WeightedL?-Cohomology of Bounded
Domains with Smooth Compact Quotients

WING-KEUNG To

1. Introduction

Let2 be a bounded domain @". The Bergman metric oft is a Kéhler metric in-
variant under the group Au®R) of biholomorphic automorphisms ©f. Denote the
Bergman metric o by ds3, and denote its Kahler form by. For0< p, g <n
we denote by} ?($2) the space of square integrable harmdpicg)-forms on<2
with respect tais2. When the boundary @@ is smooth, Donnelly and Fefferman
proved the following result.

THEOREM [DF]. If Qis a strictly pseudoconvex domain@t, then

0 if p+gq#n,

: (1.1)
oo if p+qg=n.

dim#59(Q) = {

See also [D], where Donnelly gave an alternative proof of this theorem using a
criterion of Gromov [Gro].

Itis known that (1.1) also holds for bounded symmetric domains whose bound-
aries are not smooth in general (see [Gro] and [Ka]). Itis thus natural to ask: Does
(1.1) hold for bounded domains &" without any conditions on the boundary?

An important class of bounded domains are those that cover compact manifolds,
and they have been extensively studied (see e.g. [Ca; Fr; Kob; Si; V]). In this ar-
ticle, we consider the spaces of harmonic forms on such domains that are square
integrable with respect to certain weight functions. Our result can be regarded as
a partial affirmative answer to the above question for such domains.

Forz € 2, we denote byl (z) = dist(z; 92) the Euclidean distance betwegn
and the boundar§< of Q. Fors € R we define

1 n
O¢ = 0 and / lp@IP—— - < 00 } (1.2)
Q d(z)* n!
Hered and|| - || denote (respectively) the Laplacian and the pointwise norm with
respect tads3. It is easy to see that, for > 0, each#H5 /() forms a vector

subspace of{5?(Q2) and
HYHQ) Cc 1Y) if s>, (1.3)

Hy Q) = { ¢ c AP1(Q)
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LetK(z, w) € C*(22 x Q) denote the Bergman kernel function@nWe define
two constants; = r;(2), i = 1, 2, given by
ri=sup{reR | K(z,z) > C1/d(2)"
forsomeC; > 0 and for allz € Q},
rp=inf{reR | K(z,z) < C2/d(2)"
for someC, > 0 and forallz € Q2}.

(1.4)

Obviously one has; < r, for any2, and one can easily construct examples for
whichry < rp. However, for a bounded strictly pseudoconvex domain, one always
hasri = r, = n + 1 (see e.g. [Fe]). Our main result in this article is as follows.

MaIN THEOREM. LetQ be a bounded domain i@i”, and letry, rp be as in(1.4).
Suppose that there exists a discrete torsion-free subgfoupAut(2) such that
'\ is compact. Then

dimHLY(2) =0 foranys> -2, p+q#n. (1.5)
, o

In particular, one has
dim#5 /() =0 foranys>n, p+4q#n. (1.6)

Under the hypothesis of the Main Theorem, one necessarily kag2< r, < 2n

(see Proposition 3.1 and Proposition 4.2). For eadhis easy to verify that one
indeed hag, = 2 andr, = 2n when< is the unit polydiseA” in C". Also, the
Bergman metric o182 is necessarily complete, since it descends to a Kéhler met-
ric on the compact manifolB\ 2. Thus we have excluded those domains, such as
the punctured unit disc i€, whose Bergman metrics are incomplete.

We remark that there are bounded domains that admit smooth compact quo-
tients but are not bounded symmetric domains. Such examples can be given by
the universal covers of the Kodaira surfaces constructed in [Kod] (see [Fr, Remark
2.3] and [Gri, Lemma 6.2]).

The author does not know of any examples of bounded domasfor which
(1.1) or (1.5) fails to hold. Thus it would be interesting to know whether (1.5)
can be improved or not. Gromov has even asked whether the stronger statement
(1.1), which corresponds to the case= 0, holds for all bounded domains of
holomorphy. Our method does not seem to generalize directly to such cases.

