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I. Background

Let k be a field andR = k[x0, . . . , xn]. Then what one might call theradical
versionof Hilbert’s Nullstellensatz states that, for any homogeneous idealA =
(f1, . . . , fm) with radicalR, some power ofR lies inA:

Re ⊂ A.

From now on, let us denote bye the minimum such exponent for thisA.
Rabinowitsch [Ra] showed that this formulation is equivalent to the following

(apparently weaker) assertion, which has been called theBezout versionof the
Nullstellensatz: Ifg1, . . . , gm in S = k[x1, . . . , xn] have no common zeros (say,
in an algebraic closure ofk), then there exista1, . . . , am in S such that

1= a1g1+ · · · + amgm.
Denote bya the minimal value of max degai of all choices ofai in S satisfying
this identity.

If di = degfi = deggi > 0 (i = 1, . . . , m), then general upper bounds fore
anda are intimately related, and here we regard them as equivalent. Nearly op-
timal bounds fora ande were achieved almost a decade ago. To discuss these
bounds, for the remainder of the paper let us order the degrees so that

D = d2 ≥ d3 ≥ · · · ≥ dm ≥ d1.

The classical work of Hermann [He] was taken up again by Masser and Wüstholz
[MW] to establish the first effective version of the Nullstellensatz. They showed
that, in the Bezout form,

a ≤ 2(2D)2n−1.

Masser and Philippon gave a family of examples, which was refined a bit in [B2]
to show that, in certain cases,

a = Dn −D;
correspondingly,e≥Dn. Another family of examples was devised by Kollár [Ko].
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The present author used analytic considerations suggested by Berenstein and
Yger and an inequality of [B1] developed for algebraic independence proofs to
show [B2; B3] that, for characteristic zero,

a ≤ nµDµ + µD,
whereµ = min{m, n}. I remarked later [B4, p. 16] that the factorn is unneces-
sary, but never published the details, as the application was superceded by [Ko]
and the underlying inequality by [JKS] (which in turn relies on the results of this
paper).

The jump to arbitrary characteristic was made by Caniglia, Galligo, and Heintz,
who proved [CGH] a radical form of the Nullstellensatz with

e ≤ Dn(n+3)/2.

Very soon thereafter, Kollár employed local cohomology in an inspired way to
establish [Ko] that, under the restriction that all but threedi ≥ 3,

e ≤ d1 . . . dµ,

independent of the the characteristic ofk. In light of the lower bound fora and
therefore fore, Kollár’s result is optimal of its form.

Reprise. Since the basic work of this paper was completed, much additional in-
teresting work on the Nullstellensatz has appeared. Shiffman [Sh] also uses co-
homological methods to obtain bounds of roughly the strength of [CGH]. More-
over Philippon [P1] gives a very nice proof of the Bezout form—based on Kollár’s
proof but using homology of Koszul complexes—and he bounds the denomina-
tors over a certain class of fields includingQ [P2]. Smietanski [Sm] takes up this
approach in the case that the coefficients themselves come from a polynomial ring.

Berenstein and Yger have carried out an impressive program to obtain excel-
lent arithmetic and geometric bounds in the Bezout form of the Nullstellensatz.
In [BY1; BY2] they use Philippon’s work and explicit integral identities to obtain
excellent bounds for the sizes of the coefficients involved in the numerators and
denominators when working overQ. In [BGVY] they continue the surprising use
of analytic tools and Grothendieck residues to obtain strong arithmetic informa-
tion in the Bezout form. Finally, they develop [BY3] Lipman’s algebraic theory
of residues to obtain a powerful and purely algebraic approach while maintaining
the overall strategy.

In [FG], Fitchas and Galligo give a detailed proof of Kollár’s result using Ext.
The excellent survey article [Te] reports on several of the developments which had
taken place at that time. In particular, it gives the proof included in the first version
of this paper, entitled “A Prime Power Product Version of the Nullstellensatz.”

Heintz, Giusti, and co-workers have introduced straight-line programs aris-
ing from randomized arithmetic networks to determine whether polynomials have
common zeros and, if not, to find coefficients in a Bezout identity [FGS; GHS].
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II. Statement of Results

In this note we adapt Kollár’s cohomological technique somewhat to obtain a re-
finement of his radical Nullstellensatz, which we call apure power product version
of the Nullstellensatz. Moreover, properties of the classical Hilbert function pro-
vide a uniformly clean formulation as in [Ko] but without invoking excess intersec-
tion theory. For convenience we explicitly recall the notation of the introduction
before stating the first result.

