COMPACT SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES

C. T. Taam and J. N. Welch

In this paper we investigate differential equations of the form

$$y' + Uy = F(\cdot, y, \mu)$$

in a complex Banach space B. We assume that either $U \in L(B, B)$ and the spectrum of U (denoted by sp U) is in the right half-plane, or else U is a semigroup generator. Our main objective is the study of compact solutions of (*), that is, solutions whose range has a compact closure. This problem seems interesting since it includes periodic and almost-periodic solutions, and since it leads to the approximation of compact solutions to (*) by solutions of equations in finite-dimensional spaces. The continuity of compact solutions with respect to a parameter has been investigated by Taam [4]. We shall also investigate the continuity and analyticity of these solutions as functions of the parameter μ , where μ lies in a complex Banach space X.

The paper is divided into three sections. In Section 1 we study compact solutions of (*) in an arbitrary complex Banach space B. In Section 2, we let B be a Banach space with a basis, and we prove approximation theorems for the compact solutions of (*). In Section 3 we seek compact solutions to (*) for the case where U is a semigroup generator, and then we use the results of Sections 1 and 2 to get approximation theorems for this case.

1. SOLUTIONS IN A COMPLEX BANACH SPACE

Let R denote the real line. The norm of a vector x in B is written as ||x||. For a function f on R into B, we write

$$\|f\|_{\infty} = \sup \{ \|f(t)\| : t \in R \}.$$

The above is called the *uniform norm* of f.

We say that a function f from R into B is *compact* if f(R) has a compact closure.

The family of functions from R into B that are Bochner integrable on every interval of unit length, and for which

$$\|\mathbf{f}\|_{s} = \sup \left\{ \int_{t}^{t+1} \|\mathbf{f}(s)\| \, ds \colon t \in \mathbb{R} \right\}$$

is finite will be designated by BUL. We call $\| \cdot \|_{s}$ the uniform L₁-norm.

Received November 30, 1965.

This research was supported by the U.S. Army Research Office, Durham, under Contract No. DA-31-124-ARO-D-271.

Each of the following spaces of functions from R into B is a complex Banach space when addition and multiplication by scalars are defined in the usual way.

- (a) The space $(P(R), \| \|_{\infty})$ of all compact functions,
- (b) the space $(C(R), \| \|_{\infty})$ of all bounded continuous functions,
- (c) the space (CC(R), $\| \|_{\infty}$) of all continuous compact functions,
- (d) the space (BUL, $\| \|_{S}$) (see [4]),
- (e) the space ((BULC), $\| \|_{s}$) (this is the closure in (BUL, $\| \|_{s}$) of the set BULC of compact functions of BUL).

We also need the Banach space (L(X, Y), $\| \|$) of linear continuous operators from the Banach space X into the Banach space Y. The symbol $\| \|$ denotes the usual uniform operator norm.

If $f \in P(R)$, then for each $\varepsilon > 0$ there exists a function

$$f_{\varepsilon} = \sum_{i=1}^{n} x_{i} \chi_{E_{i}} \left(x_{1}, \dots, x_{n} \in B; \text{ the } E_{i} \text{ are disjoint, and } \bigcup E_{i} = R\right)$$

such that $\|\mathbf{f} - \mathbf{f}_{\epsilon}\|_{\infty} < \epsilon$. Here χ_{E_i} denotes the characteristic function of the set E_i . Such \mathbf{f}_{ϵ} will be called *simple functions*. If $\mathbf{f} \in BULC$, then we can assume that $\mathbf{f}_{\epsilon} \in BULC$, since we can take E_i that are measurable.

LEMMA 1. Assume that $U \in L(B, B)$ and that there exist positive constants η and δ such that

(1)
$$\|\exp(\mathrm{U}t)\| < \eta e^{\delta t}$$
 for $t \leq 0$;

then the operator K defined by the Bochner integral

$$g(t) = (Kf)(t) = \int_{-\infty}^{0} \exp(Us) f(s+t) ds \qquad (t \in R, f \in BUL)$$

is in L(BUL, C(R)), with $\|K\| \le \eta (1 - e^{-\delta})^{-1}$. The image function g is absolutely continuous on every finite interval, and differentiable almost everywhere; it satisfies the differential equation

$$g'(t) + Ug(t) = f(t)$$

for almost all t. (For a definition of exp(Ut) and a proof of Lemma 1, see [4].)

Remark. If $U \in L(B, B)$ and the spectrum of U lies in the right half-plane, then there exist positive constants η and δ such that U satisfies (1).

We now investigate the existence and uniqueness of compact solutions of the differential equation (*) under the following conditions:

- (3) $U \in L(B, B)$, sp U is in the right half-plane, and (1) holds.
- (4) $F(t, x, \mu)$ is a mapping of $R \times B \times D$ into B ($D \subseteq X$) such that
 - (a) $F(\cdot, x, \mu) \in (BULC)^{-1}$ for each $x \in B$ and each $\mu \in D$,

- (b) for each $\mu \in D$, $F(t, \cdot, \mu)$ is continuous for almost all t from B into B,
- (c) there exists a mapping θ (t, ρ , μ) from $R \times R^+ \times D$ into R^+ such that $\theta(\cdot, \rho, \mu)$ is a real-valued BUL-function for each fixed ρ and μ ; moreover, for fixed ρ and μ , and for each pair $x, y \in B$ ($||x|| \le \rho$, $||y|| \le \rho$), the inequality

$$\| \mathbf{F}(\mathbf{t}, \mathbf{x}, \mu) - \mathbf{F}(\mathbf{t}, \mathbf{y}, \mu) \| \le \theta(\mathbf{t}, \rho, \mu) \| \mathbf{x} - \mathbf{y} \|$$

holds for almost all t.