The author learned about the problenmiétcohomology on bounded domains
from Professor M. Gromov. The author would like to take this opportunity to ex-
press his thanks to Professor Gromov and Professor N. Mok for their enlightening
conversations and valuable suggestions.

2. The Bergman Metric

Let 2 be a bounded domain i6”, and letK(z, w) € C*(Q x Q) denote the
Bergman kernel function ofe. The Bergman metrids3 on €2 is a Kahler metric
whose Kahler formw is given by
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w=+/—1301l0ogK(z,z) =dn where n:=+v—1K(z,2) 0K (z,z). (2.1)
It is well known thatK (z, z) satisfies the following transformation rule:
K(z,2) = |det@y)(z)|>- K(y(2), y(z)) forall zeQ, y eAut(). (2.2)

LetI" be as in the Main Theorem, so tHat<2 is a compact manifold. It is well
known thatds3 is invariant under Au2) and thus it descends to a Kahler met-
ric on I'\Q2. However, the(1, 0)-form 5 is not invariant undef” and thus the
L°°-norm ofn may not be finite. Denote the projectivized tangent bundie b/
PTQ, and define a functioh: PTQ — R as follows:

AM[X:])

= S}Jp{ lf(2)?

feO), X.(f) =0, and/|f(z)|2d,u, < 1} (2.3)
Q

for z € Q and nonzerdX, € T,Q. HereO(Q2) denotes the space of holomorphic
functions on2, [X.] denotes the equivalence classXf in P7,Q2, anddu =
(i/2)"dz* Adz? A - AdZ" AdZEAdZ? A - AdZ" denotes the Euclidean vol-
ume form. As in (1.2), we denote HyX. || the norm ofX_ with respect tais32.
We shall need the following observation of Donnelly, which is implicit in [D].

ProrosiTION 2.1. For z € Q and nonzeraX, € 7,2, one has
In(X)P? _ K@)
X2 A([XD
In particular, A is a positive continuous function @ 2.

(2.4)

Proof. The formula in (2.4) is essentially [D, Prop. 3.1] stated in a precise man-
ner, and it follows readily from the discussion in [D, p. 436]. By (2.4), one sees
that the continuity ofs follows from that ofy. O

3. The Kahler—Einstein Metric

We use the same notation as in Sections 1 and 2QlandI” be as in the Main
Theorem. Sinc& is a bounded domain i@" admitting a smooth compact quo-
tientI"\ 2, it follows from a classical result of Siegel [Si] th& is necessarily a
domain of holomorphy. Then, by a result of Mok and Yau [MY], there exists a
complete Kahler-Einstein metric of negative Ricci curvaturgaat is unique

up to a constant multiple and invariant under £&uj. We shall denote this Kéhler—
Einstein metric by/sZc. In this section, we study some consequence arising
from dsZc. Denote the volume form of® associated tdsZz by dVie. In terms

of Euclidean coordinates, we write

dVike = Vke @) (i/2)"dZE ANdZ2 A+ AdZ" AdZEANAZZ A - AdT". (3.1)

Denote also the distance functions with respeatstg. andds3 by dxe(z; z') and
dalz; 7), respectively.
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ProrosiTion 3.1. LetQ, T, ry, rp be as in the Main Theorem.
(i) There exist constants,, C,, C3, C4 > 0 such that

C1-dsfe < dsd < Cp-dsZg and (3.2)
C3-8(z;7') <8al(z;7)) < Cq-8ke(z;2') forall z,z€Q. (3.3)
(i) For any numbers;] < ry andrj; > r,, there exist constantSs = Cs(r}),
Ces = Cs(r5) > O such that
Cs
d(z)"
(iii) We haver; > 2.

