A Pure Power Product Version
of the Hilbert Nullstellensatz

W. DALE BROWNAWELL

I. Background

Let k be a field andR = k[xy, ..., x,]. Then what one might call theadical
versionof Hilbert’s Nullstellensatz states that, for any homogeneous #leal
(f1, - .., fin) with radical?R, some power ofR lies in2:

R C .

From now on, let us denote lythe minimum such exponent for this

Rabinowitsch [Ra] showed that this formulation is equivalent to the following
(apparently weaker) assertion, which has been calleB#&mout versiorof the
Nullstellensatz: Ifgq, ..., g, In S = k[x1, .. ., x,,] have no common zeros (say,
in an algebraic closure df), then there existy, . . ., a,, in S such that

l=aig1+ -+ amgm-

Denote bya the minimal value of max deg of all choices ofa; in § satisfying
this identity.

If d; = degf; = degg;, > 0(i =1,...,m), then general upper bounds fer
anda are intimately related, and here we regard them as equivalent. Nearly op-
timal bounds fora ande were achieved almost a decade ago. To discuss these
bounds, for the remainder of the paper let us order the degrees so that

D=d,>d3>--->d, >di.

The classical work of Hermann [He] was taken up again by Masser and Wustholz
[MW] to establish the first effective version of the Nullstellensatz. They showed
that, in the Bezout form,

a < 22Dy,

Masser and Philippon gave a family of examples, which was refined a bit in [B2]
to show that, in certain cases,

a=D"—- D,

correspondinglye > D". Another family of examples was devised by Kollar [Ko].
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The present author used analytic considerations suggested by Berenstein and
Yger and an inequality of [B1] developed for algebraic independence proofs to
show [B2; B3] that, for characteristic zero,

a<nuD" 4 uD,

wherep = min{m, n}. | remarked later [B4, p. 16] that the facteris unneces-
sary, but never published the details, as the application was superceded by [Ko]
and the underlying inequality by [JKS] (which in turn relies on the results of this
paper).

The jump to arbitrary characteristic was made by Caniglia, Galligo, and Heintz,
who proved [CGH] a radical form of the Nullstellensatz with

e < D"I2,

Very soon thereafter, Kollar employed local cohomology in an inspired way to
establish [Ko] that, under the restriction that all but thiee- 3,

efdl...du,

independent of the the characteristickofin light of the lower bound foe: and
therefore fore, Kollar’s result is optimal of its form.

REPRISE.  Since the basic work of this paper was completed, much additional in-
teresting work on the Nullstellensatz has appeared. Shiffman [Sh] also uses co-
homological methods to obtain bounds of roughly the strength of [CGH]. More-
over Philippon [P1] gives a very nice proof of the Bezout form—based on Kollar’s
proof but using homology of Koszul complexes—and he bounds the denomina-
tors over a certain class of fields includiQg P2]. Smietanski [Sm] takes up this
approach in the case that the coefficients themselves come from a polynomial ring.

Berenstein and Yger have carried out an impressive program to obtain excel-
lent arithmetic and geometric bounds in the Bezout form of the Nullstellensatz.
In [BY1; BY2] they use Philippon’s work and explicit integral identities to obtain
excellent bounds for the sizes of the coefficients involved in the numerators and
denominators when working ov€. In [BGVY] they continue the surprising use
of analytic tools and Grothendieck residues to obtain strong arithmetic informa-
tion in the Bezout form. Finally, they develop [BY3] Lipman’s algebraic theory
of residues to obtain a powerful and purely algebraic approach while maintaining
the overall strategy.

In [FG], Fitchas and Galligo give a detailed proof of Kollar’s result using Ext.
The excellent survey article [Te] reports on several of the developments which had
taken place at that time. In particular, it gives the proof included in the first version
of this paper, entitled “A Prime Power Product Version of the Nullstellensatz.”

Heintz, Giusti, and co-workers have introduced straight-line programs aris-
ing from randomized arithmetic networks to determine whether polynomials have
common zeros and, if not, to find coefficients in a Bezout identity [FGS; GHS].
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II. Statement of Results

In this note we adapt Kollar's cohomological technique somewhat to obtain a re-
finement of his radical Nullstellensatz, which we cglLae power product version

of the Nullstellensatz. Moreover, properties of the classical Hilbert function pro-
vide a uniformly clean formulation as in [Ko] but without invoking excess intersec-
tion theory. For convenience we explicitly recall the notation of the introduction
before stating the first result.