LEMMA 2. For each fixed $\mu \in D$, $F(t, x, \mu)$ defines a mapping from BULC into (BULC)⁻, given by

$$(Ff)(t) = F(t, f(t), \mu),$$

such that if f, g \in BULC ($\|f\|_{\infty} \leq \rho$, $\|g\|_{\infty} \leq \rho$ for some ρ), then

(5)
$$\|(\mathbf{Ff} - \mathbf{Fg})(t)\| \leq \theta(t, \rho, \mu) \|\mathbf{f}(t) - \mathbf{g}(t)\|$$

for almost all t.

Proof of Lemma 2. From [4, Lemma 3] we see that F is a mapping from the space of bounded BUL-functions into BUL such that inequality (5) is satisfied. Take $f \in BULC$; then for each $\epsilon > 0$ there exists a simple function $f_{\epsilon} = \sum_{i=1}^{n} x_i \chi_{E_i}$ satisfying $\|f - f_{\epsilon}\|_{\infty} < \epsilon$.

Set $F_{\epsilon}(t) = \sum_{i=1}^{n} \chi_{E_{i}}(t) F(t, x_{i}, \mu)$. It follows from condition (4a) on $F(t, x, \mu)$ that $F_{\epsilon} \in (BULC)^{-}$. Since $f \in BULC$, there exists a ρ such that $\|f\|_{\infty} \leq \rho$. Thus the inequality $\|Ff - F_{\epsilon}\|_{s} < \epsilon \|\theta(\cdot, \rho, \mu)\|_{s}$ implies that $\|f\|_{\infty} \leq \rho$.

Definition. A function y on an interval I into B is called a solution of (*) on I if and only if

- (i) y is absolutely continuous on every finite subinterval of I,
- (ii) y'(t) exists almost everywhere in I,
- (iii) y satisfies (*) for almost all $t \in I$.

We are interested in the values of ρ and μ that satisfy the conditions

$$\sup \left\{ \eta \int_{-\infty}^{0} e^{\delta s} \theta(t+s, \rho, \mu) ds; t \in R \right\} < r < 1,$$

$$(6)$$

$$\sup \left\{ \left\| \int_{-\infty}^{0} \exp(Us) F(t+s, 0, \mu) ds \right\|; t \in R \right\} < \rho(1-r)/2.$$

The following lemma will be fundamental in our study of compact solutions.

LEMMA 3. If E is a measurable subset of R, if $y \in B$, and if $g = y\chi_E$, then $Kg \in CC(R)$.

Proof. Since $g \in BUL$, Lemma 1 implies that $Kg \in C(R)$. For each r < 0,

$$(Kg)(t) = \int_{-\infty}^{0} \exp(Us) y \chi_{E}(s+t) ds$$

$$= \int_{-\infty}^{r} \exp(Us) y \chi_{E}(s+t) ds + \int_{r}^{0} \exp(Us) y \chi_{E}(s+t) ds .$$

Corresponding to each $\varepsilon > 0$, choose r so that

$$\eta \|\mathbf{y}\| \int_{-\infty}^{\mathbf{r}} e^{\delta s} ds < \epsilon/2.$$

Since $\exp(Us)y$ is uniformly continuous on [r, 0], it is possible to partition [r, 0] into n disjoint subintervals I_i with points $a_i \in I_i$ ($i = 1, \dots, n$) such that

$$\|\exp(Us) y - \sum_{i=1}^{n} \chi_{I_i}(s) \exp(Ua_i) y\| < \epsilon/2|r|$$

for all $s \in [r, 0]$. Set

$$y_{\varepsilon}(t) = \sum_{i=1}^{n} b_{i}(t) \exp(Ua_{i}) y$$

where $b_i(t) = \int_{I_i} \chi_E(s+t) ds$. Since $|b_i(t)| \leq |r|$ ($i=1, \cdots, n; t \in R$) and since $y_{\epsilon}(R)$ lies in a bounded set in the space spanned by $\exp(Ua_i)$ ($i=1, \cdots, n$), we see that $y_{\epsilon} \in CC(R)$. It follows immediately that $\|Kg - y_{\epsilon}\|_{\infty} < \epsilon$. Therefore $Kg \in CC(R)$.

THEOREM 1. If $f \in (BULC)^-$, then $Kf \in CC(R)$.

Proof. Take $f \in BULC$, so that f is the uniform limit of a sequence \boldsymbol{f}_n of simple functions and

$$\|Kf - Kf_n\|_{\infty} \le \|K\| \|f - f_n\|_{s} \le \|K\| \|f - f_n\|_{\infty}.$$

By Lemma 3, $Kf_n \in CC(R)$; therefore $Kf \in CC(R)$. The theorem follows from the density of BULC in (BULC)⁻, since $K \in L(BUL, C(R))$.

THEOREM 2. If μ and ρ satisfy (6), then there exists exactly one solution x of (*) satisfying the conditions $\|x\|_{\infty} \leq \rho$, $x \in CC(R)$, and $\|x^{\iota}\|_{s} < \infty$.

Proof. By (4a), Lemmas 1 and 2, and Theorem 1, the operator

$$(Ty)(t) = \int_{-\infty}^{0} \exp(Us) F(t+s, y(t+s), \mu) ds = (KF(\cdot, y(\cdot), \mu))(t) = (KFy)(t)$$

defines a mapping T from CC(R) into itself.

