COMPACT SOLUTIONS OF NONLINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACES

C. T. Taam and J. N. Welch

In this paper we investigate differential equations of the form
(*) y'+Uy = F(-, v, 1)

in a complex Banach space B. We assume that either U € L(B, B) and the spectrum
of U (denoted by spU) is in the right half-plane, or else U is a semigroup genera-
tor. Our main objective is the study of compact solutions of (*), that is, solutions
whose range has a compact closure. This problem seems interesting since it in-
cludes periodic and almost-periodic solutions, and since it leads to the approxima-
tion of compact solutions to (*) by solutions of equations in finite-dimensional spaces.
The continuity of compact solutions with respect to a parameter has been investi-
gated by Taam [4]. We shall also investigate the continuity and analyticity of these
solutions as functions of the parameter p, where p lies in a complex Banach space
X.

The paper is divided into three sections. In Section 1 we study compact solutions
of (*) in an arbitrary complex Banach space B. In Section 2, we let B be a Banach
space with a basis, and we prove approximation theorems for the compact solutions
of (*). In Section 3 we seek compact solutions to (*) for the case where U is a semi-
group generator, and then we use the results of Sections 1 and 2 to get approximation
theorems for this case.

1. SOLUTIONS IN A COMPLEX BANACH SPACE

Let R denote the real line. The norm of a vector x in B is written as "x”
For a function f on R into B, we write

I£l = sup {[#®)[: t € R} .

The above is called the uniform norm of f.

We say that a function f from R into B is compact if f(R) has a compact
closure.

The family of functions from R into B that are Bochner integrable on every
interval of unit length, and for which

lel, - sup{jt“ [£(e) ] ds: t ¢ R}

t

is finite will be designated by BUL. We call || | ¢ the uniform L,-novm,
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Each of the following spaces of functions from R into B is a complex Banach
space when addition and multiplication by scalars are defined in the usual way.
(a) The space {P(R), H Hoo) of all compact functions,
(b) the space (C(R), " Iloo) of all bounded continuous functions,
(c) the space (CC(R), H ||°°) of all continuous compact functions,
(d) the space (BUL, || ||5) (see [4]),

(e) the space ((BULC)™, || ||s) (this is the closure in (BUL, || ||5) of the set
BULC of compact functions of BUL).

We also need the Banach space (L(X, Y), | ||) of linear continuous operators
from the Banach space X into the Banach space Y. The symbol n " denotes the
usual uniform operator norm.

If £ € P(R), then for each ¢ > 0 there exists a function

(x,, -, x_ ¢ B; the E, are disjoint, and UE, =R)

i

n
fe = Z X XE
i=1

such that Hf - fg ||°o <&. Here X _denotes the characteristic function of the set
1

E; . Such f; will be called simple functions. I f € BULC, then we can assume that

f, € BULC, since we can take E; that are measurable.
LEMMA 1. Assume that U € L(B, B) and that there exist positive constants 1
and 0 such that
Ot .
(1) lexp (Ut)] < ne for t < 0;

then the operator X defined by the Bochnev integral

g(t) = (KH(t) = SO exp(Us)f(s + t)ds (t € R, f € BUL)

-0

is in L(BUL, C(R)), with |K| <n(1 - e %)"1. The image function g is absolutely
continuous on every finite intevval, and diffeventiable almost everywheve; it salisfies
the diffevential equation

(2) g'(t) + Uglt) = £(t)

for almost all t. (For a definition of exp(Ut) and a proof of Lemma 1, see [4].)

Remark. If U € L(B, B) and the spectrum of U lies in the right half-plane, then
there exist positive constants n and 6 such that U satisfies (1).

We now investigate the existence and uniqueness of compact solutions of the dif-
ferential equation (*) under the following conditions:

(3) U € L(B, B), spU is in the right half-plane, and (1) holds.

(4) F(t, x, 1) is a mapping of R X B X D into B (D C X) such that
(a) F(+, x, ) € (BULC)™ for each x € B and each p € D,
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(b) for each p € D, F(t, -, p) is continuous for almost all t from B into B,

(c) there exists a mapping 6(t, p, &) from R X RT x D into RT such that
6(-, p, ) is a real-valued BUL-function for each fixed p and p; moreover, for
fixed p and p, and for each pair x,y € B (Hx” <p, ||y | < p), the inequality

|F@, x, 1) - Ft, y, w)|| < 0, p, 1) % - vl

holds for almost all t.
LEMMA 2. For each fixed i € D, F(t, x, i) defines a mapping from BULC
into (BULC)", given by
(Fi)(t) = F(t, £(t), 1),
such that if £, g € BULC (||f]_ <p, lell, < p for some p), then
(5) I(Ft - Fe)®)| < 0(t, p, 1) 1) - e®)]

for almost all t.