HypoTHESES AND NoTATION. Let the ideall be generated by homogeneous
polynomials f1, . .., fu € R = k[xo, ..., x,], with k a field. Assume that the
polynomialsf; are indexed so that their degrees satigfy> - -- > d,, > d;. Let

M denote the maximal homogeneous ideal; thaflis= (xo, ..., x,), the so-
calledirrelevant prime ideal. Finally make the (annoying) technical assumption
thatd,_,41 > 3, wherep > 1 denotes the height & andu = min{m, n}.

THEOREM 1 (Prime Power Version). There are relevant prime idead8y, . . ., B,
containing?l, positive integers;, . . ., e,, and integralep > 0 such that
MOPT. .. Pr C A, @
where
cot+ Y e degP; <di...d, )

whenCardk > d;. . . d,.

Copa. Regardlesso€ardk, there are always homogeneous prime ideals . .,
p, in K[xo, ..., x,], K = k(t), with; = p; N R satisfying(1) and

cot+ Y eidegp; <di...d,.

ReEMARK 1. Note thateg receives special treatment only becausefies null,
and therefore we must either bound its contribution separately with regard to de-
gree or else givé “honorary” degree equal ta 1

REMARK 2. The proof furnishes such a product in which evisglated prime
componenf of 20 occurs with an exponent that is not less than the product of the
exponent of its associated primary component in primary decompositio?is of
multiplied by the factor1+ 3%)/2, wheres denotes the dimension &f (i.e.,s =

n — height]3).

Recall thatp (3), theheightof a prime ideail3, is defined to be the greatest integer
s for which there is a strictly ascending chain of prime ideals

Po<-  <Psoa <Py =P
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There are now important contexts wh&ealready has another notion of height
naturally ascribed to it, for example, via the Chow form wiéds a number field.
So in connivance with S. Lang, we propose the descriptive word “elevation” in-
stead of “height”. The notion has also been termed “rank” [No], which raises
other dissonances. However, since no conflict of meaning occurs in this paper,
we do not insist on the new coinage here. The heighit for any homogeneous
idealJ of R is the least height of any homogeneous prime ideal containifidhe
idealJ is said to bainmixedor pureif all its associated prime ideals have the same
height.

We recover Kollar’s sharp radical Nullstellensatz from the Coda, avith) _ e;,
since foreachh =1, ..., r, degp; > 1and

R =Rad®) C ;.
CorOLLARY (Kollar). e <dj...d,.

REMARK 3. Another proof of Kollar’s result is obtained from the theorem as fol-
lows. Lete* = ) e. If Cardk > d;...d,, then’® = Rad2) C B; (i =
1,...,r) and, by the theoren®¢" c .

If Cardk < d:...d,, then we can repladeby an algebraic extensioki of suf-
ficiently large degree to obtain prime ideds, . . ., 3, of KR as in the theorem.
Setp; =P NR (G =1,...,r), sothath C p; andR C MPp...po C
K2ANR.

THEOREM 2 (Pure Power Version). Assume thaCardk > dy...d,. Fori =
p=p®),...,n+1 there are exponents € Z-o and unmixed homogeneous
idealsK; satisfying the following conditions

(i) If R; # R, thenp(R;) =i and®? Cc RadR;);

(i) &Y ... /<M A; and
(III) T4l + Zpsjgn rj degﬁj <dj... dM‘

REMARK 4. The proof of this theorem gives such a product vith= R for any

i > m. Moreover, to any isolated prime compon&hbf 2l of heighti there cor-
responds &3-primary component oR; of length not less than the length of the
corresponding primary componefi of 2. For by construction (Lemma O}
will be an isolated prime component ¢fy, . . ., i;), and in the local ringRy,

ﬁ,’ng = (hy, ..., h,’)Rgp C QR&;’_}.

REMARK 5. The assertions hold with no lower bounds assumed odj tifieither

(i) fi ..., fu formaregular sequence (in which case no lower bounds oniCard
are necessary either), or

(i) p=1

The first claim follows from Bezout’s theorem (Lemma 3). For the second claim,

see Section MI.
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REMARK 6. Of course, ifdl has no nontrivial zeros, then Macaulay’s theorem (cf.
Lemmas 0 and 4(2) witR, = R and3J, = (hy, ..., h,)) shows linear rather than
multiplicative growth of the exponent with respect to the

E)T(eCQld, e:=di+---+dy1—n.