Hypotheses and Notation. Let the idealA be generated by homogeneous
polynomialsf1, . . . , fm ∈ R = k[x0, . . . , xn], with k a field. Assume that the
polynomialsfi are indexed so that their degrees satisfyd2 ≥ · · · ≥ dm ≥ d1. Let
M denote the maximal homogeneous ideal; that is,M = (x0, . . . , xn), the so-
called irrelevant prime ideal. Finally make the (annoying) technical assumption
thatdµ−ρ+1 ≥ 3, whereρ > 1 denotes the height ofA andµ = min{m, n}.
Theorem 1 (Prime Power Version). There are relevant prime idealsP1, . . . ,Pr

containingA, positive integerse1, . . . , er , and integrale0 ≥ 0 such that

Me0P
e1
1 . . .P

er
r ⊂ A, (1)

where
e0 +

∑
ei degPi ≤ d1 . . . dµ (2)

whenCardk ≥ d1 . . . dµ.

Coda. Regardless ofCardk, there are always homogeneous prime idealsp1, . . . ,

pr in K[x0, . . . , xn], K = k(t), with Pi = pi ∩ R satisfying(1) and

e0 +
∑

ei degpi ≤ d1 . . . dµ.

Remark 1. Note thate0 receives special treatment only because degM is null,
and therefore we must either bound its contribution separately with regard to de-
gree or else giveM “honorary” degree equal to 1.

Remark 2. The proof furnishes such a product in which everyisolatedprime
componentP of A occurs with an exponent that is not less than the product of the
exponent of its associated primary component in primary decompositions ofA,
multiplied by the factor(1+3δ)/2, whereδ denotes the dimension ofP (i.e.,δ =
n− heightP).

Recall thatρ(P), theheightof a prime idealP, is defined to be the greatest integer
s for which there is a strictly ascending chain of prime ideals

P0 < · · · < Ps−1 < Ps = P.
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There are now important contexts whereP already has another notion of height
naturally ascribed to it, for example, via the Chow form whenk is a number field.
So in connivance with S. Lang, we propose the descriptive word “elevation” in-
stead of “height”. The notion has also been termed “rank” [No], which raises
other dissonances. However, since no conflict of meaning occurs in this paper,
we do not insist on the new coinage here. The heightρ(I) for any homogeneous
idealI of R is the least height of any homogeneous prime ideal containingI. The
idealI is said to beunmixedor pureif all its associated prime ideals have the same
height.

We recover Kollár’s sharp radical Nullstellensatz from the Coda, withe ≤∑ ei,

since for eachi = 1, . . . , r, degpi ≥ 1 and

R = Rad(A) ⊂ Pi .

Corollary (Kollár). e ≤ d1 . . . dµ.

Remark 3. Another proof of Kollár’s result is obtained from the theorem as fol-
lows. Let e∗ = ∑

ei . If Cardk ≥ d1 . . . dµ, thenR = Rad(A) ⊂ Pi (i =
1, . . . , r) and, by the theorem,Re∗⊂ A.

If Cardk < d1 . . . dµ, then we can replacek by an algebraic extensionK of suf-
ficiently large degree to obtain prime idealsP1, . . . ,Pr of KR as in the theorem.
Setpi = Pi ∩ R (i = 1, . . . , r), so thatR ⊂ pi andRe∗ ⊂ M

e0
0 p

e1
1 . . . p

er
r ⊂

KA ∩ R.
Theorem 2 (Pure Power Version).Assume thatCardk ≥ d1 . . . dµ. For i =
ρ = ρ(A), . . . , n + 1, there are exponentsri ∈ Z≥0 and unmixed homogeneous
idealsKi satisfying the following conditions:

(i) if K i 6= R, thenρ(K i ) = i andA ⊂ Rad(K i );
(ii) K

rρ
ρ . . . K

rn
n Mrn+1 ⊂ A; and

(iii) rn+1+
∑

ρ≤j≤n rj degKj ≤ d1 . . . dµ.

Remark 4. The proof of this theorem gives such a product withK i = R for any
i > m. Moreover, to any isolated prime componentP of A of heighti there cor-
responds aP-primary component ofK i of length not less than the length of the
corresponding primary componentQ of A. For by construction (Lemma 0),P
will be an isolated prime component of(h1, . . . , hi), and in the local ringRP,

K iRP = (h1, . . . , hi)RP ⊂ QRP.

Remark 5. The assertions hold with no lower bounds assumed on thedi if either

(i) f1, . . . , fm form a regular sequence (in which case no lower bounds on Cardk

are necessary either), or
(ii) ρ = 1.

The first claim follows from Bezout’s theorem (Lemma 3). For the second claim,
see Section VIII.
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Remark 6. Of course, ifA has no nontrivial zeros, then Macaulay’s theorem (cf.
Lemmas 0 and 4(2) withKn = R andIn = (h1, . . . , hn)) shows linear rather than
multiplicative growth of the exponent with respect to thedi :

Me ⊂ Ad , e := d1+ · · · + dn+1− n.
Remark 7. The prime power version of Nullstellensatz follows directly from the
pure power version of Nullstellensatz. For then we write a primary decomposi-
tion for K i asK i =

⋂
j∈Ji Qj, with eachQj a Pj -primary ideal and degK i =∑

(lengthQj )(degPj ). (Compare, for example, [Gb, Satz V, p.171].) However,
for any P-primary idealQ, the least exponentt such thatP t ⊂ Q, called the
exponentof Q, satisfiest ≤ lengthQ (cf. [BM, Lemma 4]). Thus, by the pure
power version,

∏
i

(∏
j

(
P

lengthQj

j

)ri ) ⊂ A.