< Vke(@) < forall zeqQ. (3.4)

(2)"2

Proof. Being invariant undeF, bothdsZ. andds2 descend to K&hler metrics on

the compact manifold™\ 2; thus they are uniformly equivalent to each other on
2, which gives (3.2). Then (3.3) is a direct consequence of (3.2), and this proves
(i). For any numbers; < ri andr; > ro, it follows from (1.4) that there exist
constant<”, C’ > 0 such that

/

- <K(z,2) < ;

d(z)" d(z)"
Since the(n, n)-form dVkg is invariant under Aui2), Vke(z) also satisfies the
transformation rule in (2.2); that is,

Vke(z) = |det(dy)(z)1? - Vke(y(z)) for zeQ, y € Aut(Q).

Together with (2.2), it follows that the ratide (z)/K (z, z) descends to a smooth
positive function on"\Q2 and is thus bounded of2. This, together with (3.5),
readily implies (3.4), and we have proved (ii). By [MY, Sec. 2.1], there exists a
constaniC” > 0 such that

forall zeQ. (3.5)

C//
V >—————— forall zeQ.
<€) 2 G 2logd ()2 :
This, together with the boundednessag (z)/K (z, z) on 2, readily implies (iii),
and we have finished the proof of Proposition 3.1. O

ProrosiTION 3.2. LetQ, I, r1, ro be as in the Main Theorem. Then there exists
a constantC = C(2) > 0 such that, for any > 0, there exists a compact set
K = K(g) C Q such that

dZ) = d(Z)(VZ/Vﬁ‘S)EXp(C'SQ(ZJZ/)) forall z,z € Q\K. (3.6)

Proof. By [MY, Sec. 2.1], there exists a constanit = C1(2) > 0 such that
|Og(|Og VKE(Z/) — C) — |Og(|Og VKE(Z) — C) < Cl . SQ(Z; Z/) (3.7)

for all z, 7’ € @, wherec = inf_cqlog Vke(z) (> —o0). Rewriting (3.7) using
(3.3), we have
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log Vke(z') — ¢
Iog VKE(Z) —C

for some constanf€ > 0 and allz, z/ € Q. Givene > 0, we choose numbers
ri,r{,ry, ry > 0 such that

< exp(C - 8qa(z; ")) (3.8)

"
r ro
" / / " 2
ri <ry<riy, ra<ry<ry, and 7<r—l—|—8. (3.9
1

By (3.4) and (3.9), there exist constaits C3 such that

Cy —rylogd(z") ,
_ - -8alz; 3.10
Cs—rlogd(@ = exp(C - 8a(z;2) (3.10)

for all z,z’ € Q. Then it is easy to see that one can choose a compadtf set
K(e) C 2 (enlargingK if necessary) such that

d§) <1, Cz—rilogd() > —r{logd(®).

, B (3.12)
C3 —r,logd(é) < —ry logd(é)
for all £ € Q\K. Then we have, fot, z’ € Q\K,
o, —rylogd(z)
eXP(C - balzi ) 2 —Io e (by (3.10), (311)
1 logd(z')
. by (3.9
=Tt ogde O

Notice thatd(z) < 1. Then (3.6) follows readily from (3.12), and we have finished
the proof of Proposition 3.2. O
4. Proof of the Main Theorem

Before we give the proof of the Main Theorem, we first prove several lemmas.
Notation remains the same as before.

LeEmMA 4.1. Let 2 be a bounded domain i@i”. Then there exist constants =
C:(R) > 0 (i =1, 2) such that, for any € Aut(Q2) andz € 2,

Cy
[0y (2)| < m and (4.1)
Cz
|det(@y)(2)| < o (4.2)

Heredy (z) denotes the Jacobian matrdﬂyi/azj (2))1<i, j<n in Euclidean coordi-
nates, anddy (z)| denotes its norq/zlgng |0y#/9z;(2)|2.