REMARK 7. The prime power version of Nullstellensatz follows directly from the
pure power version of Nullstellensatz. For then we write a primary decomposi-
tion for &; asf; = ﬂjeji Q;, with eachQ); a‘P;-primary ideal and deg; =

> (lengthQ ;)(deg;). (Compare, for example, [Gb, Satz V,}¥1].) However,

for any B-primary idealf, the least exponentsuch that’ c Q, called the

exponenbf £, satisfies < lengthQ (cf. [BM, Lemma 4]). Thus, by the pure
length ;

power version[ T, ([T, (%; )") c .

REMARK 8. Since Hilbert’s intent in the Nullstellensatz is essentially to relate
powerswith containment, the pure power version may seem to be swimming
against the current. For it somewhat schizophrenically veers toward the basic
mind-set in the Lasker—Noether theory: intersection of primary ideals versus the
more primitive powers of the radical ideal.

Since the response represents a personal point of view, the first person singular
is appropriate here. | admit to not having a well-defined purpose in the pure power
version. | see the prime power form as a natural extension of the point of view of
the pure power version compared to the radical version. Its formulation is meant to
evoke further questions and, possibly, to provoke further investigations before fix-
ing a “true” balance point in the fruitful tension between the multiplicative point
of view and that of Lasker—Noether theory.

Forexample, itwould be interesting to know whether one can, in general, replace
certain of the remaining powers in the pure power version by symbolic powers.
It might be interesting to weaken the Bezout-type bound a bit and insist that the
prime ideals involved in the prime power version be isolated. Some weakening of
the degree bounds would be necessary, as is shown by the next example.

KoLLAR’s ExampPLE. Kollar has shown that one cannot in general use only iso-

lated prime components &f in a prime power product lying ik and still satisfy

the bound just given on the degrees. The pair of homogeneous polynomials
fi= (g —xHxd and o = (x§ e — x9)(x§ o — xf)

share a common factor and therefore define an @e&tlimension 1 whose unique

isolated prime componefit = 6’ Ty — x4) has degred in k[ xq, x1, x]. But
J also has an embedded component of dedresince
(f1, f2) = (2870 — x) (6, x8 2 — xf).

The lowest powee of the isolated prime idedp lying in Jise = d?> + 1. Thus
e -degP = (d% + 1d > 4d? = (degfy1)(degf>), as soon ad > 4.

Our approach to the pure product version is that of Kollar’s, although the reader
will find our point of view somewhat more algebraic and our exposition quite a bit
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more leisurely, in order to provide easier access for a more general audience. As
in [BM; B1; B2], we take general homogeneous linear combinations of our gen-
erators so that we are reduced to treating id€alé) = & N &, whereh does

not lie in any isolated prime component of the unmixed ideand where® in-

volves only the isolated components6f /) and€ involves only embedded ones.
Bezout’s theorem deals with, but not much seems to be known about the pos-
sibilities for €. In [B1] and [B2], this problem was circumvented in characteristic

0 using complex analysis.

In [Ko], Kollar ingeniously links certain long exact sequences of local coho-
mology to inject the module/(J, k) into H:.(R/J), in arbitrary characteristic.
Therefore any annihilator of this cohomology carm&ito (7, #) and in this re-
spect is a multiplicative replacement fér When codini = 1, the fundamental
relation with depth shows th@., = 0 fori < height&*, and Kollar’s technique
with long exact cohomology sequences furnishes annihilators for appropriate co-
homology of R/® in terms of those foR/J. In brief, the basic premise of the
present paper is that Kollar’s procedure naturally constructs certain annihilators
in terms of products of unmixed ideals whose radicals corain

I1l. Rather Regular Sequences

To prove our main result, we reduce to the case where the genefators, f,,
form a sequence that is as regular as possible. We say that a sequence of homoge-
neous polynomials,, . . ., h; € A israther regularin 2 if, fori =1,...,1 — 1

(@) h;11 does not lie in any isolated prime componghof B; = (hy,..., h;)
unlesss > 2, and
(b) some isolated prime component®f does not contain; ;.