Let ρ and μ satisfy (6). If $f \in CC(R)$ with $\|f\|_{\infty} \leq \rho$, then, by (4c) and (6), $\|Tf\|_{\infty} < \rho$. If $g \in CC(R)$ with $\|g\|_{\infty} \leq \rho$, then by (4c) and (6)

$$\left\| (\mathrm{Tf} - \mathrm{Tg})(t) \right\| \leq \eta \int_{-\infty}^{0} e^{\delta s} \theta(t+s, \rho, \mu) ds \left\| f - g \right\|_{\infty} \leq r \left\| f - g \right\|_{\infty},$$

and therefore $\|\,Tf$ - $Tg\,\|_{\,_\infty} \le r\,\,\|\,f$ - $g\,\|_{\,_\infty}$. Since $r < 1,\,\,T$ is a contraction mapping on the closed sphere

$$S = \{z \in CC(R): ||z||_{\infty} \le \rho\}.$$

Since this closed sphere is a complete metric space, there exists a unique point $g \in CC(R)$ such that Tg = g and $\|g\|_{\infty} \leq \rho$. By Lemma 1, g satisfies (*) and $g' \in BUL$. If h is a solution of (*) and $\|h\|_{\infty} \leq \rho$, then one can show that Th = h (for details, see [4, Theorem 1]). Therefore it follows that $\|g - h\|_{\infty} \leq r \|g - h\|_{\infty}$, and therefore g = h. Thus the only bounded solution g of (*) with $\|g\|_{\infty} \leq \rho$ is compact.

We now consider a solution of (*) as a function of t and of the parameter $\mu \in D$; for convenience, we denote it by $x(t, \mu)$ or $y(t, \mu)$. In the next theorem, we let D be a domain, and we investigate the analyticity of the solutions $x(\cdot, \mu)$ in the domain D.

We say that a function f defined in a complex Banach space X with range in a complex Banach space Y is analytic in the domain $D \subset X$ if it is Fréchet differentiable in D, that is, if for each $x \in D$ there exists an $f'(x) \in L(X, Y)$ such that

$$\lim_{\|h\| \to 0} \|f(x+h) - f(x) - f'(x)h\| / \|h\| = 0 \quad (h \in X).$$

Let D' be any domain contained in a complex Banach space X. Set

$$H(Y) = \{f: f \text{ is bounded and analytic from } D' \text{ into } Y\}.$$

It follows from [2, p. 113] that if for each $f \in H(Y)$

$$\|f\|_{\infty} = \sup \{\|f(x)\|: x \in D^{\dagger}\},$$

then $(H(Y), \| \|_{\infty})$ is a complex Banach space.

If f is analytic from D' into BUL, let us set

$$(K'F)(t, \mu) = (Kf(\cdot, \mu))(t) = \int_{-\infty}^{0} \exp(Us)f(s+t, \mu)ds \qquad (t \in R, \mu \in D').$$

Since $K \in L(BUL, C(R))$, $K \in L((BULC)^-, CC(R))$, and $K \in L(CC(R), CC(R))$, it follows that

$$K' \in L(H(BUL), H(C(R))), K' \in L(H(BULC)^{-}, H(CC(R))),$$

$$K' \in L(H(CC(R)), H(CC(R))).$$

If f is analytic from D' into (BULC), then K'f is analytic from D' into CC(R).

THEOREM 3. Let $F(t, x, \mu)$ satisfy (4). In addition, let $D \subseteq X$ be a domain such that $F(\cdot, x, \mu)$ is analytic from $B \times D$ into BUL, and such that for each ρ ,

 $\theta(\cdot, \rho, \mu)$ is continuous from D into a real BUL-space. Then for each fixed ρ and each $\mu = \mu' \in D$ that satisfy (6) there exists a subdomain $D' \subset D$ such that for each $\mu \in D'$ the equation (*) has a unique compact solution $x(\cdot, \mu)$, and $x(\cdot, \mu)$ is analytic from D' into CC(R).

Proof. By the assumptions in the theorem, the supremum of each integral in (6) is continuous on D into R, for each fixed ρ . Thus if (6) is satisfied for some fixed ρ and $\mu = \mu'$, then there exists an open sphere N about μ' such that (6) is satisfied for each $\mu \in \mathbb{N}$. Therefore Theorem 2 implies that for each $\mu \in \mathbb{N}$ there exists a unique compact solution $x(\cdot, \mu)$ of (*).

If $x \in H(CC(R))$, we conclude from the assumptions on $F(t, x, \mu)$ that $F(\cdot, x(\cdot, \mu), \mu)$ is analytic from D' into $(BULC)^-$. Thus K' Fx is analytic from D' into CC(R). Let D' = N; then

$$\sup \left\{ \int_{-\infty}^{0} \eta e^{\delta s} \theta(t+s, \rho, \mu) ds: (t, \mu) \in \mathbb{R} \times \mathbb{D}^{!} \right\} < r < 1,$$

$$\sup \left\{ \left\| \int_{-\infty}^{0} \exp(Us) F(t+s, 0, \mu) ds \right\|: (t, \mu) \in \mathbb{R} \times \mathbb{D}^{!} \right\} < \rho(1-r)/2.$$

Set $S' = \{f \in H(CC(R)): \|f\|_{\infty} \le \rho\}$. S' is a complete metric space. By (7), $\|(K'Ff)(t, \mu)\| < \rho$ for all $(t, \mu) \in R \times D'$. Therefore $K'Ff \in H(CC(R))$, and K'F maps S' into S'.

Using the same inequalities, we find that K'F is a contraction mapping on S'. Thus we have an $x \in S'$ such that $x(\cdot, \mu)$ is a solution of (*) for each $\mu \in D'$. From Theorem 2 it follows that x is unique.

