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1. Introduction

Let� be a bounded domain inCn. The Bergman metric on� is a Kähler metric in-
variant under the group Aut(�)of biholomorphic automorphisms of�.Denote the
Bergman metric on� by ds2

�, and denote its Kähler form byω. For 0≤ p, q ≤ n
we denote byHp,q

2 (�) the space of square integrable harmonic(p, q)-forms on�
with respect tods2

�.When the boundary of� is smooth, Donnelly and Fefferman
proved the following result.

Theorem [DF]. If � is a strictly pseudoconvex domain inCn, then

dimHp,q

2 (�) =
{

0 if p + q 6= n,
∞ if p + q = n. (1.1)

See also [D], where Donnelly gave an alternative proof of this theorem using a
criterion of Gromov [Gro].

It is known that (1.1) also holds for bounded symmetric domains whose bound-
aries are not smooth in general (see [Gro] and [Ka]). It is thus natural to ask: Does
(1.1) hold for bounded domains inCn without any conditions on the boundary?
An important class of bounded domains are those that cover compact manifolds,
and they have been extensively studied (see e.g. [Ca; Fr; Kob; Si; V]). In this ar-
ticle, we consider the spaces of harmonic forms on such domains that are square
integrable with respect to certain weight functions. Our result can be regarded as
a partial affirmative answer to the above question for such domains.

For z ∈�, we denote byd(z) = dist(z; ∂�) the Euclidean distance betweenz
and the boundary∂� of �. For s ∈R we define

Hp,q

2,s (�) :=
{
φ ∈Ap,q(�)

∣∣∣∣ �φ = 0 and
∫
�

‖φ(z)‖2 1

d(z)s

ωn

n!
<∞

}
. (1.2)

Here� and‖ · ‖ denote (respectively) the Laplacian and the pointwise norm with
respect tods2

�. It is easy to see that, fors > 0, eachHp,q

2,s (�) forms a vector
subspace ofHp,q

2 (�) and

Hp,q

2,s (�) ⊂ Hp,q2,s ′(�) if s ≥ s ′. (1.3)
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LetK(z,w)∈C∞(�×�) denote the Bergman kernel function on�.We define
two constantsri = ri(�), i = 1,2, given by

r1 := sup{ r ∈R | K(z, z) ≥ C1/d(z)
r

for someC1 > 0 and for allz∈� },
r2 := inf { r ∈R | K(z, z) ≤ C2/d(z)

r

for someC2 > 0 and for allz∈� }.
(1.4)

Obviously one hasr1 ≤ r2 for any�, and one can easily construct examples for
whichr1 < r2.However, for a bounded strictly pseudoconvex domain, one always
hasr1= r2 = n+ 1 (see e.g. [Fe]). Our main result in this article is as follows.

Main Theorem. Let� be a bounded domain inCn, and letr1, r2 be as in(1.4).
Suppose that there exists a discrete torsion-free subgroup0 ⊂ Aut(�) such that
0\� is compact. Then

dimHp,q

2,s (�) = 0 for any s >
r2

r1
, p + q 6= n. (1.5)

In particular, one has

dimHp,q

2,s (�) = 0 for any s > n, p + q 6= n. (1.6)

Under the hypothesis of the Main Theorem, one necessarily has 2≤ r1 ≤ r2 ≤ 2n
(see Proposition 3.1 and Proposition 4.2). For eachn, it is easy to verify that one
indeed hasr1 = 2 andr2 = 2n when� is the unit polydisc4n in Cn. Also, the
Bergman metric on� is necessarily complete, since it descends to a Kähler met-
ric on the compact manifold0\�. Thus we have excluded those domains, such as
the punctured unit disc inC, whose Bergman metrics are incomplete.

We remark that there are bounded domains that admit smooth compact quo-
tients but are not bounded symmetric domains. Such examples can be given by
the universal covers of the Kodaira surfaces constructed in [Kod] (see [Fr, Remark
2.3] and [Gri, Lemma 6.2]).