Remark 8. Since Hilbert’s intent in the Nullstellensatz is essentially to relate
powerswith containment, the pure power version may seem to be swimming
against the current. For it somewhat schizophrenically veers toward the basic
mind-set in the Lasker–Noether theory: intersection of primary ideals versus the
more primitive powers of the radical ideal.

Since the response represents a personal point of view, the first person singular
is appropriate here. I admit to not having a well-defined purpose in the pure power
version. I see the prime power form as a natural extension of the point of view of
the pure power version compared to the radical version. Its formulation is meant to
evoke further questions and, possibly, to provoke further investigations before fix-
ing a “true” balance point in the fruitful tension between the multiplicative point
of view and that of Lasker–Noether theory.

For example, it would be interesting to know whether one can, in general, replace
certain of the remaining powers in the pure power version by symbolic powers.
It might be interesting to weaken the Bezout-type bound a bit and insist that the
prime ideals involved in the prime power version be isolated. Some weakening of
the degree bounds would be necessary, as is shown by the next example.

Kollár’s Example. Kollár has shown that one cannot in general use only iso-
lated prime components ofA in a prime power product lying inA and still satisfy
the bound just given on the degrees. The pair of homogeneous polynomials

f1= (xd−1
0 x1− xd2 )xd2 and f2 = (xd−1

0 x1− xd2 )(xd−1
0 x2 − xd1 )

share a common factor and therefore define an idealI of dimension1whose unique
isolated prime componentP = (xd−1

0 x1− xd2 ) has degreed in k[x0, x1, x2]. But
I also has an embedded component of degreed2, since

(f1, f2) = (xd−1
0 x1− xd2 )(xd2 , xd−1

0 x2 − xd1 ).
The lowest powere of the isolated prime idealP lying in I is e = d2 + 1. Thus
e · degP = (d2 +1)d > 4d2 = (degf1)(degf2), as soon asd ≥ 4.

Our approach to the pure product version is that of Kollár’s, although the reader
will find our point of view somewhat more algebraic and our exposition quite a bit
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more leisurely, in order to provide easier access for a more general audience. As
in [BM; B1; B2], we take general homogeneous linear combinations of our gen-
erators so that we are reduced to treating ideals(I, h) = G ∩ E, whereh does
not lie in any isolated prime component of the unmixed idealI, and whereG in-
volves only the isolated components of(I, h) andE involves only embedded ones.
Bezout’s theorem deals withG, but not much seems to be known about the pos-
sibilities forE. In [B1] and [B2], this problem was circumvented in characteristic
0 using complex analysis.

In [Ko], Kollár ingeniously links certain long exact sequences of local coho-
mology to inject the moduleG/(I, h) intoH 1

E∗(R/I), in arbitrary characteristic.
Therefore any annihilator of this cohomology carriesG into (I, h) and in this re-
spect is a multiplicative replacement forE. When codimI = 1, the fundamental
relation with depth shows thatH i

E∗ = 0 for i < heightE∗, and Kollár’s technique
with long exact cohomology sequences furnishes annihilators for appropriate co-
homology ofR/G in terms of those forR/I. In brief, the basic premise of the
present paper is that Kollár’s procedure naturally constructs certain annihilators
in terms of products of unmixed ideals whose radicals containA.

III. Rather Regular Sequences

To prove our main result, we reduce to the case where the generatorsf1, . . . , fm
form a sequence that is as regular as possible. We say that a sequence of homoge-
neous polynomialsh1, . . . , hl ∈A is rather regular in A if, for i = 1, . . . , l −1,

(a) hi+1 does not lie in any isolated prime componentP of Bi = (h1, . . . , hi)

unlessP ⊃ A, and
(b) some isolated prime component ofBi does not containhi+1.

Lemma 0. If Cardk ≥ d1 . . . dµ, then there is a rather regular sequenceh1(=
f1), h2, . . . , hl in A, with eachdeghi = degfj(i), for distinct indicesj(1)(= 1),
j(2) > · · · > j(l) and such thatRadA = Rad(h1, . . . , hl). Thenl ≥ ρ = ρ(A),
whileh1, . . . , hρ form a regular sequence, andρ ≥ the vector space dimension of
thek-span of the linear forms amongf1, . . . , fm.

Proof. The argument, but not quite the statement, of [BM, Lemma 5] would apply
here. Instead, we give another simple approach, which gives a slightly stronger re-
sult. Fori = 1, . . . , l−1,one selects the largestj such that not all offj, . . . , fm are
contained in any isolated prime component ofBi := (h1, . . . , hi) not containing
A. Consider the linear map

ε : kNj → k[x0, . . . , xn]degfj

given by
c̄ 7→ c0fj +

∑
cιλMιλ,

whereMιλ runs through theNj − 1 polynomials of the formfιx
degfj−degfι
λ (ι >

j), all having degree equal to degfj . For each fixed isolated prime component
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P of Bi not containingA, ε−1(P) is a k-vector space satisfying dimε−1(P) ≤
Nj − 1, sincefj or at least one of theMιλ lies outsideP. Consequently, as soon
as Cardk ≥ Card{P : P prime component ofBi not containingA }, we see that⋃

P

ε−1(P) + kNj.