THEOREM 4. Let $F(t, x, \mu)$ satisfy (4). Suppose moreover that D is open, and that for each x and each ρ the functions $F(\cdot, x, \mu)$ and $\theta(\cdot, \rho, \mu)$ are continuous mappings from D into BUL and into a real BUL-space, respectively. If ρ and μ' satisfy (6), then μ' has a neighborhood N in D such that for each $\mu \in N$ the equation (*) has a unique compact solution $x(\cdot, \mu)$; $x(\cdot, \mu)$ is continuous on N into BUL.

Proof. As in the proof of Theorem 3, it follows that if (6) is satisfied for a fixed ρ and $\mu = \mu'$, then there exists a neighborhood N of μ' such that (6) is satisfied for each $\mu \in \mathbb{N}$. Again from Theorem 2 we see that for each $\mu \in \mathbb{N}$ there exists a unique compact solution $x(\cdot, \mu)$ of (*). The rest of the proof follows from [4, Theorem 2], since for each $\mu \in \mathbb{N}$ the conditions of that theorem are met.

2. SOLUTIONS IN A BANACH SPACE WITH A BASIS

Now let B be a Banach space with a basis $\{x_i\}$. For each n, P_n denotes the projection operator that sends B into the subspace Y_n spanned by x_1 , ..., x_n . From [3, pp. 134-136] we see that the P_n are continuous. Since $P_n x$ converges to x in B, for each $x \in B$, it follows from the Steinhaus-Banach theorem that there exists an M>0 such that $\|P_n\| \leq M$ for all n. It is easy to see that in this case $f \in P(R)$ if and only if $P_n f$ converges to f in the uniform norm.

LEMMA 4. If $f \in (BULC)^-$, then $P_n f \to f$ in $(BULC)^-$ as $n \to \infty$, and if f_n , $f \in (BULC)^-$ and $f_n \to f$ in $(BULC)^-$, then $P_n f_n \to f$ in $(BULC)^-$.

Proof. If $f \in (BULC)^-$, then there exist $f_n \in BULC$ such that $f_n \to f$ in BUL. But for each pair of positive integers k and n,

$$P_k f_n \in BULC$$
 and $\|P_k f_n - P_k f\|_s \le M \|f_n - f\|_s$.

Therefore $P_k f \in (BULC)^-$, for each k. The inequalities

$$\|P_{k}f - f\|_{s} \le \|P_{k}f - P_{k}f_{n}\|_{s} + \|P_{k}f_{n} - f\|_{s} \le (M+1)\|f - f_{n}\|_{s} + \|P_{k}f_{n} - f_{n}\|_{s}$$

yield the first part of the lemma. Now, if $f_n \to f$ in (BULC), then

$$\left\| \left. P_{n} \, f_{n} - f \right\|_{s} \, \leq \, \left\| \left. P_{n} \, f_{n} - P_{n} \, f \right\|_{s} + \left\| \left. P_{n} \, f - f \right\|_{s} \leq \, M \, \left\| f_{n} - f \right\|_{s} + \left\| \left. P_{n} \, f - f \right\|_{s} \, ,$$

and the remainder of the lemma follows.

We now assume that M = 1, as is the case if B is a separable Hilbert space with orthogonal basis $\{x_i\}$.

Denote by $C(R, Y_n)$ the space of all bounded continuous functions from R into $Y_n = P_n B$. Then $(C(R, Y_n), \| \|_{\infty})$ is a complex Banach space.

THEOREM 5. Let M = 1, and let the assumptions of Theorem 2 hold. Then there exist contractive operators T_n for all $n \ge N$, for some N > 0, mapping closed spheres of the space $C(R, Y_n)$ into themselves, such that for the unique fixed point x_n of T_n ,

$$\mathbf{x}_{n}^{\prime} \in (\mathrm{BULC})^{-}, \quad \|\mathbf{x} - \mathbf{x}_{n}\|_{\infty} \to 0, \quad \|\mathbf{x}^{\prime} - \mathbf{x}_{n}^{\prime}\|_{s} \to 0,$$

where x is the compact solution of (*) given by Theorem 2.

Proof. For $y \in C(R, Y_n)$, define

$$(T_n y)(t) = \int_{-\infty}^{0} P_n \exp(Us) P_n F(t+s, y(t+s), \mu) ds$$

= $(P_n KP_n F(\cdot, y(\cdot), \mu))(t) = (P_n KP_n Fy)(t),$

where (Fy)(t) = F(t, y(t), μ). It follows from Lemmas 1 and 2 that T_n maps $C(R, Y_n)$ into itself and that $(T_n y)' \in BUL$ (n = 1, \cdots). We also see that T_n maps BULC into $C(R, Y_n)$ (n = 1, \cdots).

If $y \in BULC$, then Lemmas 2 and 4 imply that $P_n Fy \to Fy$ in $(BULC)^-$. Therefore it follows from Lemma 1 and Theorem 1 that $KP_n Fy \to KFy$ in CC(R). Consequently, $P_n KP_n Fy \to KFy$ in CC(R); that is, $T_n y \to Ty$ in CC(R) for each $y \in BULC$.