Proof of Lemma 2. From [4, Lemma 3] we see that F is a mapping from the
space of bounded BUL-functions into BUL such that inequality (5) is satisfied. Take
n

f € BULC; then for each ¢ > 0 there exists a simple function f, = 27 i=1 X5 XE.
1

satisfying ||f - I Iloo <e.

n
Set Fg(t) = Ei=1 X g.(t) F(t, x;, p). It follows from condition (4a) on F(t, x, 1)
1

that Fy € (BULC) . Since f € BULC, there exists a p such that [f], <p. Thus
the inequality |Ff - Fgl|l <&l 6(-, p, #)|, implies that Ff e (BULC)".

Definition. A function y on an interval I into B is called a solution of (*) on I
if and only if

(i) y is absolutely continuous on every finite subinterval of I,
(ii) y'(t) exists almost everywhere in I,
(iii) y satisfies (*) for almost all t € I,

We are interested in the values of p and p that satisfy the conditions

sup{nS

-0

0
eds 6(t+s, p, p)ds: te R} <r <1,

(6)

sup{uSO eg;p(Us) Fit+s, O, u)ds": te R} < p(1 -r)/2.

The following lemma will be fundamental in our study of compact solutions.

LEMMA 3. If E is a measurable subset of R, if y € B, andif g =yXy, then
Kg € CC(R).

Proof, Since g € BUL, Lemma 1 implies that Kg € C(R). For each r <0,
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0
®)®) = | exp(Us) yx (s +t)ds
r 0
= S exp (Us) yxE(s +t)ds + S exp (Us) yxE(s +t)ds.

Corresponding to each ¢ > 0, choose r so that

r
71||y||‘g e ds < /2.
~00

Since exp(Us)y is uniformly continuous on [r, 0], it is possible to partition [r, 0]
into n disjoint subintervals I; with points a; € I; (i=1, :--, n) such that

n

Ilexp (Us)y - 20 XIi(S)eXp (Ua,) Y” < 8/2|r|

i=1

for all s € [r, 0]. Set

n

yet) = a by(t) exp (Ua,) y,

where b;(t) = 5‘ Xg (s +t)ds. Since |b.(t)] < |r| (i=1, -, n; t € R) and since
I.

1
V¢ (R) lies in a bounded set in the space spanned by exp (Uay) (i=1, -*-, n), we see
that y, € CC(R). It follows immediately that |Kg - y, |  <e&. Therefore
Kg € CC(R).

THEOREM 1. If f € (BULC)", then Kf € CC(R).
Proof. Take f € BULC, so that f is the uniform limit of a sequence f, of sim-
ple functions and

Ixe - xe |, < %l -2 0, < Ixle-10,-

nheo —

By Lemma 3, Kf € CC(R); therefore Kf € CC(R). The theorem follows from the
density of BULC in (BULC)", since K € L(BUL, C(R)).

THEOREM 2. If pu and p satisfy (6), then theve exists exactly one solution x
of (¥) satisfying the conditions | x| w <P, x € CC(R), and ”x'"s < o,

Proof. By (4a), Lemmas 1 and 2, and Theorem 1, the operator

0
(Ty)t) = S exp(Us) F(t +s, y(t+s), p)ds = (KF(-, y(+), u))(t) = (KFy)(t)
defines a mapping T from CC(R) into itself.

Let p and p satisfy (6). If f ¢ CC(R) with |f|_ < p, then, by (4c) and (6),
ITtll, <p. If g € CC(R) with |g]_ < p, then by (4c) and (6)
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0 5
(Tt - TO)®)|| < 175 e®s 0(t+s,p, pdsff-gll < rlt-gl,
-00

and therefore || T - Tg ||c><J <r|f- glloo . Since r < 1, T is a contraction mapping
on the closed sphere

s ={ze CCR): ||z| < n}.