The author does not know of any examples of bounded domains inCn for which
(1.1) or (1.5) fails to hold. Thus it would be interesting to know whether (1.5)
can be improved or not. Gromov has even asked whether the stronger statement
(1.1), which corresponds to the cases = 0, holds for all bounded domains of
holomorphy. Our method does not seem to generalize directly to such cases.

The author learned about the problem ofL2-cohomology on bounded domains
from Professor M. Gromov. The author would like to take this opportunity to ex-
press his thanks to Professor Gromov and Professor N. Mok for their enlightening
conversations and valuable suggestions.

2. The Bergman Metric

Let � be a bounded domain inCn, and letK(z,w) ∈ C∞(� × �) denote the
Bergman kernel function on�. The Bergman metricds2

� on� is a Kähler metric
whose Kähler formω is given by
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ω = √−1∂∂̄ logK(z, z) = dη where η := √−1K(z, z)−1∂K(z, z). (2.1)

It is well known thatK(z, z) satisfies the following transformation rule:

K(z, z) = |det(∂γ )(z)|2 ·K(γ (z), γ (z)) for all z∈�, γ ∈Aut(�). (2.2)

Let 0 be as in the Main Theorem, so that0\� is a compact manifold. It is well
known thatds2

� is invariant under Aut(�) and thus it descends to a Kähler met-
ric on 0\�. However, the(1,0)-form η is not invariant under0 and thus the
L∞-norm ofη may not be finite. Denote the projectivized tangent bundle of� by
PT�, and define a functionλ : PT�→ R as follows:

λ([Xz])

:= sup
f

{
|f(z)|2

∣∣∣∣ f ∈O(�), Xz(f ) = 0, and
∫
�

|f(z)|2 dµ ≤ 1

}
(2.3)

for z ∈ � and nonzeroXz ∈ Tz�. HereO(�) denotes the space of holomorphic
functions on�, [Xz] denotes the equivalence class ofXz in PTz�, anddµ =
(i/2)ndz1∧ dz2 ∧ · · · ∧ dzn ∧ dz̄1∧ dz̄2 ∧ · · · ∧ dz̄n denotes the Euclidean vol-
ume form. As in (1.2), we denote by‖Xz‖ the norm ofXz with respect tods2

�.

We shall need the following observation of Donnelly, which is implicit in [D].

Proposition 2.1. For z∈� and nonzeroXz ∈ Tz�, one has

|η(Xz)|2
‖Xz‖2 =

K(z, z)

λ([Xz])
− 1. (2.4)

In particular, λ is a positive continuous function onPT�.

Proof. The formula in (2.4) is essentially [D, Prop. 3.1] stated in a precise man-
ner, and it follows readily from the discussion in [D, p. 436]. By (2.4), one sees
that the continuity ofλ follows from that ofη.

3. The Kähler–Einstein Metric

We use the same notation as in Sections 1 and 2. Let� and0 be as in the Main
Theorem. Since� is a bounded domain inCn admitting a smooth compact quo-
tient0\�, it follows from a classical result of Siegel [Si] that� is necessarily a
domain of holomorphy. Then, by a result of Mok and Yau [MY], there exists a
complete Kähler–Einstein metric of negative Ricci curvature on� that is unique
up to a constant multiple and invariant under Aut(�).We shall denote this Kähler–
Einstein metric byds2

KE. In this section, we study some consequences on� arising
from ds2

KE. Denote the volume form on� associated tods2
KE by dVKE. In terms

of Euclidean coordinates, we write

dVKE = VKE(z)(i/2)ndz1∧ dz2 ∧ · · · ∧ dzn ∧ dz̄1∧ dz̄2 ∧ · · · ∧ dz̄n. (3.1)

Denote also the distance functions with respect tods2
KE andds2

� by δKE(z; z ′) and
δ�(z; z ′), respectively.
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Proposition 3.1. Let�,0, r1, r2 be as in the Main Theorem.