Lemma 0. If Cardk > ds. .. d,, then there is a rather regular sequenkg=
Sfu, ho, ..., hyin A, with eachdegh; = deg f;, for distinct indices;j(1)(= 1),
j(2) > --- > j() and such thaRad2l = Rads, ..., ;). Thenl > p = p(),
whilehs, . . ., h, form a regular sequence, angd> the vector space dimension of
thek-span of the linear forms among, . . ., fu.

Proof. The argument, but not quite the statement, of [BM, Lemma 5] would apply
here. Instead, we give another simple approach, which gives a slightly stronger re-
sult. Fori =1, ...,/—1 oneselects the largegsuch thatnotall of;, . . ., f,, are
contained in any isolated prime componen®®f:= (hy, . . ., h;) not containing

20. Consider the linear map

e kN — k[xo, .. <> Xn]degy;
given by
crH cofj+ ZCL;LMM,
degf;—degf, (t .

whereM,, runs through theV; — 1 polynomials of the formy,x,
J), all having degree equal to dgf. For each fixed isolated prime component
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B of B; not containingR(, ¢~X(P) is ak-vector space satisfying dieT'(P) <
N; — 1, sincef; or at least one of th#/,, lies outsid€ld. Consequently, as soon
as Card > Card ‘B : P prime component of3; not containing }, we see that

Je ) 2 &M
b

In other words, there is a choice ofe k" with e(¢) not lying in | 3. By the
definition of f; it follows thatco # 0, and we may choose, = 1. However, it
follows from Lemma 3 that Cafdp : 3 prime component of8; } < d...d,.
Therefore, by our assumption on Catdhe rather regular sequenkg . . ., k; in

2L can be extended as long as some isolated prime compor@ntef(iy, . . ., ;)
does not contain all of(. Let &, ..., h; be a maximal rather regular sequence
constructed in this way.

Now for any two distinct indices, say> i*, the corresponding are also dis-
tinct. Otherwise, sinck;- 3 € B;, we see tha®B; .1 = (B, h; 1) = (B;, h) with
h = hiz1 — hi=41, which does not involvef; at all. Thus not all offj44, .. ., fi
lie in any isolated prime component &; not containing(, contrary to the max-
imality of our choice ofj for i. This ensures that the degrees of theorrespond
to the degrees of; with distinct indices;j. In particular,j > 1 wheni > 1.

Now B8, C 2, so any isolated prime component2fcontains one of8;’s iso-
lated prime components. On the other hand,if maximal then every isolated
prime component of8, contains an arbitrary linear combination of the form re-
quired forh; 1, with j > 2. Since it also containg;, it also contains all of( and
one of’s isolated prime components.

Wheni < p, no isolated prime components &;_; contain?l and so none
containk;. Thereforehy, . . ., h, form a regular sequence.

If we denote byp’ the dimension of thé-vector space generated by thgse
that are linear and ip’ > 1, then we may begin our rather regular sequence with
hi, ..., hy equal to linearf; that arek-linearly independent and therefore gener-
ate a regular sequence. Consequently, p’. O

Thus, if Cardk > d;. . . d,, we can replac¢y, . . ., f,, by R-linear homogeneous
combinationgi,, . . ., h; of them to obtain a rather regular sequencéligener-
ating a subideaB = B; of 2 with the same isolated prime componefts We
have the same bounds on the smallest degree and on the largéstegrees of
the generators as before. If one obtains a power prdduging in 95, thenIl lies
in A as well.

V. Products of Ideals: Annihilators of
Cohomology and Inclusion

We need some notation to state the results of this sectionligl-et(0) and, fori =
1,...,1, defineJ;, R;, €; inductively by grouping the components of a primary
decomposition ofJ;_3, 4;) to obtain

@i, h) =T NR;NE;,
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where

(i) ¢; is the (non-unique choice of) intersection of the embedded components
of the left-hand side in some primary decomposition,
(if) R, istheintersection of the isolated primary components of the left-hand side
whose corresponding prime ideals contaiy (i.e. all of (), and
(iii) 3; is the intersection of the remaining primary components of the left-hand
side (whose corresponding prime ideals do not coritain i.e.2().

We consider®; or K; to be equal tar in the absence of the components de-
scribed. Note inductively that, by the principal ideal theorem [No, p. 217], the
prime components d¥; N K; have height exactly, since, by assumptior, lies
in no prime component df;_;. Since we are in the cage > 1, we know that
J1 = (hy) andR; = €1 = R; to avoid the trivial case, we assume that k.