Since this closed sphere is a complete metric space, there exists a unique point

g € CC(R) such that Tg =g and | gl < p. By Lemma 1, g satisfies (*) and

g'€ BUL. If h is a solution of (*) and ||h||, < p, then one can show that Th = h
(for details, see [4, Theorem 1]). Therefore it follows that Hg -hf| < ||g - h ||°o ,
and therefore g = h. Thus the only bounded solution g of (*) with | gl <p is
compact.

We now consider a solution of (*) as a function of t and of the parameter u € D;
for convenience, we denote it by x(t, u) or y(t, u). In the next theorem, we let D
be a domain, and we investigate the analyticity of the solutions x(-, i) in the do-
main D.

We say that a function f defined in a complex Banach space X with range in a
complex Banach space Y is analytic in the domain D C X if it is Fréchet differenti-
able in D, that is, if for each x € D there exists an f'(x) € L(X, Y) such that

lim |f(x+h) - £(x) - £(xh| /[|h] =0 (heX).
Infl—o

Let D' be any domain contained in a complex Banach space X. Set
H(Y) = {f: f is bounded and analytic from D' into Y} .
It follows from [2, p. 113] that if for each f € H(Y)
I£]l, = sup {][#x)]: x € D'},

then (H(Y), | ||°o) is a complex Banach space.

If £ is analytic from D' into BUL, let us set

0
KE)E, 1) = (KE(-, w))t) = S exp(Us)i(s +t p)ds (teR, p € D).

-00

Since K € L(BUL, C(R)), K € L({(BULC)", CC(R)), and K ¢ L(CC(R), CC(R)), it fol-
lows that

K'e L(H(BUL), H(C(R))), K'e L(H(BULC) , H(CC(R))),
K' € L(H(CC(R)), H(CC(R))).

If f is analytic from D' into (BULC)", then K'f is analytic from D' into CC(R).

THEOREM 3. Let F(t, x, 1) satisfy (4). In addition, let D C X be a domain
such that F(-, x, 1) is analytic from B X D into BUL, and such that for each p,
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6(-, p, L) is continuous from D into a veal BUL-space. Then for each fixed p and
each L = ' € D that satisfy (6) theve exists a subdomain D' C D such that for
each | € D' the equation (*) has a unique compact solution x(-, 1), and x(-, 1) is
analytic from D' into CC(R).

Proof. By the assumptions in the theorem, the supremum of each integral in (6)
is continuous on D into R, for each fixed p. Thus if (6) is satisfied for some fixed
p and p = pu', then there exists an open sphere N about p' such that (6) is satisfied
for each |t € N. Therefore Theorem 2 implies that for each 1 € N there exists a
unique compact solution x(-, u) of (*).

If x € H(CC(R)), we conclude from the assumptions on F(t, x, i) that
F(-, x(-, u), 1) is analytic from D' into (BULC)~. Thus K'Fx is analytic from
D' into CC(R). Let D' = N; then

sup{ {°

=00

neas 6(t+s, p, w)ds: (t, u) € RXD'} <r<1,

(7)

sup{ || SO exp(Us) F(t+s, O, p.)ds[l: (t, p) € RXD'} < p(1 -r)/2.

Set §' = {f € H(CC(R)): |f[|.c <p}. S' is a complete metric space. By (7),
| (K'Fi)(t, u)| <p for all {t, u) € RX D'. Therefore K'Ff € H(CC(R)), and K'F
maps S' into S'.

Using the same inequalities, we find that K'F is a contraction mapping on S'.
Thus we have an x € S' such that x(-, ) is a solution of (*) for each p € D'.
From Theorem 2 it follows that x is unique.

THEOREM 4. Let F(t, x, 1) satisfy (4). Suppose moveover that D is open, and
that for each X and each p the functions F(-, x, i) and 6(-, p, u) are continuous
mappings from D into BUL and into a veal BUL-space, vespectively. If p and y'
satisfy (6), then p' has a neighbovhood N in D such that for each y € N the equa-
tion (*) has a unique compact solution x( -, ); x(-, ) is continuous on N into
CC(R), and x'(-, ) is continuous on N into BUL.

Proof. As in the proof of Theorem 3, it follows that if (6) is satisfied for a fixed
p and p = u', then there exists a neighborhood N of p' such that (6) is satisfied for
each p € N. Again from Theorem 2 we see that for each p € N there exists a uni-
que compact solution x(-, ©) of (*). The rest of the proof follows from [4, Theorem
2], since for each p € N the conditions of that theorem are met.