From the above it follows that there exists an N > 0 such that

$$\sup \left\{ \| P_n \int_{-\infty}^0 \exp(Us) P_n F(t+s, 0, \mu) ds \| : t \in R \right\} < \rho(1-r)/2 \quad \text{for } n \ge N.$$

Also, by the definition of T_n ,

$$\left\| \left\| \mathbf{T}_{\mathbf{n}} \mathbf{x} - \mathbf{T}_{\mathbf{n}} \mathbf{y} \right\|_{\infty} \leq \mathbf{r} \left\| \mathbf{x} - \mathbf{y} \right\|_{\infty} \quad (\mathbf{x}, \, \mathbf{y} \in C(\mathbf{R}, \, \mathbf{Y}_{\mathbf{n}}), \, \, \left\| \mathbf{x} \right\|_{\infty} \leq \rho, \, \, \left\| \mathbf{y} \right\|_{\infty} \leq \rho, \, \, \mathbf{n} = 1, \, 2, \, \cdots) \, .$$

The two preceding inequalities imply that for $n \ge N$, T_n is a contraction mapping on the closed sphere

$$S_n = \{ y \in C(R, Y_n) : \|y\|_{\infty} \le \rho \}.$$

Let $x_n = T_n x_n$ be the resulting fixed points for $n \ge N$, and let x = Tx be the solution of (*) given by Theorem 2. Set $f_n = Fx_n$ and f = Fx. Then

$$\begin{split} \left\| \mathbf{x} - \mathbf{x}_{\mathbf{n}} \right\|_{\infty} & \leq \| \mathbf{x} - \mathbf{P}_{\mathbf{n}} \mathbf{x} \|_{\infty} + \| \mathbf{P}_{\mathbf{n}} \mathbf{K} \mathbf{f} - \mathbf{P}_{\mathbf{n}} \mathbf{K} \mathbf{P}_{\mathbf{n}} \mathbf{f} \|_{\infty} + \| \mathbf{P}_{\mathbf{n}} \mathbf{K} \mathbf{P}_{\mathbf{n}} \mathbf{f} - \mathbf{P}_{\mathbf{n}} \mathbf{K} \mathbf{P}_{\mathbf{n}} \mathbf{f}_{\mathbf{n}} \|_{\infty} \\ & \leq \| \mathbf{x} - \mathbf{P}_{\mathbf{n}} \mathbf{x} \|_{\infty} + \| \mathbf{K} \| \| \mathbf{f} - \mathbf{P}_{\mathbf{n}} \mathbf{f} \|_{s} + \| \mathbf{K} \mathbf{P}_{\mathbf{n}} \mathbf{f} - \mathbf{K} \mathbf{P}_{\mathbf{n}} \mathbf{f}_{\mathbf{n}} \|_{\infty}. \end{split}$$

Applying the first inequality in (6) to the last term of the above inequality, we see that

$$(1 - r) \|x - x_n\|_{\infty} \le \|x - P_n x\|_{\infty} + \|K\| \|f - P_n f\|_{s}.$$

The first term on the right of the above inequality tends to 0, since $x \in CC(R)$; the second term also tends to 0, since $P_n f \to f$ in (BULC). Thus $x_n \to x$ in CC(R).

It follows from Lemma 1 that for almost all $t \in R$

$$x'_{n}(t) = -(P_{n}UKP_{n}f_{n})(t) + P_{n}f_{n}(t)$$

and

$$x'(t) = -(UKF)(t) + f(t)$$
.

Therefore

$$\|\mathbf{x}^{\mathsf{I}} - \mathbf{x}_{\mathsf{n}}^{\mathsf{I}}\|_{\mathsf{S}} \leq \|\mathbf{P}_{\mathsf{n}}\mathbf{f}_{\mathsf{n}} - \mathbf{f}\|_{\mathsf{S}} + \|\mathbf{P}_{\mathsf{n}}\mathbf{U}\mathbf{K}\mathbf{P}_{\mathsf{n}}\mathbf{f}_{\mathsf{n}} - \mathbf{U}\mathbf{K}\mathbf{f}\|_{\infty}.$$

Since

$$\|\mathbf{f}_{n} - \mathbf{f}\|_{s} \leq \|\theta(\cdot, \rho, \mu)\|_{s} \|\mathbf{x}_{n} - \mathbf{x}\|_{\infty}$$

Lemma 4 implies that $P_n f_n \to f$ in (BULC). Thus $KP_n f_n \to Kf$ in CC(R), and hence $P_n UKP_n f_n \to UKf$ in CC(R). Therefore the second part of the theorem is proved.

Let us now consider the case $M \geq 1$. If $x, y \in S_n$ and the assumptions of Theorem 2 are satisfied, then $\|T_nx - T_ny\|_{\infty} \leq rM^2 \|x - y\|_{\infty}$. If M > 1, we cannot in general conclude that T_n is a contraction on the set S_n . But if $y \in BULC$, then, as we saw in the proof of Theorem 5, $P_nKP_nFy \to KFy$ in CC(R). If $y, y_n \in CC(R)$ and $y_n \to y$ in CC(R), then there exists a $\rho > 0$ such that $\|y_n\|_{\infty} \leq \rho$ for all n. From the inequality

$$\| \operatorname{Fy}_{n} - \operatorname{Fy} \|_{s} \leq \| \theta(\cdot, \rho, \mu) \|_{s} \| y_{n} - y \|_{\infty}$$

and the preceding statements we see that $P_n K P_n F y_n \to K F y$. Induction implies that $(P_n K P_n F)^m y \to (K F)^m y$ in CC(R) for each $y \in CC(R)$ and each integer m. If $y \in CC(R)$ and $\|y\|_{\infty} \le \rho$, then, since T is a contraction on S, we can conclude that $(KF)^m y \to x$ in CC(R) as $m \to \infty$, where x is the compact solution of (*). Therefore, since for a fixed integer m and a fixed $y \in CC(R)$, $(P_n K P_n F)^m y \to (K F)^m y$ in CC(R) as $n \to \infty$, we have proved the following result.