In other words, there is a choice ofc̄ ∈ kNj with ε(c̄) not lying in
⋃

P. By the
definition offj it follows thatc0 6= 0, and we may choosec0 = 1. However, it
follows from Lemma 3 that Card{P : P prime component ofBi } ≤ d1 . . . dµ.

Therefore, by our assumption on Cardk, the rather regular sequenceh1, . . . , hi in
A can be extended as long as some isolated prime component ofBi = (h1, . . . , hi)

does not contain all ofA. Let h1, . . . , hl be a maximal rather regular sequence
constructed in this way.

Now for any two distinct indices, sayi > i∗, the correspondingj are also dis-
tinct. Otherwise, sincehi∗+1∈Bi , we see thatBi+1= (Bi , hi+1) = (Bi , h) with
h = hi+1− hi∗+1, which does not involvefj at all. Thus not all offj+1, . . . , fm
lie in any isolated prime component ofBi not containingA, contrary to the max-
imality of our choice ofj for i. This ensures that the degrees of thehi correspond
to the degrees offj with distinct indicesj. In particular,j > 1 wheni > 1.

Now Bl ⊂ A, so any isolated prime component ofA contains one ofBl ’s iso-
lated prime components. On the other hand, ifl is maximal then every isolated
prime component ofBl contains an arbitrary linear combination of the form re-
quired forhl+1, with j ≥ 2. Since it also containsf1, it also contains all ofA and
one ofA’s isolated prime components.

When i < ρ, no isolated prime components ofBi−1 containA and so none
containhi. Thereforeh1, . . . , hρ form a regular sequence.

If we denote byρ ′ the dimension of thek-vector space generated by thosefi
that are linear and ifρ ′ ≥ 1, then we may begin our rather regular sequence with
h1, . . . , hρ ′ equal to linearfi that arek-linearly independent and therefore gener-
ate a regular sequence. Consequently,ρ ≥ ρ ′.
Thus, if Cardk ≥ d1 . . . dµ,we can replacef2, . . . , fm byR-linear homogeneous
combinationsh2, . . . , hl of them to obtain a rather regular sequence inA gener-
ating a subidealB = Bl of A with the same isolated prime componentsPj . We
have the same bounds on the smallest degree and on the largestl − 1 degrees of
the generators as before. If one obtains a power product5 lying in B, then5 lies
in A as well.

IV. Products of Ideals: Annihilators of
Cohomology and Inclusion

We need some notation to state the results of this section. LetI0 = (0) and, fori =
1, . . . , l, defineIi ,K i ,Ei inductively by grouping the components of a primary
decomposition of(Ii−1, hi) to obtain

(Ii−1, hi) = Ii ∩ K i ∩ Ei ,
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where

(i) Ei is the (non-unique choice of ) intersection of the embedded components
of the left-hand side in some primary decomposition,

(ii) K i is the intersection of the isolated primary components of the left-hand side
whose corresponding prime ideals containhi+1 (i.e. all of A), and

(iii) Ii is the intersection of the remaining primary components of the left-hand
side (whose corresponding prime ideals do not containhi+1, i.e.A).

We considerEi or K i to be equal toR in the absence of the components de-
scribed. Note inductively that, by the principal ideal theorem [No, p. 217], the
prime components ofIi ∩ K i have height exactlyi, since, by assumption,hi lies
in no prime component ofIi−1. Since we are in the caseρ > 1, we know that
I1= (h1) andK1= E1= R; to avoid the trivial case, we assume thath1 /∈ k.
Proposition 1. For i = 1, . . . , λ with λ = min{l, n},

(K3i−2

1 K3i−3

2 . . . K30

i−1)(Ii ∩ K i ) ⊂ (Ii−1, hi).

In order to establish this basic result, we adapt Kollár’s use of cohomology. But we
inductively construct ideals annihilating certain cohomology groups, rather than
concentrating on obtaining the minimal power of the radical with this property.
The heart of the proof is the following variant of Lemma 3.4 of [Ko]. IfI,U are
unmixed ideals, then we set codimI U = heightU − heightI whenI ⊂ U and
codimI U = 0 otherwise. The basic properties of local cohomology are given in
[Gt] and [Ha].

Lemma 1. Let a homogeneous polynomialf ∈ R lie outside all prime compo-
nents of an unmixed homogeneous idealI ofR. Let I+ (f ) = G ∩ E, whereG
is the intersection of the isolated primary ideals andE is an intersection of em-
bedded primary ideals. Assume that, for idealsN and N∗ and a radical ideal
U ⊃ G,

N ·H i
U(R/I) = 0

for all i < codimI U, and, forE∗ = RadE,

N∗ ·H 1
E∗(R/I) = 0.

