BOUNDARY PROPERTIES OF FUNCTIONS
CONTINUOUS IN A DISC

J. E. McMillan

1. INTRODUCTION

Let f be a continuous function whose domain is the open unit disc D in the com-
plex z-plane and whose range is on the Riemann sphere Q. A simple continuous
curve fB: z(t) (0 <t < 1) contained in D is called a boundary path if lz(t)| — 1 as
t — 1. The end of a boundary path 8 is the intersection of the closure 8 of 8 and
the circumference C of D. A boundary path B: z{t) (0 <t < 1) is an asymptotic
path of f for the value a € Q provided f(z(t)) - a as t — 1. The point a € & is
called an asympiotic value of f if there exists an asymptotic path of f for the value
a, and a is said to be a point asympiotic value of f if there exists as asymptotic
path of f for the value a whose end consists of a single point of C.

Section 2 is devoted to proving that the set of asymptotic values of £ and the set
of point asymptotic values of f are analytic sets in  (Theorems 2 and 4).
Mazurkiewicz [10] proved that the set of asymptotic values of a meromorphic func-
tion f in D (or in the plane) is an analytic set, by considering the completion of the
“Mazurkiewicz metric” on the Riemann surface of f. We define a distance between
sets of “equivalent asymptotic paths” of the continuous function £, and we prove
(Theorem 1) that the metric space thus obtained is separable and complete. We then
obtain Theorem 2 in the manner of Mazurkiewicz [10]. A more involved application
of Theorem 1 is needed for the proof of Theorem 4.

We call the set
{¢€ € C: there exists an asymptotic path of f with end ¢}

the set of curvilinear convergence of £f. (We sometimes find it convenient to ignore
the distinction between {¢} and ¢.) In Section 3 we prove that it is an Fy5-set
(Theorem 5).

Let A be the set of curvilinear convergence of f. A function ¢ whose domain is
A and whose range lies on Q is called a boundary function of f if for each € A
some asymptotic path of f for the value ¢({) has the end . The investigation of the
boundary functions for the case where A = C was initiated by Bagemihl and Piranian
[2]. In Section 4 we prove that if ¢ is a boundary function of f, then there exists a
function of Baire class 1 on A that differs from ¢ at only countably many points of
A (¢ is of honorary Baire class two), and thus in particular that ¢ is of Baire class
two on A. Hence we generalize a recent theorem of Kaczynski {6, p. 596] who con-
sidered the case where A = C,

2. THE SETS OF ASYMPTOTIC VALUES

Let x(a, b) denote the three-dimensional Euclidean distance between the points
a and b of Q. Then x(a, b) <1 (a, b € Q). By a rational disc we mean a set of the
form
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{aeqQ:x(@, b) <r},

where r is a positive rational number and b is a point of  whose stereographic
projection has rational real and imaginary parts. By the diagmeter of a rational disc
A we mean the supremum of the numbers x(a, b), where a and b are arbitrary
elements of A.

Again, let f denote a continuous function whose domain is D and whose range is
on . I a; is an asymptotic path of f for the value a; (j =1, 2), then d(a;, @,)
denotes the infimum of numbers & such that some rational disc A with diameter 6
has the properties that

(1) {a']_’ a'z} c A
and a@; and a, are eventually in the same component of
i a)yn {1-6 < |z| <1} (¢ Xa) = {z eD:f(z) e A}).

(We say that a boundary path 8: z(t) (0 <t < 1) is evenfually in the subset S of D
provided there exists a ty (0 < tg< 1) such that z(t) € S whenever to<t<1.) A
simple argument shows that d satisfies the triangle inequality; hence d is a pseudo-
metric [7, p. 119] on the set of asymptotic paths of f. We call two asymptotic paths
@) and op equivalent and write @) ~ o, provided d(a;, @,) = 0. Let ¢ denote
the set of equivalence classes of asymptotic paths determined by the relation ~, and
let [a] denote the element of % to which the asymptotic path o belongs. For

[a;], [e,] € @, set

P([al], [az]) = d(al, a,).

Then p is a well-defined metric on ¢ [7, p. 123].

For each [a] € @, we let v[a] denote the limit value of f on @. By (1), v[a] is
a well-defined, continuous function of [a] € #.

THEOREM 1. The metric space (&, p) is sepavable and complete.

