THE CONJUGATE SPACE OF THE SPACE OF
SEMIPERIODIC SEQUENCES

I. D. Berg

We are primarily concerned with the presentation of a construction for the con-
jugate space of the space of semiperiodic sequences. In the somewhat expository
introduction, we consider the general question of construction of conjugate spaces of
algebras of almost periodic functions on the semigroup of positive integers, and we
motivate the construction of the particular conjugate spaces that we undertake in
Sections 2 and 3.

1. INTRODUCTION

We let Z' denote the semigroup of positive integers, and Z the group of all
integers.

If {x(n)} is a complex sequence, we say that {x(n)} is periodic of period p if
x(n+ p) = x(n) for all n € ZT. We say that a sequence is periodic if there exists a
p € Z1 such that the sequence has period p. We denote by P the space of periodic
sequences, and by Q the closure of P in the supremum norm. We call Q the space
of semiperiodic sequences, and it is largely with this space that we are concerned.

The space Q can be made into a Banach algebra with the obvious coordinatewise
operations. As such, Q = C(w), where the compact group @ is the dual of the group
of rationals modulo 1 in the discrete topology. That is, Q is the algebra of all con-
tinuous complex-valued functions on ®.

We can also describe the group @ as follows. We define a metric p on 7+ by
the rule

p(x,y) = 1/n!, where n!|(x-y)and m+ 1)!{(x-y),

with p(x, x) = 0. Then & is the completion of Z+, with addition inherited from Z
and extended by continuity. The proofs of these assertions can be found in [2]. In
[1], H. Anzai and S. Kakutani called & the univevsal monothetic Cantor Group.

We denote the conjugate space of Q by Q*; that is, Q* is the Banach space of all
continuous linear functionals defined on Q.

It is of interest to consider Q and Q* in the context of the theory of almost pe-
riodic functions.

Let S be a locally compact abelian semigroup. We require S to have jointly
continuous addition, but we do not require an identity. If f € C(S) and a € S, define
T, f, the translate of f by a, by T,f(x) =f(x+a) for x € S. We call {T,f| a € 8}
the orbit of f. If the orbit of f is conditionally compact, we say that f is an almost
periodic function on S, and we write f € AP(S).
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If a Banach algebra A of almost periodic functions on S contains an identity, is
closed under complex conjugation, and is closed under translation by members of S,
we call it an AP(S) subalgebra. We denote the carrier space of such an A by S4;
that is, A = C(S#). It can be shown that SA is a compact semigroup with addition
inherited from S and extended by continuity. The first paragraph of Section 6 of
K. DeLeeuw and I. Glicksberg [3] makes this clear when we note that in their proof
any AP(S) subalgebra will serve as well as AP(S) itself.

If A is an AP(ZT) subalgebra, we can see that A = Ap+ Ay, where Ay is an
AP(Z) subalgebra with the functions restricted to Zt, and where A, is an AP(Z )
subalgebra that is also a subspace of c;. It is easy to see that either A, = c (that
is, A is the space of all sequences convergmg to 0) or else Ayg = C™* for some n
(1n other words, A, is the space of all sequences with support on the integers
1, - n), indeed, this follows from Section 9.28 of Hewitt and Ross [5] if we observe
that Z TA jsa compact monothetic semigroup. For more general theorems concern-
ing such decompositions of AP(S) subalgebras, see DeLeeuw and Glicksberg [3], [4].

The existence of the decomp051t10n described above shows that in the construction
of the conjugate space of A, an AP(Z¥) subalgebra, the réal difficulty lies in con-
structing the conjugate space of Ap, the corresponding AP(Z) subalgebra.

This difficulty is in general substantial. Since we can write AP(Z) = C(B(® @),
where B is the Bohr compactification of the reals, we see that the difficulty in con-
structing, for example, [AP(Z)]* is as great as that of constructing [AP(R)]*. The
Riesz representation theorem characterizes the dual space of an AP(Z) subalgebra
A in terms of regular countably additive measures on the Borel sets of Z# ; but this
is not sufficiently concrete.

The problem is that the characters of Z are the natural elements on which one
might attempt to define a continuous functional; because linear combinations of
characters behave badly in the supremum norm, this turns out to be difficult.

In the case where the AP(Z1) subalgebra in question is Q, we can present a
satisfactory construction. It is clear that if a matrix A sums each sequence in Q,
that is, if lim _, . (Ax)(n) exists for each x € Q, then A defines a member of Q*.
For each f € Q* we present a matrix A¢ such that

lim (A x)n) = £(x) for x € Q.

n— o

Moreover, the norm of Ay as a matrix is equal to the norm of f as a functional.

In the cases Q+C" and Q+ ¢y, (J. D. Hill and W. T. Sledd [6] call Q+ ¢ the
space of ultimately semi-periodic sequences) we can present similar matrix reali-
zations of the conjugate spaces.