Then, for alli < codimG U,

N2N∗ ·H i
U(R/G) = 0.

Proof. The exact sequences (the first arising from multiplication byf )

0−→ R/I −→ R/I −→ R/(I, f ) −→ 0

and
0−→ G/(I, f ) −→ R/(I, f ) −→ R/G −→ 0

give rise to the exact sequences on local cohomology [Gt]
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· · · −→ H i
U(R/I) −→ H i

U(R/(I, f )) −→ H i+1
U (R/I) −→ · · ·

and

· · · −→ H i
U(R/(I, f )) −→ H i

U(R/G) −→ H i+1
U (G/(I, f )) −→ · · · .

Since by hypothesisH i
U(R/I) (i < codimI U) is annihilated byN, we see from

the first sequence that
N2 ·H i

U(R/(I, f )) = 0

for all i+1< codimI U = heightU−heightI = codimG U+1, by the principal
ideal theorem.

Now if E 6= R (i.e., if (I, f ) actually has embedded components), then

H 0
E∗(R/I) = { g ∈R : E∗jg = 0 in R/I, somej }/I.

SinceE∗ ⊃ G andI,G are unmixed with heightG = 1+heightI, one can choose
u ∈E∗ but outside all the prime components ofI. Then forg as in the preceding
displayed line,ujg ∈ I, and one definition of primary ideal guarantees that, since
u lies in none of the prime components ofI, g lies in each of the primary com-
ponents ofI—that is,g ∈ I. ThusH 0

E∗(R/I) = 0. Therefore, from parts of both
cohomology sequences, we obtain the fundamental injection

G/(I, f ) = H 0
E∗(G/(I, f )) ⊂ H 0

E∗(R/(I, f )) ↪→ H 1
E∗(R/I). (3)

ThusN∗ annihilatesG/(I, f ) and all its cohomology. The lemma follows on ap-
plying the results of these two paragraphs in the second long exact sequence.

Lemma 2. For i ≤ µ, the idealN i := K3i−1

1 K3i−2

2 . . . K i annihilatesHj

U(R/Ii )
for all radical U ⊃ Ii and all j < codimU Ii .

Proof. The proof proceeds by induction oni.
When i = 1 we haveI1 = (f1), and we can makef1 the first term of

a regular sequence inU of length equal to 1+ depthU R/(f1) = heightU =
1+ codimU(f1). Now the basic Theorem 3.8 of [Gt] (cf. [Ha, Exer. 3.4, p. 217])
states thatHj

U(R/I1) = 0 for all j < codimU I1. Thus any ideal, in particular
N1= K1, annihilates the required cohomology modules.

To obtain the general case, we use Lemma 1 withI = Ii−1, f = hi, andG =
Ii ∩ K i . Consider the following short exact sequence:

0−→ Ii/(Ii ∩ K i ) −→ R/(Ii ∩ K i ) −→ R/(Ii ) −→ 0.

We know that multiplication byK i annihilatesIi/(Ii ∩ K i ) and consequently
all its cohomology groups. Therefore, in any corresponding long exact coho-
mology sequence, multiplication byK i carriesHj(R/(Ii )) into the image of
Hj(R/(Ii ∩ K i )).

According to the induction hypothesis,

N i−1 ·Hj

U(R/Ii−1) = 0 for j < codimU Ii−1.
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Therefore, by the preceding paragraph and Lemma 1,N3
i−1K i · Hj

U(R/Ii ) = 0
whenj < codimU Ii , as claimed.

Proof of Proposition 1.We establish the result by induction oni. With the defini-
tion thatI0 = (0), the claim is true fori = 1. By (3), we see that, fori > 1, if
there are embedded componentsEi then

(K i ∩ Ii )/(Ii−1, hi) ⊂ H 1
E∗
i
(R/Ii−1);

by Lemma 2,N i−1 ·H 1
E∗
i

(R/Ii−1) = 0. ThusN i−1 · (K i ∩ Ii )/(Ii−1, hi) = 0, or

(K3i−2

1 K3i−3

2 . . . K30

i−1)(Ii ∩ K i ) ⊂ (Ii−1, hi),

as claimed. If(Ii−1, hi) is unmixed thenK i ∩ Ii = (Ii−1, hi), and the claim still
remains true.

As a corollary of Proposition 1, we can construct a product that lies inside the
original ideal.

Proposition 2. For λ = min{l, n},
(K

(3λ−1+1)/2
1 K

(3λ−2+1)/2
2 . . . Kλ) · Iλ ⊂ (h1, . . . , hλ).