Proof. We define a countable dense set 9 C & as follows. If A is a rational
disc with diameter 6, and if for some value in A some asymptotic path (for that
value) is eventually in the component U of

(2) 1) n {1-6 < |z| < 1},

then we let a(U) denote one such asymptotic path. We define @ to be the set of all
[@(U)], where A is any rational disc and U is any component of the set (2) for which
a(U) is defined. Clearly, @ is a countable dense subset of #.

Now let [@,] (n=1, 2, -*) be a Cauchy sequence of elements of ¥. By (1),
{v[a,]} is a Cauchy sequence in €, and it must therefore converge to some point a
in ©. Let {AJ-} be a sequence of rational discs such that

(3) A D By G2>1)

and

(4) M1 4 = {a}.

j=1
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Let 6 j be the diameter of A j- For each j, there exist (by a simple argument) a
component UJ- of

£7h ) n {1-6; < |z| <1}

and a natural number n; such that if n >n j» then o, is eventually in U;. It follows
from (3) that

UJ.D UJ.Jr1 3>1);
therefore there exists a boundary path a that is eventually in each U;. By (4), o is
an asymptotic path of f for the value a, and evidently
p(le,], fa]) =0 (n— =),

This completes the proof of Theorem 1.

Since the set of asymptotic values.of f is the image under the continuous function
v[a] of the complete separable metric space %, we have the following result (see
[12, p. 219]).

THEOREM 2. The set of asymptolic values of £ is an analytic set.

The end e[a] of the element [@] € ¥ is defined as follows. Let {A,} be a
sequence of rational discs such that

Ay, D Dy (>1), N A, = {vla]} .
n=1

Let 6, be the diameter of A, and let U be the component of
o) n {1-6, < [z] <1}

in which o is eventually contained. Then U_,D U, .; (n>1). Set
co
ela] = ﬂ ﬁn.
n=]1

It is easy to see that e[a] depends only on [@] and not on the asymptotic path o
representing [@] or on the choice of the sequence {An}. By a simple argument,
there exists an asymptotic path 8 € [a] that has end e[a].

We shall need the following proposition.

THEOREM 3. With the exception of only countably many [a] € €, each 8 € []
has end ela].

Proof. Suppose that the assertion is false. Then, for each [@] in some uncount-
able subset & of #, there exists a B, € [@] whose end y, is a proper subset of
e[a]. Let ¢(y) denote the length of the (possibly degenerate) arc y of C. There
exist an uncountable subset &, of &, a positive number 6, a nonnegative integer n,
and an open arc T of C with length (n+ 1)6, such that if [a@] € ¥, then

2ela]) - 2lyy) > 6, nd < lyy) < m+1)5,
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and
(5) Yo C T.

Since (5) holds, one of any three [@] € &, must satisfy the inclusion e[a] C T, in
contradiction to the relations

tela]) > 6 +2(yy) > 6+n6 = (1) ([a]e Zy.

This completes the proof of Theorem 3.

Now let @, denote the set of [¢] € € for which ela] consists of a single point
of C. It follows directly from the definition of e[a] that for each natural number n,
the set of [@] € & such that the length of e[a] is greater than or equal to 1/n is

closed in #. Hence "ép is a Gﬁ -set in €.

THEOREM 4. The set of point asymptotic values of £ is an analytic sef.
Remark. For a more general theorem, see Section 5.

Proof. Let & be the set of [@] € @ such that there exists a 8 € [a] whose end
consists of a single point of C. Theorem 3 implies that & is equal to €, plus a
countable set, and & is therefore an Fgg-set in €. Since the set of point asympto-
tic values of f is the image under the continuous function v[a] of the Borel set &
contained in the complete separable space &, the set of point asymptotic values of f
is an analytic set [12, p. 219].

3. THE SET OF CONVERGENCE

THEOREM 5. Let f be a continuous function with domain D and vange in Q.
Then the set of curvilinear convevgence of { is of type Fgy g .

Proof, Let A be the set of curvilinear convergence of f. ’g‘ohroughout the proof,
n, j, and k denote natural numbers. For each n, let {A(n, j)}j= | be an enumeration
of the sets

{a € Q: x(a, b) <47}

such that b is a point of 2 whose stereographic projection has rational real and
imaginary parts, and such that the set

{z € D: x(f(z), b) < 47"}

contains points arbitrarily near C. For each (n, j), let {D(n, j, k)}, be an enumer-
ation of the (finitely or infinitely many) components of the nonempty open set

1AM, i) 0 {1—-11;< |z] < 1}.