Proof. Inequality (4.1) follows easily from the Cauchy integral formula and the
fact that the coordinate functions of gdle Aut($2) are uniformly bounded; (4.2)
is a direct consequence of (4.1). O
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ProrosITION 4.2. Let 2, T, r» be as in the Main Theorem. Then there exists a
constantC > 0 such that

K(z,2) <

C
for all Q. 4.3
d(Z)Zn z€e ( )

In particular, we haver, < 2n.

Proof. Sincel'\2 is compact, it is well known that one can construct a funda-
mental domainD of I'\Q in ©; thatis,D cC , =|p is one-to-one, and|; is
onto. Herer: Q@ — I'\ denotes the projection map afddenotes the closure
of D in Q. SinceD is compact, there exists a const@ht> 0 such thak (£, £) <

Cy for all € € D. For anyz € Q, sincer|j is onto, there exists a € I' such that
¥(z) € D. Now, by (2.2) and Lemma 4.1,

K(z,2) = [det(@y)(2)[* - K(y(2). ¥ (2))

- C1C2

— d(Z)Z”

whereCs; is the constant in (4.2), and this proves (4.3). Then the inequality

2n follows readily from (1.4) and (4.3), and we have finished the proof of Propo-
sition 4.2. O

forall z €,

Forapoint € C" andr > 0, we denote the EuclideanballByz; r) := {£ e C" |
1§ —zl <r}.

ProrosiTION 4.3. Let Q2 be a bounded domain 6", and letK be a compact
subset ofQ2. Suppose is a number such tha < r < d(z) forall z € K. Then
there exists a constaiit = C(2, K, r) > 0 such that, for ally € Aut(R), z €
K,and& € B(z; r),

Idet(dy)(€)] < C|det(@y)(z)[ T, (4.4)

Proof. First we observe that it follows from the bound erand the compact-
ness ofK andaQ that( )., B(z:r) CC Q. Thus there exists a constafif =
d,(R2, K,r) > 0 such that/ (&) > d, for all & € J,.x B(z; 7). By Lemma 4.1,
there exists a constagt’ = C'(R2) > 0 such that, for any € Aut(Q), z € K,
andé € B(z; r),

C’ C’
< —.

d@m" — dy

Sincey € Aut(Q2), det(dy) (&) is a nonvanishing holomorphic function gn To-
gether with (4.5), it follows that lo@ '/ (d”; - |det(dy)(£)])) is a nonnegative pluri-

harmonic function. It then follows from the Harnack inequality for nonnegative
harmonic functions (see e.g. [GT, p. 29]) that

|det(dy)(§)] < (4.5)

Iog< ¢ ) . 4@~ |81 Iog( / >
dr - |det(dy)(é)|) ~ d(z) + 1§ —z| dr - |det(dy)(2)]

d(z) —r C’
A0 +r '°g<d:; : |det<ay><z>|) (4.6)
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for all z € K andé € B(z; r). Rewriting (4.6), one has
2
"\ T

C Zr+i' dz;
|det(dy)(©)| < (d—n) \det(dy) (2)] T

d(@)—r
< C - |det(dy) ()|,

where we may leC = max1, (C'/d")?}. This finishes the proof of Proposi-
tion 4.3. 0

ProrosiTION 4.4. Let 2, T, ry, rp be as in the Main Theorem. Then, for any
numbers > r,/ry, there exists a constaidt = C(£2, s) > 0 such that

AM[X:]) = C-d)* - K(z,2) (4.7)
for all z € 2 and nonzeroX, € 7, 22.