(i) There exist constantsC1, C2, C3, C4 > 0 such that

C1 · ds2
KE ≤ ds2

� ≤ C2 · ds2
KE and (3.2)

C3 · δ(z; z ′) ≤ δ�(z; z ′) ≤ C4 · δKE(z; z ′) for all z, z ′ ∈�. (3.3)

(ii) For any numbersr ′1 < r1 and r ′2 > r2, there exist constantsC5 = C5(r
′
1),

C6 = C6(r
′
2) > 0 such that

C5

d(z)r
′
1
≤ VKE(z) ≤ C6

d(z)r
′
2

for all z∈�. (3.4)

(iii) We haver1 ≥ 2.

Proof. Being invariant under0, bothds2
KE andds2

� descend to Kähler metrics on
the compact manifold0\�; thus they are uniformly equivalent to each other on
�, which gives (3.2). Then (3.3) is a direct consequence of (3.2), and this proves
(i). For any numbersr ′1 < r1 andr ′2 > r2, it follows from (1.4) that there exist
constantsC,C ′ > 0 such that

C

d(z)r
′
1
≤ K(z, z) ≤ C ′

d(z)r
′
2

for all z∈�. (3.5)

Since the(n, n)-form dVKE is invariant under Aut(�), VKE(z) also satisfies the
transformation rule in (2.2); that is,

VKE(z) = |det(∂γ )(z)|2 · VKE(γ (z)) for z∈�, γ ∈Aut(�).

Together with (2.2), it follows that the ratioVKE(z)/K(z, z) descends to a smooth
positive function on0\� and is thus bounded on�. This, together with (3.5),
readily implies (3.4), and we have proved (ii). By [MY, Sec. 2.1], there exists a
constantC ′′ > 0 such that

VKE(z) ≥ C ′′

d(z)2(logd(z))2
for all z∈�.

This, together with the boundedness ofVKE(z)/K(z, z) on�, readily implies (iii),
and we have finished the proof of Proposition 3.1.

Proposition 3.2. Let�,0, r1, r2 be as in the Main Theorem. Then there exists
a constantC = C(�) > 0 such that, for anyε > 0, there exists a compact set
K = K(ε) ⊂ � such that

d(z ′) ≥ d(z)(r2/r1+ε)exp(C·δ�(z;z ′ )) for all z, z ′ ∈�\K. (3.6)

Proof. By [MY, Sec. 2.1], there exists a constantC1= C1(�) > 0 such that

log(logVKE(z
′)− c)− log(logVKE(z)− c) ≤ C1 · δ�(z; z ′) (3.7)

for all z, z ′ ∈ �, wherec = inf z∈� logVKE(z) (> −∞). Rewriting (3.7) using
(3.3), we have
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logVKE(z
′)− c

logVKE(z)− c ≤ exp(C · δ�(z; z ′)) (3.8)

for some constantC > 0 and allz, z ′ ∈ �. Given ε > 0, we choose numbers
r ′1, r

′′
1 , r

′
2, r
′′
2 > 0 such that

r ′′1 < r ′1 < r1, r2 < r ′2 < r ′′2 , and
r ′′2
r ′′1
<
r2

r1
+ ε. (3.9)

By (3.4) and (3.9), there exist constantsC2, C3 such that

C2 − r ′1 logd(z ′)
C3− r ′2 logd(z)

≤ exp(C · δ�(z; z ′)) (3.10)

for all z, z ′ ∈ �. Then it is easy to see that one can choose a compact setK =
K(ε) ⊂ � (enlargingK if necessary) such that

d(ξ) < 1, C2 − r ′1 logd(ξ) > −r ′′1 logd(ξ),

C3− r ′2 logd(ξ) < −r ′′2 logd(ξ)
(3.11)

for all ξ ∈�\K. Then we have, forz, z ′ ∈�\K,

exp(C · δ�(z; z ′)) ≥ −r
′′
1 logd(z ′)
−r ′′2 logd(z)

(by (3.10), (3.11))

≥ 1

(r2/r1+ ε) ·
logd(z ′)
logd(z)

(by (3.9)).
(3.12)

Notice thatd(z) < 1. Then (3.6) follows readily from (3.12), and we have finished
the proof of Proposition 3.2.