2. SOLUTIONS IN A BANACH SPACE WITH A BASIS

Now let B be a Banach space with a basis {xl} For each n, P, denotes the
projection operator that sends B into the subspace Y, spanned by x;, ***, X,,.
From [3, pp. 134-136] we see that the P, are continuous. Since P,x converges to
x in B, for each x € B, it follows from the Steinhaus-Banach theorem that there
exists an M > 0 such that || P,|| <M for all n. It is easy to see that in this case
f € P(R) if and only if P, f converges to { in the uniform norm.

LEMMA 4. If f € (BULC)", then P,f —f in (BULC) as n — «, and if
£ ,fe (BULC) and f —fin (BULC)", then P f —fin (BULC)".
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Proof. If £ € (BULC)", then there exist f, € BULC such that f, — f in BUL.
But for each pair of positive integers k and n,

P f, € BULC and [P f -P.f]| <Mt -tf_.
Therefore Py f € (BULC) , for each k. The inequalities
12t -2l < 1Pt - Pt + IRty - £, S v D e -1+ 22, - £
yield the first part of the lemma. Now, if f, — f in (BULC)", then
1.5, -t < IPaty - Ptllg + [Pt -2l <Mty - 2]+ [ e - 1]

and the remainder of the lemma follows.

We now assume that M = 1, as is the case if B is a separable Hilbert space with
orthogonal basis {xi}.

Denote by C(R, Y,,) the space of all bounded continuous functions from R into
Y, = P,B. Then (C(R, Y,), | |«) is a complex Banach space.

THEOREM 5. Let M =1, and let the assumptions of Theorem 2 hold. Then
there exist contractive operators T, for all n > N, for some N > 0, mapping closed
spheres of the space C(R, Y, ) into themselves, such that for the unique fixed point

x,0of T,
x € (BULC)", |x-x, | —o0, [x'-x ] —o0,

wheve X is the compact solution of (*) given by Theorem 2.
Proof. For y € C(R, Y,), define

0
(T,9)0) = § P, exo(us) B, Ft+s, y(t+s), u)ds

(P, KP F(-, y(+), u))t) = (P KP_Fy)(t),

where (Fy)(t) = F(t, y(t), #). It follows from Lemmas 1 and 2 that T, maps
C(R, Y,,) into itself and that (T,y)' € BUL (n=1, ---). We also see that T, maps
BULC into C(R, Y,) (n=1, ).

If y € BULC, then Lemmas 2 and 4 imply that P, Fy — Fy in (BULC)~. There-
fore it follows from Lemma 1 and Theorem 1 that KP, Fy — KFy in CC(R). Conse-
quently, P, KP, Fy — KFy in CC(R); that is, T,y — Ty in CC(R) for each
y € BULC.

From the above it follows that there exists an N > 0 such that

0
sup{ ||PnS exp(Us) P, F(t + s, 0, p)dsl:te R} < p(l -r)/2 for n>N.
-0

Also, by the definition of T, ,

IT,x- Tyl <rlx-yl, xyec® Y), |x|.<p Iyl <pn=1,2 ).
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The two preceding inequalities imply that for n > N, T, is a contraction map-
ping on the closed sphere

S, = {y e CR, Y,)): |y],, < o}.

Let x, = T x  be the resulting fixed points for n > N, and let x = Tx be the
solution of (*) given by Theorem 2. Set f, =Fx, and f = Fx. Then

Ix-x,0,, < Ix-2.x| + Pkt -P P £| +|P KP f-P KP £ |_

< =-poxf + k) E-2otl + P -xP £ |

Applying the first inequality in (6) to the last term of the above inequality, we see
that

(t-0) [x-xp ], < D= - Poxl, + x| 1 - 21|

The first term on the right of the above inequality tends to 0, since x € CC(R); the
second term also tends to 0, since P f —{ in (BULC) . Thus x, — x in CC(R).

It follows from Lemma 1 that for almostall t € R

x;(t) = -(P,UKP_ £ )(t)+ P, (t)

and
x'(t) = -(UKF)(t) + £(t).
Therefore
I= - =il < IPot, - 2]+ | P, UKP, £, - UKE]
Since

I, - £l < o, b, W, 1%, - %,

Lemma 4 implies that P,f, — f in (BULC) . Thus KP,f, — Kf in CC(R), and
hence P, UKP, f, — UKf in CC(R). Therefore the second part of the theorem is
proved.

