of.,

P’y \&+2y" 612y
the proof of Proposition 3 is complete. O

The following corollary is analogous to Theorem 5.

CoroLLARY. There is a constant (depending om) such that, ifA is as before
and if v is the restriction tol” of 3fn—dimensional affine measure, thenx <
v<CA\.

Proof.lProposition 3 and the proof of Proposition 2 yield the inequalit®) <
C|R|3 for rectanglesR. This implies that. < C - v. For the reverse inequality,
fix[e, f] C [a, b]. Writing y ([e, f]) for the portion ofl" over [e, f], itis enough
to establish that

_2
AT (y(e, fH) = C(f —e)
for any$ > 0. This can be done by slightly modifying the proof of the lemma

preceding Proposition 3: observe that the “1” in that proof can be replaced by any
e > 0 and use only as mar¥y as required to ensure that[e, f1) € JR,. O

ProrosiTioN 4. With A as in Proposition 3, the restriction inequaliti3) holds

whenever! = (3+7)(1— 1) andl<p < gﬁ;’
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Proof. The proof is analogous to the proof in [8]. The only significant modifica-
tion is that (6) in [8] must be replaced by the inequality

1 1 2+
/ </ Xr(t—s,¢(t)—¢(S))dS> dt < C|T|, (15)
0 0
where|T| is the Lebesgue measure of an arbitrary Bdret R2. Following an
argument from [6], we regard (15) as an
(LZHR?), L#(d1))
estimate for the operatgt — A * f. As such, (15) is equivalent to the adjoint

247 2+n
-+’

(L™ (dn), LT ™ (R?))

estimate

16/(s) — /(D) ds di < / (?) dr
0

for nonnegativey andy. By integration inz, that will follow from

/{.VI¢’(S)¢’(I)58(I)}

249
/ ¢'(s) — ¢'(1)| ds < BT
{I¢"(s)—¢'(1)|< B}

for B > 0. And this is a consequence of the inequality, noted in the proof of
Proposition 3(s — 1)1 < C(¢'(s) — ¢'(1)). O

The only properties ap that were used in the proofs of Propositions 3 and 4 were
the convexity ofp and the inequalitys — )27 < C(¢'(s) —¢'(¢)) if t < 5. Here
are two consequences of this observation.

() If win (14) is replaced by

= 1
Z n2on Z 8x

n=1 xeD,

then, for 0< ¢ < s < 1, the inequality
(s =) < Cy(9'(s) — ¢'(1))

holds for eachy € (0, 1). It follows that dim,(I") = % even thoughu is
discrete.

(i) If we extendu by 1-periodicity to all of [Q co), extendg to [0, co) by (14),
letT' = {(x,¢(x)) : 0 < x < oo}, and sedr = dx onT, then Proposi-
tions 3 and 4 are still valid. For the remainder of the paper we consider these
extensions ofx, ¢, andrl’.

In conclusion we point out a certain homogeneity property enjoyed by the curves
I". As motivation, observe that for ¢ € R we have the equation
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(i) (2 2)- ()= (o)

which we interpret as the statement that the cury€?) is equiaffinely homoge-
neous.The curved of this section are locally equiaffinely homogeneous at dyadic
t in the following sense: if = j/2" for nonnegative integersand, then there
isc(t) eR such that, if O< e < 27V,

(i) = (et 9)- (o) = (655)
¢ () cr) 1 pe))  \ott+e))
This is only the statement that

¢t +e)—P@t) =ec(t) + ¢(e) — $(0)
or, equivalently, .

/ ¢'(s)ds = ec(t) + / @'(s) ds.

t 0

Bu

t
t+e t+e
/ $'(s) ds = f (@'(s) — /(1)) ds + £¢/(1)
t+e¢
—ed'(1) + / ult. 5)) ds
= e(@'(1) + (1) — n((O)) + /0 ([0, ) ds

— e(@'() + (1)) — n((OD) + /0 ¢'(s) ds

sinceu((t, t +u)) = w((0,w)) if t = j/2¥ and O< u < 27N,
For C @-curves, such local equiaffine homogeneity is a very restrictive condi-
tion: If ¥ € C® and

Yt +e) — Y1) =ec@t) + ¥(e) — ¥ (0)

holds for a dense collection efand (for each such) for 0 < ¢ < &(¢), then
't +¢) = ¥"(e) leads toy”(r) = ”(0) for all + and hence toy(r) =
at® + bt + ¢ for constants, b, c.
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