4. Proof of the Main Theorem

Before we give the proof of the Main Theorem, we first prove several lemmas.
Notation remains the same as before.

Lemma 4.1. Let� be a bounded domain inCn. Then there exist constantsCi =
Ci(�) > 0 (i = 1,2) such that, for anyγ ∈Aut(�) andz∈�,

|∂γ (z)| ≤ C1

d(z)
and (4.1)

|det(∂γ )(z)| ≤ C2

d(z)n
. (4.2)

Here∂γ (z) denotes the Jacobian matrix(∂γ i/∂zj(z))1≤i,j≤n in Euclidean coordi-

nates, and|∂γ (z)| denotes its norm
√∑

1≤i,j≤n|∂γ i/∂zj(z)|2.

Proof. Inequality (4.1) follows easily from the Cauchy integral formula and the
fact that the coordinate functions of allγ ∈Aut(�) are uniformly bounded; (4.2)
is a direct consequence of (4.1).
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Proposition 4.2. Let�,0, r2 be as in the Main Theorem. Then there exists a
constantC > 0 such that

K(z, z) ≤ C

d(z)2n
for all z∈�. (4.3)

In particular, we haver2 ≤ 2n.

Proof. Since0\� is compact, it is well known that one can construct a funda-
mental domainD of 0\� in �; that is,D ⊂⊂ �, π|D is one-to-one, andπ|D̄ is
onto. Hereπ : �→ 0\� denotes the projection map andD̄ denotes the closure
ofD in�. SinceD̄ is compact, there exists a constantC1 > 0 such thatK(ξ, ξ) ≤
C1 for all ξ ∈ D̄. For anyz ∈�, sinceπ|D̄ is onto, there exists aγ ∈ 0 such that
γ (z)∈ D̄. Now, by (2.2) and Lemma 4.1,

K(z, z) = |det(∂γ )(z)|2 ·K(γ (z), γ (z))
≤ C1C2

d(z)2n
for all z∈�,

whereC2 is the constant in (4.2), and this proves (4.3). Then the inequalityr2 ≤
2n follows readily from (1.4) and (4.3), and we have finished the proof of Propo-
sition 4.2.

For a pointz∈Cn andr > 0,we denote the Euclidean ball byB(z; r) := { ξ ∈Cn |
|ξ − z| < r }.
Proposition 4.3. Let� be a bounded domain inCn, and letK be a compact
subset of�. Supposer is a number such that0 < r < d(z) for all z ∈K. Then
there exists a constantC = C(�,K, r) > 0 such that, for allγ ∈ Aut(�), z ∈
K, and ξ ∈B(z; r),

|det(∂γ )(ξ)| ≤ C|det(∂γ )(z)| d(z)−rd(z)+r . (4.4)

Proof. First we observe that it follows from the bound onr and the compact-
ness ofK and∂� that

⋃
z∈K B(z; r) ⊂⊂ �. Thus there exists a constantdo =

do(�,K, r) > 0 such thatd(ξ) ≥ do for all ξ ∈⋃z∈K B(z; r). By Lemma 4.1,
there exists a constantC ′ = C ′(�) > 0 such that, for anyγ ∈ Aut(�), z ∈ K,
andξ ∈B(z; r),

|det(∂γ )(ξ)| ≤ C ′

d(ξ)n
≤ C

′

dno
. (4.5)

Sinceγ ∈ Aut(�), det(∂γ )(ξ) is a nonvanishing holomorphic function inξ. To-
gether with (4.5), it follows that log(C ′/(dno · |det(∂γ )(ξ)|)) is a nonnegative pluri-
harmonic function. It then follows from the Harnack inequality for nonnegative
harmonic functions (see e.g. [GT, p. 29]) that

log

(
C ′

dno · |det(∂γ )(ξ)|
)
≥ d(z)− |ξ − z|
d(z)+ |ξ − z| log

(
C ′

dno · |det(∂γ )(z)|
)

≥ d(z)− r
d(z)+ r log

(
C ′

dno · |det(∂γ )(z)|
)

(4.6)
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for all z∈K andξ ∈B(z; r). Rewriting (4.6), one has

|det(∂γ )(ξ)| ≤
(
C ′

dno

) 2r
d(z)+r
|det(∂γ )(z)| d(z)−rd(z)+r

≤ C · |det(∂γ )(z)| d(z)−rd(z)+r ,

where we may letC = max{1, (C ′/dno )2}. This finishes the proof of Proposi-
tion 4.3.