THEOREM 6. Let $M \geq 1$, and let the assumptions of Theorem 2 hold. Then, for each $y \in S$ and each $\epsilon > 0$, there exist positive integers m_ϵ and n_ϵ such that

$$\left\| \left(P_{n_E} K P_{n_E} \, F \right)^{m_E} y - x \right\|_{\infty} < \epsilon$$
 ,

where x is the compact solution of (*).

Thus we see that for each $M \ge 1$ we can approximate the compact solution to (*) by successive approximations in finite-dimensional spaces.

In the two preceding theorems, the only assumptions on U are that spU is in the right half-plane and (1) is satisfied. Let us also assume the following:

(8)
$$||P_n|| = 1 \text{ for all positive integers } n.$$

We see that $E_n = P_n E \to E$ in L(B, B). Thus $U_n = E_n + C \to U$ in L(B, B), and therefore we can conclude from [1, Lemma 3, p. 585] that

$$\|\exp\left(U_n\,t\right)\| < \left[\eta + O(1/n)\right] e^{\delta t} \quad \text{ for all large n and all $t \leq 0$.}$$

Thus it follows from Lemma 1 that for large n the operator K_n defined by

(10)
$$(K_n f)(t) = \int_{-\infty}^{0} \exp(U_n s) f(s+t) ds (t \in R, f \in BUL)$$

is in L(BUL, C(R)). From Theorem 1 it follows that $K_n \in L((BULC)^-, CC(R))$.

Since $U_n\in L(Y_n,Y_n)$, we also see that $K_n\in L(C(R,Y_n),C(R,Y_n))$. Since $U_n\to U$ in L(B,B), it follows that

(11)
$$\exp(U_n t) \rightarrow \exp(Ut)$$
 in L(B, B)

uniformly for t in any bounded set.

From (9) and (10) we deduce the existence of a constant N > 0 such that

(12)
$$\|K_n\| < N \text{ for all large } n.$$

THEOREM 7. Let the assumptions of Theorem 2 hold, and assume in addition that U satisfies (8). Then for large n the differential equations

$$y' + U_n y = P_n F(\cdot, y, \mu)$$

have unique solutions $y_n \in C(R, Y_n)$ such that

$$\left\|\mathbf{y}_{\mathbf{n}}\right\|_{\infty} \leq \rho\,, \qquad \left\|\mathbf{y} - \mathbf{y}_{\mathbf{n}}\right\|_{\infty} \to 0\,, \qquad \left\|\mathbf{y}' - \mathbf{y}_{\mathbf{n}}'\right\|_{\mathbf{S}} \to 0\,,$$

where y is the unique compact solution of (*).

Proof. Using (9), we see that for large n the operators

$$T_n = K_n P_n F$$
,

which map $C(R, Y_n)$ into itself, satisfy the condition

(13)
$$\|\mathbf{T}_{n} \mathbf{x} - \mathbf{T}_{n} \mathbf{y}\|_{\infty} \leq \mathbf{r} \|\mathbf{x} - \mathbf{y}\|_{\infty} \quad (\mathbf{x}, \mathbf{y} \in \mathbf{S}_{n}).$$

If $f \in BULC$, then it follows from (9) and (11) that $K_n f \to Kf$ in CC(R). From (12) it follows that $K_n f \to Kf$ in CC(R) for each $f \in (BULC)^-$, and this implies that if $f_n \to f$ in $(BULC)^-$, then $K_n f_n \to Kf$ in CC(R). If $y \in BULC$, then, as we saw before, $P_n Fy \to Fy$ in $(BULC)^-$. Thus $T_n y \to Ty$ in CC(R), for each $y \in BULC$. Therefore, from the second inequality in (6) we get

(14)
$$\|(T_n)(0)\|_{\infty} < \rho(1-r)/2$$
 for large n.

Proceeding as in the proof of Theorem 2, and using (13), (14), and the other properties of T_n , we see that for all large n the operators T_n map (BULC) into C(R, Y_n), that they are contraction operators on $S_n = \big\{ y \in C(R, \, Y_n) \colon \|y\|_\infty \le \rho \big\},$ and that their unique fixed points y_n are the unique solutions to (**) such that $y_n \in S_n$ and $y_n' \in BUL$.

Let y = Ty = KFy be the unique compact solution to (*), and let $y_n = T_n y_n$. Then

$$\|y - y_n\|_{\infty} = \|Ty - T_n y_n\|_{\infty} \le \|Ty - T_n y\|_{\infty} + \|T_n (y_n - y)\|_{\infty}.$$

The first term in the last member tends to 0, since $T_n y \to Ty$ in CC(R) for $y \in BULC$. Using (9) and the properties of the function $F(t, x, \mu)$, we see that $\|T_n(y_n - y)\|_{\infty} \le r \|y - y_n\|_{\infty}$ for large n. Thus, since r < 1, we have proved that $y_n \to y$ in CC(R).

Since $y'_n + U_n y_n = P_n F y_n$, where $F y_n = F(\cdot, y_n, \mu)$, we have the inequality

$$\|\mathbf{y}^{\mathsf{I}} - \mathbf{y}_{\mathsf{D}}^{\mathsf{I}}\|_{\mathsf{S}} \leq \|\mathbf{U}_{\mathsf{D}}\mathbf{y}_{\mathsf{D}} - \mathbf{U}\mathbf{y}\|_{\infty} + \|\mathbf{P}_{\mathsf{D}}\mathbf{F}\mathbf{y}_{\mathsf{D}} - \mathbf{F}\mathbf{y}\|_{\mathsf{S}}.$$

The first term on the right side tends to 0, since $U_n \to U$ in L(B, B) and $y_n \to y$ in CC(R). Since $y_n \to y$ in CC(R), we know from the proof of Theorem 5 that $P_n F y_n \to F y$ in (BULC).