Let us now consider the case M > 1. If x, y € S, and the assumptions of
Theorem 2 are satisfied, then " T, X - TnY"w < rM2 Ix - YHOO. If M>1, we can-
not in general conclude that T, is a contraction on the set S,,. But if y € BULC,
then, as we saw in the proof of Theorem 5, P, KP_  Fy — KFy in CC(R). If
¥, Yo € CC(R) and y, — y in CC(R), then there exists a p > 0 such that || Yo ” WP
for all n. From the inequality

[ Fyn-Fyls < l6C, 0, )]s lva - ¥l

and the preceding statements we see that P, KP,, Fy, — KFy. Induction implies that
(P, KP_ F)My — (KF)™y in CC(R) for each y € CC(R) and each integer m. If

y € CC(R) and ||y||c,o < p, then, since T is a contraction on S, we can conclude that
"(KF)™y — x in CC(R) as m — «, where x is the compact solution of (*). There-
fore, since for a fixed integer m and a fixed y € CC(R), (Pn KP _F)™y — (KF)™y
in CC(R) as n — «, we have proved the following result.

THEOREM 6. LetM > 1, and let the assumptlions of Theorem 2 hold. Then,
Jor each y € S and each & > 0, there exist positive integers m, and n. such that
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where X is the compact solution of (*).

Thus we see that for each M > 1 we can approximate the compact solution to (*)
by successive approximations in finite-dimensional spaces.

In the two preceding theorems, the only assumptions on U are that spU is in the
right half-plane and (1) is satisfied. Let us also assume the following:

U = E + C, where E, C € L(B, B), E is compact, CP, = P, C,

(8) g

" P n” = 1 for all positive integers n.

We see that E =P E — E in L(B, B). Thus U, =E +C — U in L(B, B), and
therefore we can conclude from [1 Lemma 3, p. 585] that

(9) lexp (U, t)]| < [7 +0O(1/n)]e®  for all large n and all £ <0,
Thus it follows from Lemma 1 that for large n the operator K, defined by
0
(10) K_D(t) = S exp(U_s) f(s+t)ds  (t € R, f € BUL)
-0C

is in L(BUL, C(R)). From Theorem 1 it follows that K, € L{(BULC) , CC(R)).

Since U, € L(Y,, Y,), we also see that K, € L(C(R, Y,), C(R, Y,)). Since
U, — U in L(B, B), it follows that

(11) exp(U,t) — exp(Ut) in L(B, B)

uniformly for t in any bounded set.

From (9) and (10) we deduce the existence of a constant N > 0 such that
(12) K, < N for all large n.

THEOREM 7. Let the assumptions of Theovem 2 hold, and assume in addition
that U satisfies (8). Then for large n the diffevential equations

(**) y'+U,y = P, F(-, 5, 1)
have unique solutions y, € C(R, Y, ) such that
1al <o ly-vulle =0, vy -9il, =0,

wheve y is the unique compact solution of (*).

Proof, Using (9), we see that for large n the operators
T, =K P_F,

which map C(R, Y,) irto itself, satisfy the condition
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(13) "Tnx-Tny"ooSer-yﬂoo (x,y€8).

If f € BULC, then it follows from (9) and (11) that K,f — Kf in CC(R). From
(12) it follows that K _f — Kf in CC(R) for each f € (BULC)", and this implies that
if £ — f in (BULC)”, then K,f, — Kf in CC(R). If y € BULC, then, as we saw
before, P, Fy — Fy in (BULC)”. Thus T_,y — Ty in CC(R), for each y € BULC.
Therefore, from the second inequality in (6) we get

(14) I (T )(0) "w < p(1-r)/2 for large n.

Proceeding as in the proof of Theorem 2, and using (13), (14), and the other
properties of T, we see that for all large n the operators T, map (BULC)" into
C(R, Yn), that they are contraction operators on S = {y € C(R, Y,): i| y"Oo < p},
and that their unique fixed points y, are the unique solutions to (**) such that
Vo € S, and y; € BUL.