For each (n, j, k), set F(n, j, k) = D(n, j, k) N A,

Since each one-sided accumulation point of A is one endpoint of a component of
C - A, there can be only countably many such points. Let N' be the countable set of
points of A that are not two-sided accumulation points of A.

Let N be the set of points § € C for which there exist (n, j;, k;) and (n, j,, k;)
(n > 1) such that
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¢ e F(n, j, , k;) N Fln, j,, k,)
and either
(6) Alm, j;) 0 A, j,) = #
or

(7) there exist j,, k', and k" (k' #k") such that
_A—(n) ]]_) U _A-(ny jz) - A(n - 1’ j())!
D, j;, k) € Dn - 1, jy, k'), Dln, j,, k,) € D - 1, j,, k).

We now prove that N is a countable set. (I am indebted to the referee for point-
ing out that my original argument to prove this assertion was incorrect.) Suppose
that N is uncountable. Then there exist (n, j;, k;) and (n, j,, k), satisfying either
(6) or (7), and an uncountable subset N, of N such that

¢ e Fnj,kp) N F(n, j,, k,),

whenever ¢ € N,. Inthe sequel, ¢ =1, 2. Set Dy = D(n, jy, kg). Corresponding to
each set S C © and each positive number 6, let V(S, 6) be the set of points of £ at
a distance less than 6 (in the metric x) from S. If (6) holds, let 36 be the dis-
tance from A(n, j;) to_ Aln, j,). I (6) does not hold, then (7) holds, and we let 26
be the distance from A(n, j;) U A(n, j,) to € - A(n - 1, jy). In either case, let Uy
be the component of

£-1(v(Al, j,), 6)) N {1 -Hf—l < |z| < 1}

that contains Dy. Then U; N Uy = g, _ﬁg N D c Uy, and if @ is an asymptotic path
of f, then @ is eventually contained in either D - U; or D - U,. Let

Ay = {¢ € A: there exists an asymptotic path o of f with end ¢
such that @ N U, = @}.
Since Ny C A; U A, , one of the sets Ny N A is uncountable. Let the notation be

such that N NA, is uncountable.

We prove that each two-sided accumulation point of Ny N A; is the end of a
boundary path that is contained in Uj; . Let ¢ be a two-sided accumulation point of
Nog NA;. Choose a sequence {ry} suchthat 0 <r, <rg 4 <1 (q¢>1) and

. q =
lim r, = 1, and set R, = {ry<|z] < 1}.

To prove that for each g only finitely many components of U; N R, can inter-
sect D; N R q+1» We suppose that this is not the case. Then there exis% a natural
number q and a sequence {Gr} of distinct components of U; N Rq such that each
G, intersects D; N Rq+1. Set

r
V,=G,ND NR,,.
¥ V, 0 {|z| =r 4} =9 for some r, then we have the inclusion

V,ND; C U NRyy,-
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But since G, as a component of U; N R

is closed relative to U; N Ry, we also
have the inclusion

q’

V,NU; NRy C G,.

The two inclusions imply that Vr N D; C V., in other words, that the nonempty open
subset V. of D; is closed relative to D;. This implies that D; = V_ C G,., which
cannot be. Thus, for each r, V. N {|z| = rqﬂ} # . Choose

Z;, €--‘}Trn {lZI = rq+1}’

and let z' be a cluster value of the sequence {z!}. Since D; N D C U}, z' lies in
U;. Let V' be an open disc with center z' such that V'c U; N R . Then V'C G,
for infinitely many r, and with this contradiction we see that for each q only finitely
many components of U; N R, can intersect D; N R, .

Choose a sequence {zp} C Dy such that z, — €. Let G; be a component of
U; N R, that contains infinitely many z,, let G, be a component of U; N R, that
contains infinitely many of the zj that are in G;, and in this way define a sequence
{Gq} suchthat Gq is a component of Uy N Rq, Gq D Gq+1, and § € Gq (q>1). It
is now easy to see that there exists a boundary path 8 such that € is in the end of 8
and 8 C U; . Since ¢ is a two-sided accumulation point of Ng N A;, ¢ is a two-
sided accumulation point of A, ; and it follows that the end of 8 is {. Hence, each
two-sided accumulation point of Ny N A; is the end of a boundary path that is con-
tained in Uy .