Proposition 4.4. Let �,0, r1, r2 be as in the Main Theorem. Then, for any
numbers > r2/r1, there exists a constantC = C(�, s) > 0 such that

λ([Xz]) ≥ C · d(z)2s ·K(z, z) (4.7)

for all z∈� and nonzeroXz ∈ Tz�.
Proof. For anys > r2/r1,we writes = r2/r1+3ε,whereε > 0. LetD be a fun-
damental domain of0\� in � as in Proposition 4.2. Sinceds2

� is complete and
D̄ is compact, there exists a constantr ′ > 0 such that

⋃
ξ∈D̄ B(ξ ;2r ′) ⊂⊂ �. It

follows that there exists a constantC ′ > 0 such that

δ�(ξ ; ξ ′) ≤ C ′|ξ − ξ ′| for all ξ ∈ D̄ andξ ′ ∈B(ξ ;2r ′). (4.8)

Let C be the constant and letK = K(ε) ⊂ � be the compact set in Proposition
3.2. Fix a sufficiently small numberr ′′ > 0 such that(

r2

r1
+ ε

)
exp(C · C ′ · 2r ′′) < r2

r1
+ 2ε. (4.9)

Also let do = dist(D̄, ∂�) > 0 be the Euclidean distance ofD̄ from ∂�, and let
r ′′′ > 0 be sufficiently small that

4nr ′′′

do
≤ ε. (4.10)

Finally, we letr := min{r ′, r ′′, r ′′′ } > 0 so that (4.8), (4.9), and (4.10) remain
valid with (respectively)r ′, r ′′, r ′′′ replaced byr. Sinceds2

� is complete andK ⊂
� is compact, there exists a compact setK ′ (enlargingK ′ if necessary) such that
K ⊂ K ′ ⊂ �, ⋃

ξ∈D̄
B(ξ ;2r) ⊂⊂ K ′, and

d(z) < 1, δ�(z;K) > 2rC ′ for z∈�\K ′.
(4.11)

Next we shall show that (4.7) holds on�\K ′.First, for eachξ ∈ D̄,we introduce
a smooth cutoff functionχξ (with 0 ≤ χξ ≤ 1) on� such that

χξ (ξ
′) =

{
1 if ξ ′ ∈B(ξ ; r),
0 if ξ ′ ∈�\B(ξ ;2r), and

|dχξ (ξ ′)| ≤ 2

r
if ξ ′ ∈B(ξ ;2r)\B(ξ ; r).

(4.12)
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Also, we define the plurisubharmonic weight functions

vξ (ξ
′) = 2(n+ 2) log|ξ ′ − ξ| and w(ξ ′) = log(1+ |ξ ′|2) (4.13)

on�. Since� is a bounded domain, there exist constantsC1, C2 > 0 such that

C1 ≤ exp(−2w(ξ ′)) ≤ C2 for all ξ ′ ∈�. (4.14)

Also we have, forξ ∈�,

exp(−vξ (ξ ′)) ≤ 1

r 2n+4
if ξ ′ ∈�\B(ξ ; r),

exp(−vξ (ξ ′)) ≥ 1

(2r)2n+4
if ξ ′ ∈B(ξ ;2r).