Let y = Ty = KFy be the unique compact solution to (*), and let y, = T,y,. Then

Iy - vulloe = 2y - Ty, 0l < My - Tyl + I Ty, - 9 -

The first term in the last member tends to 0, since T,y — Ty in CC(R) for

y € BULC. Using (9) and the properties of the function F(i, x, 1), we see that

" Tn(Vn - ¥) "oo <r ||y - ¥n ” « for large n. Thus, since r < 1, we have proved that
y, — y in CC(R).

Since yI'1 + Up ¥p = Py Fy, , where Fy, = F(-, y,, &), we have the inequality
ly'-v:ll, < lu,y, -vyl + P Fy_-Fy|_.

The first term on the right side tends to 0, since U, — U in L(B, B) and y, — y in
CC(R). Since y, —y in CC(R), we know from the proof of Theorem 5 that
P_Fy_ — Fy in (BULC)".

3. THE CASE WHERE U GENERATES A STRONGLY
CONTINUOUS SEMIGROUP

Let U be an unbounded closed linear operator on B into B such that
(15) D(U), the domain of U, is dense in B,

(16) there exist positive numbers 6 and n such that for every real z (z > -0), z
is in the resolvent set of -U, and the resolvent of -U satisfies the condition

| (R(z, -uN? <nz+6)™ (=01, ).

Then (see [4]) there exists a strongly continuous semigroup E(t) of bounded linear
operators for t € (-«, 0] such that E(t) = e(-t, -U), where e(t, -U) is the semigroup
generated by -U on [0, «).

LEMMA 5. Let U be an unbounded closed linear opevatoy satisfying (15) and
(16). Then G € L{(BUL, C(R)), where the operator G is defined by the Bochner inte-
gval

g(t) = (G)(t) = SO E(s)f(t + s)ds (t € R, f € BUL).

=00
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If f(R) ¢ D(U) and £, Uf € BUL, and g = Gf, then g(R) C D(U), g is absolutely con-
tinuous on every finite intevval, g is differentiable almost everywhere and satisfies
the condition g'(t) + Ugl(t) = £(t) for almost all t, Ug € C(R), g' € BUL, and

E(t - b)g(t) is absolutely continuous on every finite interval [a, b).

For a proof of Lemma 5, see [4, Lemma 5].

We shall now investigate the compact solutions of

(**x) g'+Ug = F(-, g, 1),

where F(t, x, 1) satisfies (4), F(R X Bx D) C D(U), U satisfies the conditions of
Lemma 5, and where we also assume that UF(., y, p) € BUL for all ¢ € D CX and
all y € C(R).

Definition., A function f on a finite closed interval I= [a, b] into B is called a
solution of (***) on I if and only if

(i) £(1) c D(V),
(ii) f is absolutely continuous on [a, b],
(iii) E(t - s)f(t) is absolutely continuous in t on [a, s], for each s € [a, b],

(iv) £'(t) exists almost everywhere on [a, b] and satisfies (***) for almost all
t € [a, b).

A function f is called a solution of (***) in an interval if and only if it is a solu-
tion of (***) in every compact subinterval.

LEMMA 6. If f is a solution of (***) on [a, bl, then
f(t) = E(a - t)f(a) + 5tE(s - t) F(s, £(s), 1)ds (t € [a, b]).

The proof of Lemma 6 follows from the definition of a solution. (For details, see
[4, Theorem 6].)

We are interested in those p, p for which

sup{n SO

o0

e0s 6(t+s, p, p)ds: t € R} <r<l1,
(17)
0
Sup{ ||S E(s)F(t+s, 0, p)ds|: t e R} < p(l-1)/2.

THEOREM 8. Assume (17) is satisfied for some fixed p and .. Then theve
exists exactly one solution g € CC(R) of (*¥*) such that ||g|.< p.

To prove this theorem, we need the following. For small b > 0, set
D, = -b" L (E(-b)-D, B,=b"'1-b RO, -U),
and let U, represent either D, or By,. It is known (see [1, pp. 621, 625]) that

lexp (U, t)| < n exp[(6 +0MN] (£ <0).
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Thus by Lemma 1 the operators K;, are in L(BUL, C(R)) for small b > 0, where

(K, £)(t) = 50 exp (U, s)f(s +t)ds  (t € R, f € BUL),

-00

U] .
and | Ky i < T~ exp[- (6 T Om)]" Therefore there exists an M < « such that
|, | <M for small b> 0.
LEMMA 7. If g € (BULC)", then Kyg — Gg in C(R) as b — 0T,

Proof. See Lemma 6 in [4], and use the condition |K; || <M and the density of
BULC in (BULC)".

