Higher-Dimensional Analogs
of Hermite's Constant

JEFFREY LIN THUNDER

Introduction

For integers: > 1, Hermite’s constant is the smallest numbgisuch that, for all
latticesA C R” of rankn, there is a nonzero lattice poirte A with

IX|l < ¥ 2 det(A)Y/".

Here||x|| denotes the usual Euclidean lengthxoHermite was the first to prove
the existence of such a constant. He showed that

2 A (1)
for n > 2. Using (1) and a quick induction argument giyes< yg—l. After ver-
ifying that y, = 2/+/3, Hermite arrived at the upper boung < (2/+/3)" .
Later, Minkowski used his first convex bodies theorem (see [3]) to show that

v, < 4V(n)~?", )

whereV (n) denotes the volume of the unit ballRt'. Note that this upper bound
for y, grows linearly inn asn — oo, as opposed to the exponential growth of
Hermite’s original upper bound.

Note that, by introducing a scaling factor, we may restrict to lattices of determi-
nant 1 in the definition of Hermite’s constant (see Lemma 4). Minkowski's work
on the space of such lattices led him to state (without proof) that

2¢(m) \*"
n(Tay) ©

This result was first proven by Hlawka (see [3, Sec. 19]); itis a special case of what
is now called the Minkowski—Hlawka theorem. This, along with Minkowski’s up-
per bound stated in (2), shows thgtin fact grows linearly im asn — oo. Itis
not known whethey, /n approaches a limit as — oo. The exact value of, is
known only forn < 8 (see [3]).

Hermite's constant is directly related to the densest lattice packing of spheres
in R", and through this to many areas of mathematics and even other natural sci-
ences (number theory, lie algebras, numerical integration, chemistry, and digital
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communication, just to name a few). The comprehensive book by Conway and
Sloane [1] is an excellent source of such applications. Finding the valyg of

even a better understanding of its growtlmas> oo, is an important and much
studied problem.

In this paper we will consider two ways of extending the notion of Hermite’s
constant. The first generalization we consider originated in a paper of Rankin [4],
who extended Hermite’s original work. For@ d < n, define (a generalized)
Hermite's constant to be the smallest numpey; such that, for any lattica. C
R" of rankn and determinant 1, there is a radlsublattice of determinarnt yl/z
Theny, ; = y,. Extending Hermite’s method, Rankin showed such a constant
exists and satisfies

Yd < Vma V)" (4)

for0 < d < m < n. As we will see, this reduces to Hermite’s original inequality
(1) whend = 1 andm = n — 1. In [4], no upper or lower bounds for geneygl,
are given.

Another way to extend Hermite’s constant comes from arithmetic geometry and
the notion of height. In [7] itis shown that Hermite’s constant can be described as
the smallest numbey, such that, for allA in the general linear group GKQa)
over the ring of adele®,, there is arx € P"~1(Q) with twisted height

Ha(x) < y,7%|det(a)]".
(The relevant definitions will be given in Section 2.) This leads to the follow-
ing generalization of Hermite’s constant. For a number fi€léndn > 1, let
Hermite’s constant fok be the smallest number, (K) such that, for allA €
GL,(Ky), there is arx e P"~Y(K) with

Hao(X) < (y,(K))Y?|det(A)|7"K D

Theny, (Q) = y,. The “adelic” versions of Minkowski’s first convex bodies the-
orem and the Minkowski—Hlawka theorem give generalizations to the bounds (2)
and (3) fory, (K). (See also Theorem 1 of [2].)

In this paper we will study the following generalization of Hermite’s constant,
which includes both Rankin’s and the one just discussed. We usg(®&) to
denote the Grassmanniandsplanes ink”.

DEFINITION. Let K be a number field and let & d < n. Hermite's constant
is the smallest numbey, ,(K) such that, for allA € GL,(Ky), there is aV €
Gr,, 4(K) with

Ha(V) < (7, (K3 det(a)/ "9,

As explained in [7], we havg, ,(Q) = y, ,. In particular,y, ,(Q) = y,. We will
prove a generalization of Rankin’s result (4) and generalizations of the bounds (2)
and (3). Specifically, we will prove the following.

THEOREM 1. Let K be a number field and |l < d < n. Then Hermite's con-
stanty, ,(K) exists and
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. 2r+s|D(K)|l/2
[K:Ql/2d
(V.a(K)) < VoY ey (5)
We also have
Vid K) = Vi a (B Yy (KN (6)

forall 0 < d < m < n. Here D(K) denotes the discriminant of, » ands de-
note the number of real and complex placeskafrespectively, and’ (/) denotes
the volume of the unit ball i’ for I > 1.

Note that (5) and (6) generalize Minkowski’s bound (2) and Rankin’s inequality
(4), respectively. The next result generalizes (3).