ProrosiTioN 1. Fori =1,..., A withA = min{l, n},
@7/ &Y )0iN &) C Tica hy).

In order to establish this basic result, we adapt Kollar’s use of cohomology. Butwe
inductively construct ideals annihilating certain cohomology groups, rather than
concentrating on obtaining the minimal power of the radical with this property.
The heart of the proof is the following variant of Lemma 3.4 of [Ko] JIfil are
unmixed ideals, then we set codjiil = heightil — heightT whenJ c 4 and
codimy 4L = O otherwise. The basic properties of local cohomology are given in
[Gt] and [Ha].

LemMA 1. Let a homogeneous polynomigéle R lie outside all prime compo-
nents of an unmixed homogeneous ideaf R. LetJ + (f) = & N &, where®
is the intersection of the isolated primary ideals aéds an intersection of em-
bedded primary ideals. Assume that, for ide?lsand 9t* and a radical ideal
o e,

N-H{(R/J)=0

forall i < codimy 4, and, for¢* = Rad¢,
N* . H3.(R/J) = 0.
Then, for alli < codimg 4,
MN2N* - HI(R/®) = 0.
Proof. The exact sequences (the first arising from multiplicatiory by

00— R/J— R/J— R/(J,f)— O

and
0—¢&/J,f)— R/, f) — R/& — 0

give rise to the exact sequences on local cohomology [Gt]
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- —> H{(R/3) —> H{(R/(3, f)) — H™MR/T) —> -
and

. — HY(R/(3, ) — Hi(R/®) — HN®/(3, ) —> - .

Since by hypothesiH;'l(R/J) (i < codimy Y1) is annihilated bydt, we see from
the first sequence that
N2 HY(R/(3, ) =0

foralli +1 < codimy U = heightil — heightd = codimg £+ 1, by the principal
ideal theorem.
Now if & #£ R (i.e., if (J, f) actually has embedded components), then

HY.(R/J)={geR: €Y =0inR/J, somej}/J.

Since¢* D & andJ, & are unmixed with height = 1+ heightJ, one can choose

u € &* but outside all the prime componentsXfThen forg as in the preceding
displayed lineu’/g € 3, and one definition of primary ideal guarantees that, since
u lies in none of the prime components ®f g lies in each of the primary com-
ponents ofi—that is,g € 3. ThusH2.(R/J) = 0. Therefore, from parts of both
cohomology sequences, we obtain the fundamental injection

®/(3, f) = Hg-(8/(3, ) C HQ(R/(3, ) <= Hg.(R/7). 3

Thus9t* annihilates®/(J, f) and all its cohnomology. The lemma follows on ap-
plying the results of these two paragraphs in the second long exact sequence.

LEMMA 2. Fori <y, the ideal; := &% &3 ... &; annihilatesHJ(R/7;)
for all radical & > J; and all j < codimy J;.

Proof. The proof proceeds by induction en

Wheni = 1 we haveJ; = (f1), and we can make; the first term of
a regular sequence itt of length equal to X depth, R/(f1) = heightl =
1+ codimy( f1). Now the basic Theorem 3.8 of [Gt] (cf. [Ha, Exer. 3.4, p. 217])
states thaHjl(R/Jl) = 0 for all j < codimyJ;. Thus any ideal, in particular
N, = K1, annihilates the required cohomology modules.

To obtain the general case, we use Lemma 1 With J; 1, f = h;, and® =
J; N R;. Consider the following short exact sequence:

0— 3J;/0:NKR) — R/(TiNKR) — R/(T;) — 0.

We know that multiplication byR; annihilates3;/(J; N K;) and consequently
all its cohomology groups. Therefore, in any corresponding long exact coho-
mology sequence, multiplication h§; carries H/(R/(J;)) into the image of
HI(R/(J; N R))).

According to the induction hypothesis,

N; 1 H{(R/J;_1) =0 for j < codimyJ; 1.
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Therefore, by the preceding paragraph and Lemna®L, &; - Hi(R/ji) =0
whenj < codimy J;, as claimed. O

Proof of Proposition 1.We establish the result by induction anWith the defini-
tion thatJo = (0), the claim is true foi = 1. By (3), we see that, for > 1, if
there are embedded compone@ighen

(8 N 31)/ (i1 h) C Heo(R/Fi-):;

by Lemma 2911 - Hg.(R/J;-1) = 0. ThusM;_1 - (&; N J;)/(Ji—1, h;) =0, or

i—2 i —3 0 ~
R/ R )DOINR) C Tig, hy),
as claimed. If{(J;_1, h;) is unmixed therR; N J; = (J;_1, h;), and the claim still
remains true. OJ

As a corollary of Proposition 1, we can construct a product that lies inside the
original ideal.