(4.15)

From now on, we letz be any point in�\K ′. SinceD is a fundamental domain
of 0\� in �, there existsγ ∈ 0 such thatz ′ := γ (z) ∈ D̄. We denote its inverse
by τ := γ−1 ∈0 so thatτ(z ′) = z. Thenρz := χz ′ Bγ is a smooth cutoff function
on� such thatρz(ξ) = 1 for ξ nearz. ThusXz(ρz) = 0 for any nonzeroXz ∈
Tz�. Setβ = ∂̄ρz on�. Thenβ is supported onτ(B(z ′;2r)\B(z ′; r)) ⊂⊂ �.
The function exp(−vz ′ B γ ) is not integrable only atz. Thus we have∫

�

|β(ξ)|2 exp(−vz ′ B γ (ξ)) dµ(ξ) <∞, (4.16)

wheredµ(ξ) denotes the Euclidean volume form. Observe that the functionvz ′ Bγ
is also plurisubharmonic on�. By L2-estimates of̄∂ of Hörmander ([H1, p. 94]
or [H2]), there exists anh∈ C∞(�) such that̄∂h = β and∫

�

|h(ξ)|2 exp(−vz ′ B γ (ξ)− 2w(ξ)) dµ(ξ)

≤
∫
�

|β(ξ)|2 exp(−vz ′ B γ (ξ)) dµ(ξ). (4.17)

Sinceβ = ∂̄(χz ′ B γ ) = ∂̄χz ′ B ∂̄ γ̄ , it follows from (4.12) that the integrand on
the right-hand side of (4.17) is supported onτ(B(z ′;2r)\B(z ′; r)). For anyξ ∈
τ(B(z ′;2r)\B(z ′; r)),
|β(ξ)|2 exp(−vz ′ B γ (ξ))
≤ |∂̄χz ′(γ (ξ))|2|∂γ (ξ)|2 exp(−vz ′ B γ (ξ))

≤
(

2

r

)2

· C

d(ξ)2
· 1

r 2n+4
(by (4.11), Lemma 4.1, and (4.15)). (4.18)

Also, it follows from the invariance ofds2
� under Aut(�) and (4.8) that

δ�(ξ ; z) ≤ 2rC ′ for all ξ ∈ τ(B(z ′;2r)). (4.19)

Sincez ∈ �\K ′, it follows from (4.19) and the last inequality of (4.11) that
τ(B(z ′;2r)) ⊂ �\K. Recall from (4.11) thatd(z) < 1. Then, by Proposition 3.2,
for ξ ∈ τ(B(z;2r)) we have
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1

d(ξ)
≤ 1

d(z)(r2/r1+ε)exp(C·δ�(z;z ′ ))

≤ 1

d(z)(r2/r1+ε)exp(2rC ′C) (by (4.19))

≤ 1

d(z)r2/r1+2ε
(by (4.9)). (4.20)

LetC3 = C3(�, D̄,2r) > 0 be the constant in Proposition 4.3. Recall thatz ′ ∈
D̄. By making the change of variablesξ ′ = γ (ξ), or equivalentlyξ = τ(ξ ′), we
have∫

τ(B(z ′;2r))
dµ(ξ)

=
∫
B(z ′;2r)

|det(∂τ )(ξ ′)|2 dµ(ξ ′)

≤
∫
B(z ′;2r)

C3 · |det(∂τ )(z ′)|
2(d(z ′ )−2r)
d(z ′ )+2r dµ(ξ ′) (by Proposition 4.3)

≤ C3C4 · |det(∂τ )(z ′)|
2(d(z ′ )−2r)
d(z ′ )+2r (2r)2n (4.21)

for some constantC4 = C4(n) > 0. SinceD̄ is compact, there exists a constant
C5 > 1 such that

K(ξ ′, ξ ′) ≤ C5 for all ξ ′ ∈ D̄. (4.22)

Also, sincez ′ ∈ D̄, it follows from (4.10) that

8nr

d(z ′)+ 2r
≤ 8nr

do
≤ 2ε, (4.23)

wheredo is as in (4.10). Then

|det(∂τ )(z ′)|
2(d(z ′ )−2r)
d(z ′ )+2r =

(
K(z ′, z ′)
K(z, z)

)d(z ′ )−2r
d(z ′ )+2r

(by (2.2))

≤ C5

K(z, z)
·K(z, z) 4r

d(z ′ )+2r (by (4.22))

≤ C5

K(z, z)
· C6

d(z)
2n·4r

d(z ′ )+2r

(by Proposition 4.2)