The existence of such matrix realizations of Q*, (Q + C™)*, and (Q+ cy)* is a
consequence of the separability of Q.
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2. THE DUAL SPACE OF Q

THEOREM. Let a matvix A = (aij) (i, j=1, 2, +-+) satisfy the conditions

(1)
E ai+1’j = ai,p (1= 1, 2, ««+ and pS 1'),
j=p(mod it)
(2) sup 2 ‘aijl = Al =M < .
i

Then the relation £x(x) = lim Ax defines a functional f5 € Q" with ol = M.
Moreover, if g € Q¥, then there exists exactly one matrix Ag satisfying (1) and (2)
such that g(x) = lim Agx for x € Q. Finally, the map g — A_ is linear, and hence
it is an isomelry between QF and the space of matrices satisfying (1) and (2).

Proof. We first show that Ax converges for each x in Q. We note that if x € P
with period p!, then by condition (1),

Ax(n) = Z)a.pjx(]') for n > p.
j

Since there exists an x of period p! and of norm 1 such that
2 ap; () = 2 |ags]

and since Ej Iapjl is an increasing function of p, we see that

sup llim Axl = HA“ .
x€P, “x =1

But since P = Q, condition (2) implies that lim Ax exists for x € Q, and that

sup |lim Ax| = “A"
x€q, ||x| =1

Hence, if for x € Q we define f,(x) = lim Ax, we see that f, € Q* and l£all = lal.
We now show that each element of Q* can be realized by such a matrix.
Let 65 ;4 ((i - 1)! <j <1il!) denote the sequence of period i! defined by
1  if p=j(modi!),
6j,i! (p) =
{0 otherwise.

For notational convenience, we let (i - 1)! =0 when i = 1. The collection

H={67,1;082,21503,31,""5 06,315 07,415, 024,415 025,513 e}
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forms a Hamel basis for P. Indeed, for any n, the first n! sequences in H all have
period n!, and they are clearly independent; hence they form a basis for the space of
sequences of period n!.

Now let f belong to Q*. We define a matrix A by setting
ai,j=f(5j,i!) (i=1,2, - and (i-1)! <j <il)
and requiring that A satisfy condition (1). Then
(Aﬁj’i!)(n) = f(5j,i!) (n > i).

Hence, lim Ax = f(x) for x € P. But since the functional f is bounded on P, the
matrix A is also bounded, as we showed in the first part of the proof. Hence,

lim Ax = f(x) for x € P = Q. We see, therefore, that each bounded linear functional
f on Q is realized by exactly one matrix A satisfying (1) and (2).

The linearity and consequent isometry of the mapping f — A; follow immediately.
This completes the proof of the theorem.

It is illuminating to consider our theorem in a measure-theoretic context. Let A
be a matrix satisfying the conditions of the theorem. We recall from the introduction
that Q = C(@) and that @ is a compactification of ZT. For each set S C @, let

[J.l(S) = E aij (1 = 1, 2, "').
jesnz*

Then each row of A defines a measure p; on the Borel sets of @, and the regular,
countably additive measure p, on the Borel sets of w defined by

S fduA=li_mS fdp; = lim Af  for f € Q
® Ve

is merely the weak-star limit of these measures.

Denote an @-disk of radius r with center x by D(x, r). That is, let

D(x,r) = {y| y € @ and p(x, y) < r},

where p is the metric defined in the Introduction. Then, by condition (1) of the
theorem, paD(x, r) = p; D(x, r) for each disk D(x, r) and for all i such that

1/i! <r. Condition (2) is, of course, necessary for the weak-star convergence on
Borel sets of @ in general.

Finally, we note that the Haar measure on @ is given by the matrix A satisfying
(1) and (2), where

a;; = 1/it (G <il), ay=0 (>il).

As a functional on Q, this is equivalent to the Cesiro matrix, and f, (x) is the von
Neumann mean of x.
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3. THE DUALS OF Q+ E, AND Q+ ¢y

COROLLARY. Let the matrix A satisfy the conditions in the theorem. Define
the matrvix A by

a;; =0 (<1 ay 5441 = 845,

Let {B_,} belong to ¢; (respectively, to C®). Let B = (by;), where

Bj (0<j<il),
bi; = < -Bj-ir (it <j<L2il),
0 (2! <j).

Then the matrix C = A + B defines f in (Q+ co)* (respectively,in (Q+ CTYy*) by the
relationship £(x) = lim Cx for x € Q+ cq (respectively, for Q+ Cn), Every mem-
ber of (Q+ co)* (respectively, of (Q + C)*) can be vealized by exactly one such
matrix.

The linear map £ — Cg¢ (with the obvious notation) is an isometry.

Proof. The construction is self-explanatory. We merely note that if x = x'+ x"
(x' € Q and x" € cO), then

lim Cx = lim (A + B)(x' + x") = lim (Ax' + Bx' + Ax" -+ Bx")

= lim Ax'+ 0+ 0 + lim Bx™".

Since each h in Q¥ is realized uniquely by such an A and each g in c’g is realized
uniquely by such a B, the corollary is clear except possibly for the claim that the
map f — C; is an isometry. To show that this map is an isometry requires a non-
trivial but elementary argument, which we omit. This completes the proof of the
corollary.
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