3. THE CASE WHERE U GENERATES A STRONGLY CONTINUOUS SEMIGROUP

Let U be an unbounded closed linear operator on B into B such that

- (15) D(U), the domain of U, is dense in B,
- (16) there exist positive numbers δ and η such that for every real z (z > - δ), z is in the resolvent set of -U, and the resolvent of -U satisfies the condition

$$\|(R(z, -U))^n\| < \eta(z + \delta)^{-n} \quad (n = 0, 1, \dots).$$

Then (see [4]) there exists a strongly continuous semigroup E(t) of bounded linear operators for $t \in (-\infty, 0]$ such that E(t) = e(-t, -U), where e(t, -U) is the semigroup generated by -U on $[0, \infty)$.

LEMMA 5. Let U be an unbounded closed linear operator satisfying (15) and (16). Then $G \in L(BUL, C(R))$, where the operator G is defined by the Bochner integral

$$g(t) = (Gf)(t) = \int_{-\infty}^{0} E(s)f(t+s)ds$$
 (t $\in R$, $f \in BUL$).

If $f(R) \subset D(U)$ and f, Uf ϵ BUL, and g = Gf, then $g(R) \subset D(U)$, g is absolutely continuous on every finite interval, g is differentiable almost everywhere and satisfies the condition g'(t) + Ug(t) = f(t) for almost all t, $Ug \in C(R)$, $g' \in BUL$, and E(t - b)g(t) is absolutely continuous on every finite interval [a, b].

For a proof of Lemma 5, see [4, Lemma 5].

We shall now investigate the compact solutions of

$$(***) g' + Ug = F(\cdot, g, \mu),$$

where F(t, x, μ) satisfies (4), F(R × B × D) \subset D(U), U satisfies the conditions of Lemma 5, and where we also assume that UF(\cdot , y, μ) \in BUL for all $\mu \in$ D \subset X and all y \in C(R).

Definition. A function f on a finite closed interval I = [a, b] into B is called a solution of (***) on I if and only if

- (i) $f(I) \subset D(U)$,
- (ii) f is absolutely continuous on [a, b],
- (iii) E(t s)f(t) is absolutely continuous in t on [a, s], for each $s \in [a, b]$,
- (iv) f'(t) exists almost everywhere on [a, b] and satisfies (***) for almost all $t \in [a, b]$.

A function f is called a solution of (***) in an interval if and only if it is a solution of (***) in every compact subinterval.

LEMMA 6. If f is a solution of (***) on [a, b], then

$$f(t) = E(a - t)f(a) + \int_a^t E(s - t) F(s, f(s), \mu) ds$$
 $(t \in [a, b]).$

The proof of Lemma 6 follows from the definition of a solution. (For details, see [4, Theorem 6].)

We are interested in those ρ , μ for which

$$\sup \left\{ \eta \int_{-\infty}^{0} e^{\delta s} \theta(t+s, \rho, \mu) ds : t \in R \right\} < r < 1,$$

$$\sup \left\{ \left\| \int_{-\infty}^{0} E(s) F(t+s, 0, \mu) ds \right\| : t \in R \right\} < \rho(1-r)/2.$$

THEOREM 8. Assume (17) is satisfied for some fixed ρ and μ . Then there exists exactly one solution $g \in CC(R)$ of (***) such that $\|g\|_{\infty} \leq \rho$.

To prove this theorem, we need the following. For small b > 0, set

$$D_b = -b^{-1} (E(-b) - I), \quad B_b = b^{-1} (I - b^{-1} R(b^{-1}, -U)),$$

and let U_b represent either D_b or B_b . It is known (see [1, pp. 621, 625]) that

$$\|\exp(U_b t)\| \le \eta \exp[(\delta + O(b))t]$$
 $(t \le 0)$.

Thus by Lemma 1 the operators K_b are in L(BUL, C(R)) for small b>0, where

$$(K_b f)(t) = \int_{-\infty}^{0} \exp(U_b s) f(s+t) ds$$
 $(t \in R, f \in BUL),$

and $\|K_b\| \le \frac{\eta}{1 - \exp\left[-\left(\delta + O(b)\right)\right]}$. Therefore there exists an $M < \infty$ such that $\|K_b\| \le M$ for small b > 0.

LEMMA 7. If $g \in (BULC)^-$, then $K_b g \to Gg$ in C(R) as $b \to 0^+$.

Proof. See Lemma 6 in [4], and use the condition $\|K_b\| \le M$ and the density of BULC in (BULC).

LEMMA 8. G \in L((BULC), CC(R)).

The proof of Lemma 8 follows immediately from Theorem 1 and Lemma 7.

Proof of Theorem 8. Take fixed ρ and μ such that (17) is satisfied. Then by Lemmas 2, 5, and 8 it follows that T = GF is a contraction mapping on the closed sphere S in CC(R). From Lemma 5 it follows that the fixed point f of GF is a solution of (***) in R. If $g \in CC(R)$ is another solution of (***) in R such that $\|g\|_{\infty} \leq \rho$, then it follows from Lemma 6 that f = g.

Now consider the differential equation

$$(****)$$
 $y' + U_h y = F(\cdot, y, \mu)$

for small b > 0. From Lemma 7 we deduce that if (17) is satisfied for fixed ρ and μ , then

$$\|(K_b F)(0)\|_{\infty} < \rho(1 - r)/2$$
 for small $b > 0$.