Proof. For anys > r,/r1, we writes = rp/r1+ 3¢, wheree > 0. Let D be a fun-
damental domain of \Q in © as in Proposition 4.2. Sinaés3 is complete and
D is compact, there exists a constaht- 0 such that J,.5 B(§;2r') CC Q. It
follows that there exists a constatit > 0 such that

S &) < C')E —&'| forall € e D and& e B(E; 2r). (4.8)

Let C be the constant and l&f = K(¢) C Q2 be the compact set in Proposition
3.2. Fix a sufficiently small number’ > 0 such that

(’—2 + e> exp(C-C'-2r") < 2 4 2. (4.9)

ry ry

Also letd, = dist(D, 3$2) > 0 be the Euclidean distance bffrom 92, and let

r” > 0 be sufficiently small that
4nr"”

d,
Finally, we letr := min{r’,r”,r"””} > 0 so that (4.8), (4.9), and (4.10) remain
valid with (respectively)’, ", r"” replaced by-. Sinceds3 is complete an&k C

Q is compact, there exists a compact Két(enlargingK’ if necessary) such that
KcCcK cQ,

<e. (4.10)

U B@& 2 cck’. and
seD (4.11)
d(z) <1, 8a(z; K) > 2rC’ for ze Q\K'.

Next we shall show that (4.7) holds @1\ K. First, for eacts € D, we introduce
a smooth cutoff functiory;: (with 0 < x < 1) on€2 such that

1 if &€eB(E;r),

Xg(s):{o if &cQ\B(&:2r), and

, (4.12)
ldxe(E)] < - if & eB(&;2r)\B(;r).
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Also, we define the plurisubharmonic weight functions
ve(§) =2(n+2)logle’ — & and w(&') =log(1+ €] (4.13)
on . SinceQ is a bounded domain, there exist constaritsC, > 0 such that
Ci <exp(—2w(&')) < C, forall & eQ. (4.14)

Also we have, fog € @,

1
eXP(—v: (§) < —, 7 if £ € Q\B(E: 1),
" (4.15)

exp(—ve (£')) = if & eB(;2r).

(2r)2n+4

From now on, we let be any point ir2\ K’. SinceD is a fundamental domain
of M\ in Q, there existy e I' such that’ := y(z) € D. We denote its inverse
byt := y~tel sothatr(z') = z. Thenp, := x. oy is a smooth cutoff function
on Q such thatp,(¢§) = 1 for & nearz. ThusX,(p,) = 0 for any nonzeroX, €
T.Q. Set = dp, on Q. Thenp is supported on (B(z; 2r)\B(z; r)) CC Q.
The function ex§—uv,: o y) is not integrable only at. Thus we have

/Qlﬁ(f;‘)lzexp(—vzf oy () du(§) < oo, (4.16)

whered.(§) denotes the Euclidean volume form. Observe that the funetiory
is also plurisubharmonic oft. By Lz-estima_tes ob of Hormander ([H1, p. 94]
or [H2]), there exists ah € C*°(2) such thavh = g and

/th(é)lzexp(—vz/ oy () — 2w(§)) du(§)

< /Q 1BEPexp(—v. 0y () du(®). (4.17)

Sincep = d(x. o y) = dx. o dy, it follows from (4.12) that the integrand on
the right-hand side of (4.17) is supported o(B(z’; 2r)\B(z’; r)). For any¢ ¢
T(B(z; 2r)\B(z'; 1)),
|B&)1? exp(—v. o ¥ (£))
< |0x (¥ EDIP19y (&) exp(—v.r o ¥ (§))

- 2)2 € 1 (by(a.11), Lemma4.1, and (4.15)) (4.18)

Also, it follows from the invariance afs2 under Au($2) and (4.8) that
Sq(€;z) <2rC’ forall £ e t(B(Z; 2r)). (4.19)

Sincez € Q\K/, it follows from (4.19) and the last inequality of (4.11) that
T(B(z; 2r)) C Q\K. Recall from (4.11) that(z) < 1. Then, by Proposition 3.2,
for & € t(B(z; 2r)) we have
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1 1

d(%—) = d(Z)(rZ/rﬁ_s)EXp(C'SQ(z;z’))
1
= d(z)(rz/rlJre)exp(zrcrc) (by (4_]_9))
(by (4.9)) (4.20)