PROPOSITION 2. FOr A = min{/, n},
3141)/2 5 (342412 ~
(RS2 g3, C (h, . ).

Proof. We show that, for decreasirig= A, . . ., 2,
MR- M2 fa - Mo1Ra - To C Ticn, By higa, -0, ). 4)

By Proposition 1, the claim is true for= A. In fact, fori > 2, Proposition 1 also
implies the second inclusion in

MR- Tica CI2(Ri—tNTiz) C (Ti—2, hi—). 5)

Thus, if we have the inclusion (4) for> 2, then multiplying by2t; _» K;_; shows
the claim (4) to be true for — 1 as well. Rewriting claim (4) foi = 2 solely in
terms of the ideal®; gives the result. O

Itis this product and its twin in Proposition 3 that appear in Theorem 2. The rest of
the paper is devoted to the bookkeeping that relates the degrees and exponents oc-
curring here taly . . . d,,. The main tool is Bezout’s theorem, but whies n + 1,
a surprising amount of care is required to suppress extraneous terms.

Inthe proof of the theorem, we will use the following consequence (via a straight-
forward induction on) of Bezout’s theorem (see e.g. [Gb, Sec. 143.7]), where as
usual we consider degy = 0 and the empty produd; ;... D; =1

LemMma 3. Fori =1,..., 4, if D; = degh; then

degd; + Y (deg®;)Djy1...D; = Dy...D;.
=0

j=
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Whenm = n+1, we will need the following lemma, which is Lemma 2.6 of [K0].
For ease of access to the reader, we include a complete proof, including the sharp
part (2) from [P2]. Recall tha®t = (xo, . . ., x,)-

LemmMma 4 (Kollar-Macaulay). Let D, .1 = degh, 1. If h,1 vanishes on none of
the (projectivg zeros of7J,, then

(1) ford > degJ, — 1, MPrtd C (3, hyi1);
(2) if hy, ..., h, is aregular sequence, then far> " _(D; — 1), we have

MO N (R, hpy1) = MP 0 (3, 0 Ry, hpg).

Proof. First we determine in each case a deggesich that, for > 1o,
dim[R/7,], = degJ,,

where the subscriptindicates that we are considering residue classes of homo-
geneous polynomials of degree

Case (1). Sincé = J,, is unmixed of dimension 0, there is a linear fofimot
in any of the associated prime idealsXfFor everyr > 1, multiplication by L
gives an exact sequence

0 — [R/J3]i-1 —> [R/3]; — [R/(3, )], — O,

which shows that dinR/J], > dim[R/J],_; if and only if [R/(J, L)], # O.
Once [R/(3, L)], = 0 for a certairr = 1o, the same is true for all larger In this
way, the sequence of values diRy[J]; increases strictly with until it stabilizes
at dedd. Since dimR/J]o = 1, we see that ding/J], = degJ forall r > to =
degi — 1

Case (2). The Hilbert functions of ideals generated by regular sequences are
well understood. (see e.g. [Gb, p. 164, eq. (4a)]). In our cH%e,J, N R,) =
D;...D,, forallr > > (D; —1). As we saw in the preceding paragraph, the val-
ues of the Hilbert functions df,, and,, grow with¢ until they stabilize at deg,
and degg,,, respectively. However, for everywe have the canonical injection

0 — [R/(Tn N RD]: —> [R/Tn]: ® [R/R4]:. (6)

This injection becomes an isomorphism for alt- > (D; — 1), since then the
image has maximal possible dimension dgg K, = degJ, + deg&,. Thus, in
case (2), dimg/J,], = degJ, forallt > 1o = > (D; — 1).
Sinceh,, ;1 is not a zero divisor ik /J,,, multiplication by#, ; gives an injec-
tion of [R/J,]; into [R/J,]:+p,,,, bOth being vector spaces of the same dimen-
sion fort > 1. Thus the map is surjective, which shows ttrabd?J,,) all polyno-
mials of degree+ D,1 are multiples o, 1; thatis 9t/+P»+ (3, h,11). This
completes the proof of part (1), and also furnishes useful information for part (2).
For Lemma 4(2), consider the following commutative diagram of horizontal
short exact sequences for D, 11+ Y, ,(D; —1) = Dy + to:
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0 [P5ras], Kemernl? Ko ! 0