LEMMA 8. G € L((BULC)~, CC(R)).
The proof of Lemma 8 follows immediately from Theorem 1 and Lemma 7.

Proof of Theorem 8. Take fixed p and p such that (17) is satisfied. Then by
Lemmas 2, 5, and 8 it follows that T = GF is a contraction mapping on the closed
sphere S in CC(R). From Lemma 5 it follows that the fixed point f of GF is a
solution of (***) in R. If g € CC(R) is another solution of (***) in R such that
gl < p, then it follows from Lemma 6 that f = g.

Now consider the differential equation
(****) y’-[-Uby = F(.’y, “)

for small b > 0. From Lemma 7 we deduce that if (17) is satisfied for fixed p and
[, then
“ (Kb F)(0) ||oo < p(1 -r)/2 for small b>0.

Since

0
sup{nS exp[(6 + O(b))s] O(t+s, p, w)ds: t € R} <r<l1

-CO

for small b > 0, we can conclude from Theorem 2 that there exists a g, € CC(R)
satisfying the conclusions of Theorem 2 for the differential equation (****), Thus
we get the following result.

THEOREM 9. If (17) is satisfied for fixed p and ., then for small b > 0,
(****) has a compact solution satisfying all the conclusions of Theorem 2.

THEOREM 10. Let gy, be the solution of (****) given by Theovem 9, and let g
be the solution of (¥**) given by Theovem 8; then g, — g in CC(R), as b — 0Ot .

Proof. Since g, = K, Fg, and g = GFg, we have the inequality
le - el < 1Kp(Fey, - Fl, + [ K, Fe - GFe]|
For small b > 0, || K, (Fg, - Fg) ||oo <r| gy - g]loo . Therefore

(1-r)eg-gl, < K, Fg-GFg]_ .
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The right side of the last inequality tends to 0 by Lemma 7. Since 0 <r <1 the
theorem is proved.

Theorems 5 and 10 can be combined:

THEOREM 11. Let B be a complex Banach space with basis {x;} such that the
projection operators P, salisfy the condition || P, “ =M = 1. Let the assumptions of
Theorvem 8 be satisfied. Then for each € > 0 there exist a positive integer ng and
a small positive number by such that the operator

T = P, K, P, F

ng bg

is a contraction opevator on the closed sphere Sng C C(R, Yna)’ and such that

le - Bng b
compact solution of (¥¥*).

HOO <e. Here g ng bg is the unique fixed point of Tns bg 2 and g is the

Combining Theorems 6 and 10, we get the following result.

THEOREM 12. Let all the assumptions of Theorvem 11 be satisfied, with M = 1
replaced by M >1. Then for each f € S and each € > 0, theve exist positive integers
ng and mg and a small positive number by such that

"(PngKbs Png F)msf - g”oo <eg,

where g is the compact solution of (*¥**).

We thus see that for each M > 1 we can approximate the compact solution to
(***) by successive approximations in finite-dimensional spaces.

Proceeding as in the proofs of Theorems 3 and 4, we get the following two theo-
rems.

THEOREM 13. Assume that F(t, x, ), 0(t, p, 1), and U satisfy the conditions
in Theorem 8, and that in addition F(t, x, p) and 6, p, L) satisfy the assumptions
in Theovem 3, Then, for each p and each U = p.' € D for which (17) is satisfied,
there exists a subdomain D' C D such that for each p € D' the equation (¥**) has a
unique compact solution x(-, 1); the solution x(-, i) is analytic from D' into
CC(R). '

THEOREM 14. Let F(t, x, 1), 6(t, p, 1), and U satisfy the conditions in Theo-
rem 8, and in addition let F(t, x, L) and 6(t, p, 1) satisfy the conditions in Theorem
4, Then, for each p and each P = U' € D such that (17) is satisfied, theve exists a
neighbovhood N C D of 1 such that for each 1L € N the equation (***) has a unique
compact solution x(-, 1), and x(-, 1) is continuous on N into CC(R).

In conclusion, we note that the stability properties of the unique bounded solutions
corresponding to (*) and (***) developed in [4] apply without change to the compact
solutions given by the present paper, since these compact solutions are also the
unique bounded solutions.
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