Proof. We show that, for decreasingi = λ, . . . ,2,
N i−1K i · · ·Nλ−2Kλ−1 ·Nλ−1Kλ · Iλ ⊂ (Ii−1, hi, hi+1, . . . , hλ). (4)

By Proposition 1, the claim is true fori = λ. In fact, for i > 2, Proposition 1 also
implies the second inclusion in

N i−2K i−1 · Ii−1⊂ N i−2(K i−1∩ Ii−1) ⊂ (Ii−2, hi−1). (5)

Thus, if we have the inclusion (4) fori > 2, then multiplying byN i−2K i−1 shows
the claim (4) to be true fori − 1 as well. Rewriting claim (4) fori = 2 solely in
terms of the idealsKj gives the result.

It is this product and its twin in Proposition 3 that appear in Theorem 2. The rest of
the paper is devoted to the bookkeeping that relates the degrees and exponents oc-
curring here tod1 . . . dµ. The main tool is Bezout’s theorem, but whenl = n+1,
a surprising amount of care is required to suppress extraneous terms.

In the proof of the theorem, we will use the following consequence (via a straight-
forward induction oni) of Bezout’s theorem (see e.g. [Gb, Sec. 143.7]), where as
usual we consider degR = 0 and the empty productDi+1 . . . Di = 1.

Lemma 3. For i = 1, . . . , λ, if Di = deghi then

degIi +
i∑

j=0

(degKj )Dj+1 . . . Di = D1 . . . Di.
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Whenm = n+1,we will need the following lemma, which is Lemma 2.6 of [Ko].
For ease of access to the reader, we include a complete proof, including the sharp
part (2) from [P2]. Recall thatM = (x0, . . . , xn).

Lemma 4 (Kollár–Macaulay). LetDn+1= deghn+1. If hn+1 vanishes on none of
the( projective) zeros ofIn, then:

(1) for d ≥ degIn −1,MDn+1+d ⊂ (In, hn+1);
(2) if h1, . . . , hn is a regular sequence, then ford ≥∑n

i=1(Di −1), we have

MDn+1+d ∩ (Kn, hn+1) =MDn+1+d ∩ (In ∩ Kn, hn+1).

Proof. First we determine in each case a degreet0 such that, fort ≥ t0,
dim[R/In] t = degIn,

where the subscriptt indicates that we are considering residue classes of homo-
geneous polynomials of degreet.

Case (1). SinceI = In is unmixed of dimension 0, there is a linear formL not
in any of the associated prime ideals ofI. For everyt ≥ 1, multiplication byL
gives an exact sequence

0−→ [R/I] t−1−→ [R/I] t −→ [R/(I, L)] t −→ 0,

which shows that dim[R/I] t > dim[R/I] t−1 if and only if [R/(I, L)] t 6= 0.
Once [R/(I, L)] t = 0 for a certaint = t0, the same is true for all largert. In this
way, the sequence of values dim[R/I] t increases strictly witht until it stabilizes
at degI. Since dim[R/I] 0 = 1, we see that dim[R/I] t = degI for all t ≥ t0 =
degI−1.

Case (2). The Hilbert functions of ideals generated by regular sequences are
well understood. (see e.g. [Gb, p. 164, eq. (4a)]). In our case,H(t; In ∩ Kn) =
D1 . . . Dn, for all t ≥∑(Di −1). As we saw in the preceding paragraph, the val-
ues of the Hilbert functions ofIn andKn grow with t until they stabilize at degIn
and degKn, respectively. However, for everyt we have the canonical injection

0−→ [R/(In ∩ Kn)] t −→ [R/In] t ⊕ [R/Kn] t . (6)

This injection becomes an isomorphism for allt ≥ ∑
(Di − 1), since then the

image has maximal possible dimension degIn ∩Kn = degIn + degKn. Thus, in
case (2), dim[R/In] t = degIn for all t ≥ t0 =

∑
(Di −1).

Sincehn+1 is not a zero divisor inR/In, multiplication byhn+1 gives an injec-
tion of [R/In] t into [R/In] t+Dn+1, both being vector spaces of the same dimen-
sion fort ≥ t0. Thus the map is surjective, which shows that(modIn) all polyno-
mials of degreet+Dn+1 are multiples ofhn+1; that is,M t+Dn+1 ⊂ (In, hn+1). This
completes the proof of part (1), and also furnishes useful information for part (2).

For Lemma 4(2), consider the following commutative diagram of horizontal
short exact sequences fort ≥ Dn+1+

∑
i≤n(Di −1) = Dn+1+ t0:
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0 −−−→ [
(In∩Kn,hn+1)

(In∩Kn)

]
t
−−−→ [

R
(In∩Kn)

]
t
−−−→ [

R
(In∩Kn,hn+1)

]
t
−−−→ 0∥∥∥ ∥∥∥

0 −−−→ [
(In∩Kn,Kn,hn+1)

Kn

]
t
−−−→ [

R
Kn

]
t
−−−→ [

R
(Kn,hn+1)

]
t
−−−→ 0

⊕ ⊕

0 −−−→ [
(In∩Kn,In,hn+1)

In

]
t
−−−→ [

R
In

]
t
−−−→ [

R
(In,hn+1)

]
t
−−−→ 0.