0 [(jnmﬁn,éjj’“hnﬂ)]r [%]t [(ﬁ,,,lliwl)]t 0
@D 5>

0 [(jnmﬁnj’f”.hwl)]t [ﬁ%]t [(3,1,5,,+1)]t 0'

We have already established the second vertical equality forzalky. From
that equality, the first vertical equality can be seentfor D, 1 + to as follows.
Givena; mod{,, anda, modJ,, both homogeneous of degree=r — D, ;3 >
to, by the inclusion of (6) there is a (unique)mod3J, N K, of degree; such that
o = aymodR, anda = a, modJ,. Thusah,; = ajh,.amodR, andah, 1 =
azh,+1modJ,, which is enough to establish the desired equality.

From the exact sequence

O - [R/jn]t — [R/jn]t — [R/(jn, hn+l)]t — O
(arising from multiplication by, 1), we see thatR/(J,, h,+1)], = 0 sincer >
to. Comparing dimensions in the diagram shows that &y, N R, h,1 1], =
dim[R/(R,, hny1)]:, whichimpliesthadt’ N (J,NRK,, k1) = M N(R,, hprt),
as desired. 0
V. Proof of Theorem 2

For the sequencky, . . ., h; constructed in Lemma 0, we continue to use the no-
tationD; :=degh; (j =1,...,1).

A. Casel <n. Here, by definitiony; = R. According to Proposition 2,

/—1
ﬁ(13 2R (hy, .. hy),

as desired. Now recall that, . . ., h, form a regular sequence. Thus e&8h=
(hy, ..., h;) is unmixed fori < p, and in factB; = J; and&; = R, so that
degf; = --- = degf,_1 = 0. Notice now, according to our hypotheses, that

d» > --- > di_,4y1 > 3 and, according to Lemma 0, that tiie correspond to
the degrees of; with distinct indicesj. By Lemma 3, "(degf;)D;41... D; <
D:...D;, and thus

D (degR)3'™ <) (degf))dzds. .. di-isa
di...d
d D(Djy1...D)— <
<) (degRi)(Dip DD
This completes the demonstration wheq n.

B. Case/ =n+1 We use the following analog of Proposition 2.
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ProrosiTion 3. If [ =n + 1then, ford = degJ, — 1,
n—1 n—2
RETHVRRETHYZ g Pt (hy, L hya).

Proof. The proof is that of Proposition 2, except that the downward induction
begins with the information provided by Lemma 4 that

IMPr1td (T, hpir).

Then we use Proposition 1 repeatedly to show thatj fem, . . ., 1,
Miaki) - .. MuoaR) MO C (Tig by ),
with 3o = (0), and rewrite everything far = 1 in terms of the ideals;. O

In order to deduce Theorem 2 from Proposition 3, we must bound the quantity

Cy = Dy1+degd, — 1+ > (degk;)(3" +1)/2.
By Lemma 3,

degd, + » (degf)Diy1... Dy < D1Dy... D,
Thus we will have established the desired inequality if we can show that
di...d,
C, <|—=———|(degJ, d i)Diy1... Dy )
< <Dl_”Dn)( egd, + » _(degf)D;i ) +

with § = 0. In other words, sinc&®; = R fori < p, it is enough to show that
D,.1—1< Bs, where

di...d,
Bs =6+ (1— - 1>(degj,, + deg8,)

D;...D;
di...d, 341
de R; — .
+p;n( 9 )<D1...Dn 2 )

We consider three subcases.

(i) p < n — 1 The following two inequalities hold because the indigesith
d; = 1on the right side can be considered as giving rise to distinith D; =1
on the left side and, according to our technical hypothesis,. ., d,_,+1 > 3:

2D>. .. DyDy1 <d>...d,,
Do... Dp3n_p <d,...d,.

Adding these two inequalities and dividing by2. . . D, shows thatD,1; — 1is
dominated by the coefficient of deg}, in B;:

dy...d, 3741
Dy1—1< —~ —~
=D D, 2
as desired (even with= —1/2).