Let {; and £, be distinct two-sided accumulation points of Ng N Ay, and let 7
be a curve in U; such that 7 U {¢;, ¢, } is a Jordan arc. Let y' and y" be the
two open arcs in C with endpoints {; and {,. Since {; is a two-sided accumula-
tion point of N,, we see that

D, Ny'#f and D, Ny" #4.

Since U; N U, = @, we have the relation 7 N D, = @; and this clearly contradicts the
fact that D, is connected. Hence N is a countable set.

Let

H = ﬂ(U F(n,j,k)).
Jsk

n

The set H is of type Fggs . We now establish the inclusions
(8) H-(NUN')C AcCH.

Since the inclusion A C H is clear, we need only prove that the first inclusion holds.
Let -

e H-(NUN').
For each n, let j, and k, be natural numbers such that

£ € Fn,j,, k).
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From the definition of the sets A(n, j), we see that for each n > 1 there exists a
natural number j*_; such that

(9) if A(n, j) N Aln, in) * §, then An, j) U Aln, ip) © Aln -1, j";l_l) .
For each n > 1, let k’;_l be the natural number such that, with the notation
D,.; =D -1, 1,k ),

we have the inclusion

D(n, j , k) ©D__;.
Since D(n+ 1, jy 41,k 47) € D,  (n2> 1), we see that

¢ € F(n, j¥, k¥).
Thus, since £ ¢ N, we have the relation (see (6))
A(n, j;';) NAm,j)=#8 (n>1).

Hence it follows from (9) that
(10) Aln, iF) U AM, j,) € An-1,5%_)  @>1),
and again since £ ¢ N, we have the inclusion (see (7))

D,cD,; >1).

Let o be a boundary path that is eventually in each D, and whose end contains €.
We see from (10) that

An, j;"l) c Al -1, j;"l_l) (n>1);

hence, there exists a point a € @ such that
0
N am, %) = {a}.
n=1

Clearly, @ is an asymptotic path of f for the value a. If the end of a is ¢, then

€ € A. We now consider the case where the end of @ is an arc y_containing {, and,
using the fact that { is a two-sided accumulation point of A (§ € A - N'), we prove
that there exists an asymptotic path of f for the value a with end ¢. Choose

€, € ¥ - 1¢}, and let {h,} be a sequence such that

0 <h,y <hn<%l§-C0| (n>1), limh, =0.

Let Dn,l and D, , denote the components of

{1-n,<|z] <1} -({|z-¢| <2n,} U {|z-¢]| <2n.}),
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and let the notation be such that Dn+1,£ ND,y# # (n>1 =1, 2). Choose a se-
quence {I‘n} of simple curves contained in & such that I',, has endpoints on
{|z-¢|=2n,} and {|z - {;| = 2h,}, and such that either for £ =1 or for ¢ = 2,
I'y © Dy, ¢ - Let the notation be such that ') € D, ; for infinitely many n; and let
{I‘n.} be a subsequence of {I'_} such that I‘nj c Dnj,l (j>1). Let y, be the open

] —_
arc in C with endpoints ¢ and {; such that Dy Ny, # @. Since ¢ is a two-sided
accumulation point of A, we can choose

¢oe {lz-¢] <n} ny na.

Let an. be an asymptotic path of f with end ¢, - Since, for all sufficiently large j,
o, intersects I"nj, @, is an asymptotic path for the value a, and we can let D] be

the component of
{lz-¢| <ny} n {z e D: x(f(z), a) < h_}

in which oy, is eventually contained. For each sufficiently large j (depending on n),
there exists a continuous image of the closed unit interval that is contained in
I‘nj Nn{|lz-¢ | < hn} and has endpoints on o, and @ ., . Hence o __, is eventually

in D;. Thus D} 41 € Dy (n> 1); therefore there exists an asymptotic path of £ for
the value a with end ¢, and we have established (8).

Hence A is the union of the Fg5-set H - (N U N') and a countable set, and is
therefore an F 5 -set.