≤ C5 · C6

K(z, z) · d(z)2ε (by (4.23)), (4.24)

whereC6 is the constant in Proposition 4.2. Combining (4.21) and (4.24), we have∫
τ(B(z ′;2r))

dµ(ξ) ≤ C3C4C5C6(2r)2n

K(z, z) · d(z)2ε

= C7

K(z, z) · d(z)2ε , (4.25)
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whereC7 = C7(r) > 0 is independent ofz∈�\K ′. Then we have, forz∈�\K ′,∫
�

|β(ξ)|2 exp(−vz ′ B γ (ξ)) dµ(ξ)

≤
∫
τ(B(z ′;2r)\B(z ′;r))

(
2

r

)2

· C

d(ξ)2
· 1

r 2n+4
dµ(ξ) (by (4.18))

≤
(

2

r

)2

· C

d(z)2(r2/r1+2ε)
· 1

r 2n+4

∫
τ(B(z ′;2r)\B(z ′;r))

dµ(ξ) (by (4.20))

≤
(

2

r

)2

· C

d(z)2(r2/r1+2ε)
· 1

r 2n+4
· C7

K(z, z) · d(z)2ε (by (4.25))

= C8

K(z, z) · d(z)2r2/r1+6ε
, (4.26)

whereC8 = C8(r) > 0 is independent ofz ∈�\K ′. From (4.14) and (4.15), for
z∈�\K ′ we have∫

�

|h(ξ)|2 dµ(ξ) ≤ 1

C1
· (2r)2n+4

∫
�

|h(ξ)|2 exp(−vz ′ B γ (ξ)− 2w(ξ)) dµ(ξ)

≤ C8 · (2r)2n+4

C1 ·K(z, z) · d(z)2r2/r1+6ε
(by (4.17) and (4.26))

= C9

K(z, z) · d(z)2r2/r1+6ε
, (4.27)

whereC9 = C9(r) > 0 is independent ofz ∈�\K ′. Also, sinceγ is biholomor-
phic atz, it follows from (4.13) that, for an open neighborhoodU such thatz ∈
U ⊂⊂ �, there exists a constantC10 > 0 such that

exp(−vz ′ B γ (ξ)) = 1

|γ (ξ)− γ (z)|2n+4
≥ C10

|ξ − z|2n+4
(4.28)

for ξ ∈U. Then it follows from (4.14), (4.16), (4.17), and (4.28) that∫
U

|h(ξ)|2
|ξ − z|2n+4

dµ(ξ) <∞,

which implies thath(z) = 0 andXz(h) = 0 for any nonzeroXz ∈ Tz�. For z ∈
�\K ′, we letf = h− ρz. Thenf is holomorphic on�, and we have|f(z)|2 = 1
andXz(f ) = 0 for any nonzeroXz ∈ Tz�. Moreover, by (4.25) and (4.27) we
have ∫

�

|f(ξ)|2 dµ(ξ) ≤ 1

2

(∫
�

|h(ξ)|2 dµ(ξ)+
∫
�

|ρz(ξ)|2 dµ(ξ)
)

≤ 1

2

(
C9

K(z, z) · d(z)2r2/r1+6ε
+ C7

K(z, z) · d(z)2ε
)

≤ C11

K(z, z) · d(z)2s (sinces = r2/r1+ 3ε), (4.29)
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whereC11 = C11(r) > 0 is independent ofz ∈ �\K ′. Finally, we let f̂ =
f
/( ∫

�
f 2 dµ

)1/2
. Then

∫
�
f̂ 2 dµ = 1, Xz(f̂ ) = 0 for any nonzeroXz ∈ Tz�,

and, by (4.29),|f̂ (z)|2 ≥ (1/C11) ·K(z, z) · d(z)2s . Using f̂ as a test function in
(2.3), it follows easily that (4.7) holds for allz ∈ �\K ′ and nonzeroXz ∈ Tz�.
By Proposition 2.1,λ is a positive continuous function onPT�. It follows easily
that (4.7) actually holds for allz ∈ � and nonzeroXz ∈ Tz�. Thus we have fin-
ished the proof of Proposition 4.4.