< - -
- d(z)rz/r1+2s

_LetCs = Cs(£2, D, 2r) > 0 be the constant in Proposition 4.3. Recall that
D. By making the change of variablés = y (¢), or equivalentlys = 7(§'), we
have

/ dp(§)
T(B(z';2r))

_ / Idet(@7) (&) 2 du (&)
B(z';2r)

< / C3 - |det@7)(z)] d( />>Izzf du(&") (by Proposition 4.3)
B(z';2r)

2d:H—2r) 5
< C3C4 - |det(dt)(z))| ach+zr (2r)<" (4.22)

for some constant, = C4(n) > 0. SinceD is compact, there exists a constant
Cs > 1 such that .
KE', &)< Cs forall €eD. (4.22)

Also, sincez’ € D, it follows from (4.10) that

8nr 8nr
- < < 2¢, 4.23
dzy+2r = d, - °° (4.23)

whered, is as in (4.10). Then

det(a) () o — (M) T by 2.2)

K(z,z)
<55 ke (by (4.22)
T K(z,2)
< G| C‘;A, (by Proposition 4.2)
K(z,2) d(z)dch+zr
Cs-Ce

= XG.o) dOF (by (4.23)) (4.24)

whereCg is the constant in Proposition 4.2. Combining (4.21) and (4.24), we have

C3C4CsCe(2r)?"
/ du(é) < %
T(B(z/:2r)) (z,2)-d(2)
C7

T K2 d@Z (4.25)
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whereC; = C7(r) > O isindependent of € 2\ K’. Then we have, for € Q\K’,

/Q BEZ eXp(—vs 0y () du(®)

2\2 ¢ 1
= l(B(z’;Zr)\B(z/;r))<;) 'd(g)z ’ F2n+4 du(€¢) (by(4.18))

2 2 C 1
=\r)" ‘ d by (4.20
- <r) d(Z)z(rZ/rﬁ_ZS) rants /T(B(z’;Zr)\B(z’;r)) e ( y( ))
2 2 C 1 C7
=\ : : by (4.25
= <r> d(Z)Z(rz/r1+22) y2n+4 K(z,2)- d(z)zg ( y( ))

Cg
= , 4.26
K(Z, Z) . d(z)2r2/r1+68 ( )
whereCg = Cg(r) > 0 is independent of € Q\K’. From (4.14) and (4.15), for
z € Q\K' we have

1
/Q P du(®) = & - @)™ /Q @) P exp(—vs 0 y (&) — 2u(®) du(®)

C8 . (2,.)2n+4
~ C1-K(z,2) - d(g)?r2/ritee
Cy
= , 4.27
K(Z, Z) . d(Z)2r2/1‘1+65 ( )
whereCg = Co(r) > 0 is independent of € Q\K'. Also, sincey is biholomor-
phic atz, it follows from (4.13) that, for an open neighborhobdsuch that; €
U ccC Q, there exists a constafitg > 0 such that

(by (4.17) and (4.26))

- Cio
ly (&) — y (@24 7 | — 7|24
for & € U. Then it follows from (4.14), (4.16), (4.17), and (4.28) that

exp(—v; oy (§)) =

(4.28)

h(©)I?
| T dn® < o
which implies that:(z) = 0 andX, (k) = O for any nonzeroX, € T,Q2. Forz
Q\K’, we let f = h — p,. Thenf is holomorphic o2, and we havef(z)|> =1
and X, (f) = 0 for any nonzeraX, € T,Q2. Moreover, by (4.25) and (4.27) we
have