4. THE BOUNDARY FUNCTION

Let S denote a subset of C, and let T denote one of the following three spaces:
the set R of (finite) real numbers, Euclidean three-dimensional space R3 , and Q.
Let f be a function with domain S and with range in T. We say that f is of Baire
class 1(S, T) if it is the pointwise limit of a sequence of continuous functions with
domain S and with range in T, and we say that f is of Baire class 2(S, T) if it is
the pointwise limit of a sequence of functions of Baire class 1(S, T). Following
Bagemihl and Piranian [2, p. 204] and Kaczynski [6, p. 592], we say that f is of
honorary Baive class 2(S, T) if there exists a function of Baire class 1(S, T) that
differs from f at only countably many points of S.

A function of honorary Baire class 2(S, T) is of Baire class 2(S, T). In case T
is R or R3, this is well known (see for example [4, p. 365]). Suppose that f is of
honorary Baire class 2(S, ). Then f is of honorary Baire class 2(S, R3), and is
therefore of Baire class 2(S, R3). Thus, in the notation of Hausdorff [5, p. 302], f
is of class (GGU’ F;5) with range space R3, and is therefore of class (Gs o> Fys)
with the range space considered as . It follows [3, p. 294] that f is of Baire class
2(8, Q).

THEOREM 6. Let f be a continuous function with domain D and with vange in
2, and let ¢ be a boundary function of £ defined on the set A of curvilinear con-
vergence of . Then ¢ is of honovary Bairve class 2(A, Q).

Remark. The main lines of the proof of Theorem 6 are due to Kaczynski [6],
~who proved the theorem under the assumption that A = C.

We first prove three lemmas.
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We use the notation of Hausdorff [5, p. 264] for the inverse image sets of a real-
valued function f, so that, for example, [f > a] denotes the set of elements of the do-
main of f at which the value of f is greater than the real number a.

LEMMA 1. Let f be a continuous function with domain D and with range in R.
Let S be a subset of C, and let  be a function with domain S and with vange in R
such that for each ¢ € S there exists a boundavy path with end ¢ on which £ has the
limit Y(€) at €. Let r and t be veal numbers with v <t. Then there exist a set
H C S of type Gg relative to S and a countable set N such that

[W>t-NcHc [y > .

Proof. We outline the proof, which we obtain by trivial modifications in a proof
by Kaczynski [6, p. 593, Lemma 3]. For a detailed account of the proof in the case
where S = C, we refer the reader to Kaczynski’s paper.

For each natural number n, let E,, denote the set of points § € S such that there
exists a boundary path y with end ¢ satisfying the relations

Vﬂ{|Z|=1-%}¢ﬂ, y C [f <r].

Let K denote the set of points £ € S such that there exists a boundary path v with
end § satisfying the inclusion

Yy C [f >z ;- t]“.
We temporarily let n denote a fixed natural number. For each ¢ € K, let e be

a boundary path with end { that is contained in the set

(11) [f>r;t]ﬂ f1-2 < a] <1}.

If £; and {, are distinct elements of K that are two-sided accumulation points of
E_, then Ve and Yg_ are contained in different components of the open set (11). It
1 2

follows that only countably many points of K are two-sided accumulation points of
E, . Thus, since only countably many points of E, are not two-sided accumulation
points of E_, the set E, N K is countable.

Set

oo o
H=s-UE n=UE np.
n=1

The conclusion of Lemma 1 follows.

LEMMA 2. Let 1, S, and ¥ satisfy the hypotheses in Lemma 1. Then ¥ is of
honorary Baive class 2(S, R).

_ Proof. For each pair of rational numbers r and t with r <t, let H(r, t) be a
subset of S that is of type Gg relative to S, and let N(r, t) be a countable set such
that

[y > t] - Nz, t) € H(xr, t) c [y > r].
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Let N, = U N(r, t), where the union is taken over all pairs of rational numbers r
and t with r <t. Let y( be the restriction of ¢ to S - Ny, and set

H*(r, t) = H(r, t) - Ny
Then H*(r, t) is of type Gy relative to S - N, and
[wo > tl € BH*r, t) C [y, > r].

Thus, for a sequence {r,} of rational numbers strictly increasing to the rational
number t,

[y, > t] = N H*(r_, t);
n=1

hence, for each rational number t, [, > t] is of type Gs relative to S - N;. Sim-
ilarly, by considering a sequence of rational numbers increasing to a real number u,
we see that for each real number u, [z//O > u} is of type Gg relative to S - N .