Since

$$\sup \left\{ \eta \int_{-\infty}^{0} \exp \left[\left(\delta + O(b) \right) s \right] \, \theta(t+s, \, \rho, \, \mu) ds \colon t \, \in \, R \, \right\} \, < \, r \, < \, 1$$

for small b>0, we can conclude from Theorem 2 that there exists a $g_b\in CC(R)$ satisfying the conclusions of Theorem 2 for the differential equation (****). Thus we get the following result.

THEOREM 9. If (17) is satisfied for fixed ρ and μ , then for small b > 0, (****) has a compact solution satisfying all the conclusions of Theorem 2.

THEOREM 10. Let g_b be the solution of (****) given by Theorem 9, and let g be the solution of (***) given by Theorem 8; then $g_b \to g$ in CC(R), as $b \to 0^+$.

Proof. Since $g_b = K_b F g_b$ and g = G F g, we have the inequality

$$\left\| \mathbf{g} - \mathbf{g}_{\mathbf{b}} \right\|_{\infty} \leq \left\| \mathbf{K}_{\mathbf{b}} (\mathbf{F} \mathbf{g}_{\mathbf{b}} - \mathbf{F} \mathbf{g}) \right\|_{\infty} + \left\| \mathbf{K}_{\mathbf{b}} \, \mathbf{F} \mathbf{g} - \mathbf{G} \mathbf{F} \mathbf{g} \right\|_{\infty}.$$

For small b > 0, $\|K_b(Fg_b - Fg)\|_{\infty} \le r \|g_b - g\|_{\infty}$. Therefore

$$(1 - r) \|g - g_b\|_{\infty} \le \|K_b Fg - GFg\|_{\infty}.$$

The right side of the last inequality tends to 0 by Lemma 7. Since 0 < r < 1 the theorem is proved.

Theorems 5 and 10 can be combined:

THEOREM 11. Let B be a complex Banach space with basis $\{x_i\}$ such that the projection operators P_n satisfy the condition $\|P_n\| = M = 1$. Let the assumptions of Theorem 8 be satisfied. Then for each $\epsilon > 0$ there exist a positive integer n_ϵ and a small positive number b_ϵ such that the operator

$$T_{n_{\mathcal{E}}b_{\mathcal{E}}} = P_{n_{\mathcal{E}}}K_{b_{\mathcal{E}}}P_{n_{\mathcal{E}}}F$$

is a contraction operator on the closed sphere $S_{n_{\mathcal{E}}} \subset C(R, Y_{n_{\mathcal{E}}})$, and such that $\|g - g_{n_{\mathcal{E}} b_{\mathcal{E}}}\|_{\infty} < \epsilon$. Here $g_{n_{\mathcal{E}} b_{\mathcal{E}}}$ is the unique fixed point of $T_{n_{\mathcal{E}} b_{\mathcal{E}}}$, and g is the compact solution of (***).

Combining Theorems 6 and 10, we get the following result.

THEOREM 12. Let all the assumptions of Theorem 11 be satisfied, with M=1 replaced by $M\geq 1.$ Then for each $f\in S$ and each $\epsilon>0,$ there exist positive integers n_{ϵ} and m_{ϵ} and a small positive number b_{ϵ} such that

$$\|\left(P_{n_{\rm E}} K_{b_{\rm E}} \, P_{n_{\rm E}} \, F\right)^{m_{\rm E}} f - g\|_{\infty} < \epsilon \, ,$$

where g is the compact solution of (***).

We thus see that for each $M \ge 1$ we can approximate the compact solution to (***) by successive approximations in finite-dimensional spaces.

Proceeding as in the proofs of Theorems 3 and 4, we get the following two theorems.

THEOREM 13. Assume that $F(t, x, \mu)$, $\theta(t, \rho, \mu)$, and U satisfy the conditions in Theorem 8, and that in addition $F(t, x, \mu)$ and $\theta(t, \rho, \mu)$ satisfy the assumptions in Theorem 3, Then, for each ρ and each $\mu = \mu' \in D$ for which (17) is satisfied, there exists a subdomain $D' \subset D$ such that for each $\mu \in D'$ the equation (***) has a unique compact solution $x(\cdot, \mu)$; the solution $x(\cdot, \mu)$ is analytic from D' into CC(R).

THEOREM 14. Let $F(t, x, \mu)$, $\theta(t, \rho, \mu)$, and U satisfy the conditions in Theorem 8, and in addition let $F(t, x, \mu)$ and $\theta(t, \rho, \mu)$ satisfy the conditions in Theorem 4. Then, for each ρ and each $\mu = \mu' \in D$ such that (17) is satisfied, there exists a neighborhood $N \subset D$ of μ such that for each $\mu \in N$ the equation (***) has a unique compact solution $x(\cdot, \mu)$, and $x(\cdot, \mu)$ is continuous on N into CC(R).

In conclusion, we note that the stability properties of the unique bounded solutions corresponding to (*) and (***) developed in [4] apply without change to the compact solutions given by the present paper, since these compact solutions are also the unique bounded solutions.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. *I. General theory*, Interscience Publishers, Inc., New York, 1958.
- 2. E. Hille and R. S. Phillips, *Functional analysis and semi-groups*, Amer. Math. Soc. Colloquium Publications 31, Revised Edition, 1957.
- 3. L. A. Liusternik and V. J. Sobolev, *Elements of functional analysis*, Frederick Ungar Publishing Co., New York, 1961.
- 4. C. T. Taam, Stability, periodicity, and almost periodicity of solutions of nonlinear differential equations in Banach spaces, J. Math. Mech. 15 (1966), 849-876.

Georgetown University, Washington, D.C.