1

/ @R du®) < 5( / WP du@) + f |pz(s>|2du<s;)>
Q Q Q

- 1 Cy n Cy
T 2\ K(z,2) -d(2)%2/mt6e  K(z,z)-d(2)%
Cn

< m (sinces = ry/r1+ 3e¢), (4.29)
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whereCy = Cu(r) > 0 is independent of € Q\K'. Finally, we let f =
/(s fzdu)l/z. Then [, f2du = 1, X.(f) = 0 for any nonzerd, € 7.,
and, by (4.29)] £(z)|2 > (1/Cn) - K(z, z) - d(z)®. Using f as a test function in
(2.3), it follows easily that (4.7) holds for atle 2\ K’ and nonzeroX, € T,%2.
By Proposition 2.1} is a positive continuous function dhr Q2. It follows easily
that (4.7) actually holds for all € Q and nonzeraX, € 7,2. Thus we have fin-
ished the proof of Proposition 4.4. O

ProrosiTION 4.5. For any numbers > ry/ry, there exists a constar@ =
C(R2,s) > Osuch that

C
In@)I < ey forall zeQ. (4.30)

Proof. Proposition 4.5 can be obtained easily by combining Proposition 2.1 and
Proposition 4.4. O

We also recall the following well-known result of Gaffney.

ProrosiTiON 4.6 [Ga]. Let M be anm-dimensional complete Riemannian man-
ifold. Suppose that is an (m — 1)-form onM such that thel.® norms of both
anddv are finite. Then
/ dv =0.
M

As usual, the.1-norm of a formy is given by |1 = Su ()1 d vol.
We can now give the proof of the Main Theorem.

Proof of the Main TheoremLet Q2 be as in the Main Theorem, and kebe such
thats > r,/r1. First we deal with the case whent ¢ < n. For anyg € 15 /(Q)
with p + g < n, we consider thé2n — 1)-form

vVi=dpAPANA" P on Q, (4.31)

wherenisasin(2.1). Itis easyto seethatthere exists a conStaatCi(n, p, ¢) >
0 such that
@ < Cillp@IPIn)I forany z e Q. (4.32)

Let Co = C2(R2, s) > 0 be the constant in Proposition 4.5. Then

" 2 w"
||v||L1=/”v(Z)||_I §C1/II¢(Z)II @) —-
Q n: Q n!

1 n
< C1C2/ g (2)1I% - e (by Proposition 4.5)
Q d(z)* n!
<oo (sinceg e 1yl (Q)). (4.33)

Since 15 !(Q) C H3(Q) andds3 is complete, it follows thaty and ¢ are
d-closed (see e.g. [Gro, 1.1.B]). Together with (2.1) and (4.31), we Have
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d AP Aw" P9, Sinceg is of pure type p, ¢) with p +¢ < n, itis easy to check

that there exists a constafif = C3(n, p, ¢) > 0 such that

a)n(z)
n!

In particular, one hagdv(z)| = Cz||¢(z)||°. Then

dv(z) = C3llg(2)|1?

forall ze Q. (4.34)

ldvll,e =/||dv<z)||“’—I =03/||¢<z>||2“’—,
Q n. Q n!
< oo (sinceHLd(Q) C HYI(RQ). (4.35)

By Proposition 4.5, it follows from (4.33) and (4.35) thRfdv = 0. Together
with (4.34), it follows easily thap = 0. Thus we have proved (1.5) for the case
whenp + ¢ < n. To deal with the case whem+ g > n, we denote by the op-
erator of exterior multiplication by, thatis,Ly = ¢ A . Thenitis well known
that L preserves harmonic forms, and fer+ ¢ < n there exist constants; =
C;(n, p,q) > 0 (i = 4,5) such that, fok € A”9(Q),

Callo@Il = IL" P79 = Cslle(2)]l forall zeQ (4.36)

(see e.g. [Gro, 1.2!N. Then it follows easily that.”~7?—4 induces an isomor-
phism betweert 5! (Q2) andH} *" 7 () for p+¢ < n. Thus (1.5) for the case
whenp + ¢ > n follows from that for the case when+ g < n. Finally it follows
from Proposition 3.1 and Proposition 4.2 thak2r; < rp < 2n. This inequal-

ity and (1.5) readily imply (1.6), and we have completed the proof of the Main
Theorem. O
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