Applying the above argument to the function -f, we see that there exists a count-
able set N; such that the restriction {; of ¥ to S - N, has the property that for
each real number u, [, <u] is of type Gy relativeto S - N;. Let N=N, UN;.
Then the restriction ¥ of ¥ to S - N has the property that for each real number u,
both [¥ > u] and [¥ < u] are of type Gg relative to S - N. Therefore [5, p. 280,
Theorem I}, ¥ is of Baire class 1 on S - N. Thus [4, p. 366, Theorem 7] ¢ is of
honorary Baire class 2(S, R). This completes the proof of Lemma 2.

LEMMA 3. Let S be a subset of C, and let g be a continuous function with do-
main S and with vange in R3. Let q € R3, and let ¢ be a positive number. Then
theve exists a continuous function g* with domain S and vange in R3 - {q} such
that

(12) g(€) = g*(¢)  whenever |g(t) - q| > €.

Proof. T |g(¢) - q] <& for each ¢ € S, let g* be any continuous function on .
If there exists only one point { € S such that |g(§’ ) - q| > ¢, let g* have the con-
stant value g({). Suppose next that there exist at least two points £ € S at which
lg(€) - q| > €. Let U' be an open subset of C such that

U ns = {¢ |g) -q| <e}.

Let U be the union of the components of U' that intersect S. Then U is open, each
component of U intersects S, and

uns = {¢ |gl) -al <e}.

Let {I,} be an enumeration of the (finitely or infinitely many) components of U.
Since there exist two points of S that are not in U, each I has two distinct end-
points, which we denote by a; and by.

For each I, we now define a function g with range in R3, and we consider
three cases. If both a; and by are in S_(in this case, g(a,) #q and g(by) # q), let
g, be a continuous function with domain I, such that

g () = gla), g (b)) =gb,),
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g, does not assume the value q, and for each € e | P

|2.0) - g2 < elby) - gl

If exactly one of the endpoints, say a,, of I, is in S, let g have domain I, and the
constant value g(a,). If neither endpoint of I, is in S, choose a point { € SN I,
let p be a point of R3 such that p # q and |p - g(¢{)| is less than the length of I,
and let g, have domain I, and the constant value p.

Set
g*(€) = g(€) if {eS-U,

gx(€) = g (¢) if € € SN Iy.

It is clear that g* does not assume the value q and does satisfy (12). Also clear is
that g* is continuous at each pointof UNS. Let £ € S - U. To show that g* is
continuous from either side at {, let ¥ be an open arc of C having { as one of its
two distinct endpoints, and let {{,} be a sequence of points of y such that £, — ¢.
Consider the case where infinitely many ¢, are in U, and let {¢ nj} be the subse-

quence of {{_ } consisting of the points ¢, that are in U. Let k; be such that

¢ n. € Ik_ . Either all except finitely many of the points §n_ are in the same Ik, in
J J J
which case { is an endpoint of that I, and

(13) lim g*(':nj) = g*(¢);

j—>oo

or the length of I, tends to zero as j — «. It is a routine task to prove that (13)
J

holds also in the second case. Thus it follows that

lim g*(¢,) = g*(¢),

n — oo

and the proof of Lemma 3 is complete.

Proof of Theorem 6. Let f, ¢, and A satisfy the hypotheses in Theorem 6.
Since © C R3, we can write

H(z) = (¢ (2), 5,(2), (@),  #O) = (6,(8), 6,(0), $5(2)),

where the real-valued functions f; and ¢: are the components of f and ¢, respec-
tively. For j =1, 2, 3 and for each { € A, there exists a boundary path with end ¢
on which {f; has the limit ¢j(§) at €. Thus it follows from Lemma 2 that each <;bj is
of honorary Baire class 2(A, R). Hence ¢ is of honorary Baire class 2(A, R3).
Using Lemma 3 and Kaczynski’s argument [6, p. 597, proof of Theorem 3], we see
that ¢ is of honorary Baire class 2(A, ). This completes the proof of Theorem 6.

5. EXTENSIONS AND APPLICATIONS

We consider a fixed continuous function f with domain D and with range on Q.
For a set S C C, let I'(S) be the set of points a € © such that there exists an
asymptotic path of f for the value a with end contained in 8, and let T',(S) be the
set of points a € @ such that there exists an asymptotic path of £ for the value a
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with end a point of S. For a set S C ©, let A(S) be the set of points { € C such that
there exists an asymptotic path of f for a value a € S with end €.

THEOREM 7. (i) If S is an analytic subset of C, thenT(S) and I‘p(S) are
analytic sets in Q.