(i) p = n — 1 Now, by our technical hypothesig; > 3. So evidently, unless
degR,1=1,

El

1
2
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0 < (degf,_1 —D{d>— 2} — 1.
Now! =n+1 sofori =2,..., pwe haveD; <d, 3 ;. Therefore,
di...d,
LT 2) 45 < B
D;...D,

with § = 0, as desired, unless d&g_; = 1. Even then, by Lemma 4(2)ts° C
(J,, hyy1), wheregg = D, 41 + degJd, — 1 Multiplying by K, _18, shows (via
Proposition 1) that

ﬁn—lﬁnmgo - (ﬁn—ljnﬁnv hn+1) C (jn—l» hna hn+1)~ (7)

Dpy1—1<d,—-1< (degﬁn—l)(

However, if degk,_1 = 1 theng,_; is aprime minimal primary component of
2 and thush,,, h, 11 € R,—1. Since the product on the left-hand side of (7) is also
contained infk,,_;, we find that

ﬁnflﬁn M C (jnfl n ﬁnflv hn» thrl) = (hla ceey hn+1)- (8)

We want to let this inclusion play the role here analogous to that of Proposition 4
in subcase (i). So now we need to consider the redefined quantity

C, = go +degR, +degR, 1
< Dy41+ degd, + degR, + degf, 1
=Dpp1+(D1...Dyp1— DD, <Dy... Dy—1Dy 11,

which implies the desired inequality, < d;...d,.

(iii) p = n. According to Lemma 4(2), we need only be sure thatt+ - - - +
D,1—n < di...d,. Thisis easy enoughto verify by startingwith+ D, ;1 —1 <
d1d, and recursively applying the inequality+ y < (x + 1)y, which is valid for
x > 0andy > 1 This completes the proof of Theorem 2. O

VI. Final Remarks

The proof demonstrates that our results still hold if we use the second case of
Lemma 1 to remove all restrictions on the and instead change the bound on

Y (deg®) (3" +1)/2 t0 (3/2)"d;. . . d,,, wherev is the number of indices

such that®; £ R while D; = 2.

It is Philippon’s sharpening as Lemma 4(2) that allows us to avoid excess in-
tersection theory without introducing an extraneous faffiointo the product of
prime ideals of the theorem in the case whieren +1, p =n — 1, andg,_; is
a primary of length 20ur proof could also have been given as easily in terms of
the homology of Koszul complexes (as is [P2]) rather than local cohomology.

The sharp Bezout form follows from setting = 1 in a sharp homogeneous
(radical, prime power product, or pure power product) form to obtain, as in [Ko],
that

dega; +degg; <di...d,.
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VII. Open Questions

Itis quite remarkable that the exponentin Lemma 2 does not depend on the polyno-
mial f. On the other hand, it would be very interesting to know whether Lemma 2
holds with exponent involving 2 rather thana least whery is quadratic. For a
positive response would remove all restrictions on degree in the results.

The restriction on the cardinality @f is annoying. It would be interesting to
remove it without increasing the bound on the exponents.

VIII. A ppendix

Proof of Remark 5Let f be the greatest common divisor of thfig with d =
degf. If di = d then f; divides all f;. Thus2l = (f;), and the claim is obvious.
If dy > d + 1, then there are pure ideaf§ as in Theorem 2 with

MR LR C(fuff s fulf)
and
co+ Zc,» degk| < l_[max{S, d; — d).
Thus
(FYMORE R C (Ofaffoe s fulf) CA

and, since eactl, > d +2 > 3,
d+co+ Y c;degk] <d+ [ [max3 d; —d}
< dll—[max{B,di —dy<dy...d,.
i>1

Whend; = d +1, a certain number of thé¢ /f will be linear; setp’ equal to the
dimension of th&-vector space they generate. Then, after a linear change of vari-
ables, we may arrange these polynomials te,pg 4, . . ., x,. Reducing modulo
these variables, we consider the id@algenerated by the remaining (nonlinear)
ratios

fz/f = Fj_, PR f}/f = Fj_le R/ = k[xo, .. .,xn_p/],
with ' = min{n — p’, j — 1} < . In R’ we obtain a product
me] 8 c
with
co+ Y ¢ degf; < [ [max3.d; - d}.

However, by our choice of;, eachd/ — d > 2. Henced; > 3, and finally

e[/ c(hHA c
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with
d+co+ ) cidegf; <d + [ | max(3.d; - d)

isw

<di- [[max3.d/ —d} <di...d,.

i<up
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