We have already established the second vertical equality for allt ≥ t0. From
that equality, the first vertical equality can be seen fort ≥ Dn+1+ t0 as follows.
Givena1 modKn anda2 modIn, both homogeneous of degreet1 = t − Dn+1 ≥
t0, by the inclusion of (6) there is a (unique)αmodIn ∩Kn of degreet1 such that
α ≡ a1 modKn andα ≡ a2 modIn. Thusαhn+1 ≡ a1hn+1 modKn andαhn+1 ≡
a2hn+1 modIn, which is enough to establish the desired equality.

From the exact sequence

0−→ [R/In] t −→ [R/In] t −→ [R/(In, hn+1)] t −→ 0

(arising from multiplication byhn+1), we see that [R/(In, hn+1)] t = 0 sincet >
t0. Comparing dimensions in the diagram shows that dim[R/(In ∩Kn, hn+1)] t =
dim[R/(Kn, hn+1)] t ,which implies thatM t∩(In∩Kn, hn+1) =M t∩(Kn, hn+1),

as desired.

V. Proof of Theorem 2

For the sequenceh1, . . . , hl constructed in Lemma 0, we continue to use the no-
tationDj := deghj (j = 1, . . . , l).

A. Case l ≤ n. Here, by definition,Il = R. According to Proposition 2,

K
(3l−1+1)/2
1 . . . K l ⊂ (h1, . . . , hl),

as desired. Now recall thath1, . . . , hρ form a regular sequence. Thus eachBi =
(h1, . . . , hi) is unmixed fori ≤ ρ, and in factBi = Ii andK i = R, so that
degK1 = · · · = degKρ−1 = 0. Notice now, according to our hypotheses, that
d2 ≥ · · · ≥ dl−ρ+1 ≥ 3 and, according to Lemma 0, that theDi correspond to
the degrees offj with distinct indicesj. By Lemma 3,

∑
(degK i )Di+1 . . . Dl ≤

D1 . . . Dl, and thus∑
(degK i )3

l−i ≤
∑

(degK i )d2d3 . . . dl−i+1

≤
∑

(degK i )(Di+1 . . . Dl)
d1 . . . dl

D1 . . . Dl

≤ d1 . . . dl .

This completes the demonstration whenl ≤ n.
B. Case l = n+1. We use the following analog of Proposition 2.
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Proposition 3. If l = n+1 then, ford = degIn −1,

K
(3n−1+1)/2
1 K

(3n−2+1)/2
2 . . . KnM

Dn+1+d ⊂ (h1, . . . , hn+1).

Proof. The proof is that of Proposition 2, except that the downward induction
begins with the information provided by Lemma 4 that

MDn+1+d ⊂ (In, hn+1).

Then we use Proposition 1 repeatedly to show that, fori = n, . . . ,1,
(N i−1K i ) . . . (Nn−1Kn)M

Dn+1+d ⊂ (Ii−1, hi, . . . , hn+1),

with I0 = (0), and rewrite everything fori = 1 in terms of the idealsKj .

In order to deduce Theorem 2 from Proposition 3, we must bound the quantity

Cn := Dn+1+ degIn −1+
∑

(degK i )(3
n−i +1)/2.

By Lemma 3,

degIn +
∑

(degK i )Di+1 . . . Dn ≤ D1D2 . . . Dn.

Thus we will have established the desired inequality if we can show that

Cn ≤
(
d1 . . . dn

D1 . . . Dn

)
(degIn +

∑
(degK i )Di+1 . . . Dn)+ δ

with δ = 0. In other words, sinceK i = R for i ≤ ρ, it is enough to show that
Dn+1−1≤ Bδ, where

Bδ = δ +
(
d1 . . . dn

D1 . . . Di

−1

)
(degIn + degKn)

+
∑
ρ≤i<n

(degK i )

(
d1 . . . dn

D1 . . . Dn

− 3n−i +1

2

)
.

We consider three subcases.
(i) ρ < n − 1. The following two inequalities hold because the indicesj with

dj = 1 on the right side can be considered as giving rise to distincti with Di = 1
on the left side and, according to our technical hypothesis,d2, . . . , dn−ρ+1 ≥ 3:

2D2 . . . DρDn+1 ≤ d2 . . . dn,

D2 . . . Dρ3n−ρ ≤ d2 . . . dn.

Adding these two inequalities and dividing by 2D2 . . . Dρ shows thatDn+1−1 is
dominated by the coefficient of degKρ in Bδ:

Dn+1−1≤ d1 . . . dn

D1 . . . Dρ
− 3n−ρ +1

2
− 1

2
,

as desired (even withδ = −1/2).
(ii) ρ = n−1. Now, by our technical hypothesis,d2 ≥ 3. So evidently, unless

degKn−1= 1,
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0 ≤ (degKn−1−1){d2 − 2} −1.