Proposition 4.5. For any numbers > r2/r1, there exists a constantC =
C(�, s) > 0 such that

‖η(z)‖ ≤ C

d(z)s
for all z∈�. (4.30)

Proof. Proposition 4.5 can be obtained easily by combining Proposition 2.1 and
Proposition 4.4.

We also recall the following well-known result of Gaffney.

Proposition 4.6 [Ga]. LetM be anm-dimensional complete Riemannian man-
ifold. Suppose thatν is an(m− 1)-form onM such that theL1 norms of bothν
anddν are finite. Then ∫

M

dν = 0.

As usual, theL1-norm of a formµ is given by‖µ‖L1 := ∫
M
‖µ(x)‖ d vol.

We can now give the proof of the Main Theorem.

Proof of the Main Theorem.Let� be as in the Main Theorem, and lets be such
thats > r2/r1. First we deal with the case whenp+ q < n. For anyφ ∈Hp,q

2,s (�)

with p + q < n, we consider the(2n− 1)-form

ν := φ ∧ φ̄ ∧ η ∧ ωn−p−q−1 on �, (4.31)

whereη is as in (2.1). It is easy to see that there exists a constantC1= C1(n, p, q) >

0 such that
‖ν(z)‖ ≤ C1‖φ(z)‖2‖η(z)‖ for any z∈�. (4.32)

LetC2 = C2(�, s) > 0 be the constant in Proposition 4.5. Then

‖ν‖L1 =
∫
�

‖ν(z)‖ω
n

n!
≤ C1

∫
�

‖φ(z)‖2‖η(z)‖ω
n

n!

≤ C1C2

∫
�

‖φ(z)‖2 · 1

d(z)s

ωn

n!
(by Proposition 4.5)

<∞ (sinceφ ∈Hp,q

2,s (�)). (4.33)

SinceHp,q

2,s (�) ⊂ Hp,q

2 (�) and ds2
� is complete, it follows thatφ and φ̄ are

d-closed (see e.g. [Gro, 1.1.B]). Together with (2.1) and (4.31), we havedν =
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φ∧ φ̄∧ωn−p−q . Sinceφ is of pure type(p, q)with p+ q < n, it is easy to check
that there exists a constantC3 = C3(n, p, q) > 0 such that

dν(z) = C3‖φ(z)‖2ω
n(z)

n!
for all z∈�. (4.34)

In particular, one has‖dν(z)‖ = C3‖φ(z)‖2. Then

‖dν‖L1 =
∫
�

‖dν(z)‖ω
n

n!
= C3

∫
�

‖φ(z)‖2ω
n

n!

<∞ (sinceHp,q

2,s (�) ⊂ Hp,q

2 (�)). (4.35)

By Proposition 4.5, it follows from (4.33) and (4.35) that
∫
�
dν = 0. Together

with (4.34), it follows easily thatφ ≡ 0. Thus we have proved (1.5) for the case
whenp + q < n. To deal with the case whenp + q > n, we denote byL the op-
erator of exterior multiplication byω, that is,Lϕ = ϕ ∧ω. Then it is well known
thatL preserves harmonic forms, and forp + q < n there exist constantsCi =
Ci(n, p, q) > 0 (i = 4,5) such that, forϕ ∈Ap,q(�),

C4‖ϕ(z)‖ ≤ ‖Ln−p−qϕ(z)‖ ≤ C5‖ϕ(z)‖ for all z∈� (4.36)

(see e.g. [Gro, 1.2.A′ ]). Then it follows easily thatLn−p−q induces an isomor-
phism betweenHp,q

2,s (�) andHn−q,n−p
2,s (�) for p+ q < n. Thus (1.5) for the case

whenp+q > n follows from that for the case whenp+q < n. Finally it follows
from Proposition 3.1 and Proposition 4.2 that 2≤ r1 ≤ r2 ≤ 2n. This inequal-
ity and (1.5) readily imply (1.6), and we have completed the proof of the Main
Theorem.
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