(il) If S is an analytic subset of Q, then A(S) is an analytic set in C.
(iii) If S is a Bovel subset of Q, then A(S) is a Borel set in C.

Remark. Statement (iii) has been proved for holomorphic functions (see [9, p.
22] and [11, p. 142]).

Proof. To prove (i), we extend the methods in Section 2. Let S be an analytic
subset of C. Let 91 be the set of [@] € ¥ that contain an asymptotic path whose
end is a point of S, and let & be the set of [a] € @p such that e[a] is a point of S.
By Theorem 3, &#; - & is a countable set. The restriction of e[a] to %y (which
we consider as having range in C) is a continuous function. Hence & is fthe pre-
image, under a function continuous on %, of the analytic set S, and is therefore an
analytic set relative to @ . Thus, since #_ is a Borel set in ¢, & is an analytic
set in @. Hence &, is an analytic set in & (see [12, p. 213)]). Clearly,

Ip,68) = {vle]: [e] e #}.

By Theorem 1, the metric space # is separable and complete. Thus, since v{c] is
continuous, I'(S) is analytic [12, p. 219].

To complete the proof of (i}, we now show that I'(S) is an analytic set. Either
(S) = I‘P(S), or the interior S° of S is not empty. We suppose then that S° # @J. Let
N be the set of endpoints of the components of S°, and set

H=S8S°UNnNS).

Then H has only countably many components. Let y be a component of H. Let
{'yn} be a sequence of closed arcs in C such that

[>e]
C*y=U7n.

n=1

(If y=C, let yn=@;if y=C - {¢}, let v, = {¢}.) For each n, the set of [a] € %
such that e[a] intersects vy, is closed in #. Hence the set of [@] € # such that
ela] cy is of type Gs in €. It follows that the set &, of [a] € € such that
e[a] C H is of type Gso in @. Let &3 be the set of [@] € # that contain an
asymptotic path whose end is contained in H. By Theorem 3, L - &, is a count-
able set; therefore &3 is a Borel set. Let &, be the set of [a] € € that contain
an asymptotic path whose end is contained in S. Clearly ¥4, = 3 U #;. (] is
defined in the preceding paragraph.) Therefore, &, is an analytic set in @.
Clearly,

T = {vlak el 7,}.

Thus, as before, I'(S) is an analytic set.

To prove (ii) and (iii), we apply the results of Sections 3 and 4. Let S be an
analytic subset of 2, and let ¢ be any boundary function of £ defined on the set A of
curvilinear convergence of f. By Bagemihl’s ambiguous-point theorem [1], the set
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A(S) - ¢-1(8) (= A(S) n¢-L(Q - 8))

is countable. By Theorem 6, ¢ is a Baire function. From this fact and the theorem
[5, p. 303, Theorem XII], it follows easily that ¢-1(S) is analytic relative to A. By
Theorem 5, A is a Borel set, so that ¢-1(S) is analytic relative to C. Thus A(S) is
an analytic set, and we have proved (ii). The proof of (iii) is similar.

6. REMARKS

I. For each analytic set S C Q, there exists a normal mevomorphic function f in
D such that the set of asymptotic values of £ is S; hence S is also the set of angular
limits as well as the set of point asymptotic values of f. In case S contains more
than two points, Kierst’s example [8, p. 233] omits three values, and is therefore
normal. In case S contains exactly two points, Kierst’s example is a rational func-
tion of the modular function, and is therefore a normal meromorphic function. In
case S consists of only one point, it is easy to see that there exists a rational func-
tion of the modular function that has S as its set of asymptotic values (see [9, p-
79]). In case S is empty, it is well known that there exists a normal meromorphic
function with S as its set of asymptotic values.

Hence, by the results of Section 2, for a set S € @ the following four statements
are equivalent: S is analytic. S is the set of asymptotic values of a continuous func-
tion. S is the set of point asymptotic values of a continuous function. S is the set of
point asymptotic values of a meromorphic function.

II. This paper leaves the following question open. Let A be of type F;5 in C,
and let ¢ be a function of honorary Baire class 2(A, Q). Does there exist a con-
tinuous function f with domain D and range in © such that A is the set of curvi-
linear convergence of f and ¢ is a boundary function of £f? We note that Bagemihl
and Piranian [2, p. 204] have constructed such a function f in the case where A = C.
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