Now l = n+1, so fori = 2, . . . , ρ we haveDi ≤ dn+3−i . Therefore,

Dn+1−1≤ d2 −1≤ (degKn−1)

(
d1 . . . dn

D1 . . . Dρ
− 2

)
+ δ ≤ Bδ

with δ = 0, as desired, unless degKn−1 = 1. Even then, by Lemma 4(2),Mg0 ⊂
(In, hn+1), whereg0 = Dn+1+ degIn − 1. Multiplying by Kn−1Kn shows (via
Proposition 1) that

Kn−1KnM
g0 ⊂ (Kn−1InKn, hn+1) ⊂ (In−1, hn, hn+1). (7)

However, if degKn−1 = 1 thenKn−1 is a prime minimal primary component of
A and thushn, hn+1∈ Kn−1. Since the product on the left-hand side of (7) is also
contained inKn−1, we find that

Kn−1KnM
g0 ⊂ (In−1∩ Kn−1, hn, hn+1) = (h1, . . . , hn+1). (8)

We want to let this inclusion play the role here analogous to that of Proposition 4
in subcase (i). So now we need to consider the redefined quantity

Cn = g0 + degKn + degKn−1

< Dn+1+ degIn + degKn + degKn−1

= Dn+1+ (D1 . . . Dn−1−1)Dn ≤ D1 . . . Dn−1Dn+1,

which implies the desired inequalityCn ≤ d1 . . . dn.

(iii) ρ = n. According to Lemma 4(2), we need only be sure thatD1+ · · · +
Dn+1−n ≤ d1 . . . dn. This is easy enough to verify by starting withD1+Dn+1−1≤
d1d2 and recursively applying the inequalityx + y ≤ (x +1)y, which is valid for
x ≥ 0 andy ≥ 1. This completes the proof of Theorem 2.

VI. Final Remarks

The proof demonstrates that our results still hold if we use the second case of
Lemma 1 to remove all restrictions on thedi and instead change the bound on∑
(degK i )(3n−i + 1)/2 to (3/2)νd1 . . . dµ, whereν is the number of indicesi

such thatEi 6= R whileDi = 2.
It is Philippon’s sharpening as Lemma 4(2) that allows us to avoid excess in-

tersection theory without introducing an extraneous factorM into the product of
prime ideals of the theorem in the case wherel = n+ 1, ρ = n− 1, andKn−1 is
a primary of length 2. Our proof could also have been given as easily in terms of
the homology of Koszul complexes (as is [P2]) rather than local cohomology.

The sharp Bezout form follows from settingx0 = 1 in a sharp homogeneous
(radical, prime power product, or pure power product) form to obtain, as in [Ko],
that

degai + deggi ≤ d1 . . . dn.
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VII. Open Questions

It is quite remarkable that the exponent in Lemma 2 does not depend on the polyno-
mial f. On the other hand, it would be very interesting to know whether Lemma 2
holds with exponent involving 2 rather than 3, at least whenf is quadratic. For a
positive response would remove all restrictions on degree in the results.

The restriction on the cardinality ofk is annoying. It would be interesting to
remove it without increasing the bound on the exponents.

VIII. A ppendix

Proof of Remark 5.Let f be the greatest common divisor of thefi, with d =
degf. If d1= d thenf1 divides allfi. ThusA = (fi), and the claim is obvious.

If d1 > d +1, then there are pure idealsK′i as in Theorem 2 with

Mc0K′c11 . . . K′cnn ⊂ (f1/f, . . . , fm/f )

and
c0 +

∑
ci degK ′i ≤

∏
max{3, di − d}.

Thus
(f )Mc0K′c11 . . . K′cnn ⊂ (f )(f1/f, . . . , fm/f ) ⊂ A

and, since eachdi ≥ d + 2 ≥ 3,

d + c0 +
∑

ci degK ′i ≤ d +
∏

max{3, di − d}

≤ d1

∏
i>1

max{3, di − d} ≤ d1 . . . dµ.

Whend1= d+1, a certain number of thefi/f will be linear; setρ ′ equal to the
dimension of thek-vector space they generate. Then, after a linear change of vari-
ables, we may arrange these polynomials to bexn−ρ ′+1, . . . , xn. Reducing modulo
these variables, we consider the idealA′ generated by the remaining (nonlinear)
ratios

f2/f = F1, . . . , fj /f = Fj−1∈R ′ = k[x0, . . . , xn−ρ ′],

with µ′ = min{n− ρ ′, j −1} < µ. In R ′ we obtain a product

M ′c0
∏

K
′ci
i ⊂ A′

with
c0 +

∑
ci degK′i ≤

∏
max{3, d ′i − d}.

However, by our choice ofFi, eachd ′i − d ≥ 2. Henced ′i ≥ 3, and finally

(f )M ′c0
∏

K
′ci
i ⊂ (f )A′ ⊂ A
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with

d + c0 +
∑

ci degK′i ≤ d +
∏
i≤µ′

max{3, d ′i − d}

≤ d1 ·
∏
i≤µ′

max{3, d ′i − d} ≤ d1 . . . dµ.
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