THEOREM 2. LetK be a number field and |t < d < n. Then
tx ()HID(K)|I/?
ke . WU jmaagn JT2PVGIVE)
~ h(K)R(K) 4tk (DID(K)|'?

ll:! [r+sQls V(l)r V(Zl)s

Vg (KN

Here, in addition to the notation in Theoremvi(K), R(K), andw(K) denote the
class number, the regulator, and the number of roots of unity imespectively
Lk is the Dedekind zeta function &f. (As usual, the empty product is interpreted
asl)

Theorem 2 inthe caseé= 1 andK = Q yields the lower bound (3). In particular,
we have the following corollary.

CoroLLARY 1. LetO < d < n. Then Rankin’s generalized Hermite’s constant
satisfies

$(j)

2nd i=n—d+1 ]V(])

— M2 > opp T
Wy = Tna 5220 0
o

Combining the upper and lower bounds in Theorems 1 and 2 gives the following
estimate for the growth of, ,(K).

CoroLLARY 2. LetK be a number field and I&t < d. Then
log(y, 4(K)) = dlogn + O(1)
asn — oo, where the implicit constant dependséand K.
The proof of Theorem 1 uses properties of the twisted height and the adelic ver-
sion of Minkowski’'s second convex bodies theorem. The proof of Theorem 2 is

more difficult, involving a mean value argument on certain homogeneous spaces
and the computation of the measures of certain subsets of these spaces. In the
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next section we will give the definition of twisted heights along with some rel-
evant results concerning them. Section 3 is devoted to the proof of Theorem 1.
Section 4 lays out the mean value argument for proving Theorem 2, and the last
section contains a measure computation that completes the proof of Theorem 2.

1. Twisted Heights

Throughout this papek will denote a number field. In addition to the notation in
the statements of Theorems 1 and 2, wekigt K, and M (K) denote the ring
of adeles, idele group, and set of placeskofrespectively. For eache M (K),
let K, denote the completion d& atv and let9, denote the maximal compact
subring ofK, wheneveuw is finite.

Let o, be the Haar measure df), obtained by taking,(O,) = 1if v is finite;
o, is the usual Lebesgue measurelif v is real and is twice the usual measure
onC whenv is complex. We obtain a Haar measuren K, given by

a=|DK)| 2 [

We will write «” for the Haar measure ofK )" derived by taking the product
measure. Thea” is the Tamagawa measure @k, )", and we note that

a"((Kp)"/K") =1 (@)

(see [10, Chap. 2]).
For each place we defing| - |, on K, by a,(aM) = |a|,a,(M) for any mea-
surable seM C K, anda € K,. We then have the product formula [9, Chap. 4,

Thm. 5] l_[
lxly =1
veM(K)

for all nonzerax € K. We let| - |, denote the module ok as in [9]:

lala =[] laul-

veM(K)

Given an infinite place, we let| - ||, denote the usudl? norm on(K,)" raised
to the local degree:

v2 . .
X[, = { (Xrilxi12)77 if visreal,
' Yoialxily if v is complex.
If vis afinite place, we let

IXIl, = max{|x;|,}.
1<i<n
Forx e K" andA € GL, (K ) with local componentd,, define

AN = H 1Ay (X lo-

veM(K)
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ForanyA € GL, (K ) andx € K", one sees by the product formula that(x) || o
is invariant under scalar multiplication &fby nonzero elements &. Thus, the
heightsH, for A € GL,,(K ) defined by

Ha(x) = [ AG0 |79

are really heights on projective spaé& (K ). These are the “twisted heights” in
[5] and [7]. In the case wher# = I, is the identity element of GL(K4), H, (X)
is the “usual” absolute multiplicative Weil height usidg norms at the infinite
places. We extend, to Gr, ;(K) via exterior products. Specifically, ¥ C
K" is ad-dimensional subspace, theiV € P(d)~(K) and we defingd,(V) to
be H,u,(AYV). We also set4({0}) = 1 andH,(K") = |det(A)|, forany A
GLn (Ka).

We end this section with some auxiliary results.

LemmMma 1[5, Lemma 3.2, Cor. 4.3]. Letv e M(K) and A € GL,(K,). Let0 <
m < nandletg,: K' — K]' be an injectivek,-linear map. Then thereisA
GL,.(K,) such that

IABY) [y = (AT (AB) D) 1
for all x e A4((K,)™) and0 < d < m.
If : K™ — K" is an injectiveK-linear map andA € GL,(K), then there is
a B € GL,,(K,) that satisfies
Hp(V) = Ha(¢(V))
forall 0 <d <mandV € Gr,, 4(K).
LemMA 2 [6, Duality Theorem]. Let0O <d <n.ForaV € Gr, 4(K), letV* e
Gr,.»—4(K) denote the subspace orthogonaMavith respect to the canonical bi-

linear form onK”. For A € GL,,(K4), let A* = (A™H", where“tr” denotes the
transpose. Then, for any € GL,,(K,) and anyV € Gr,, 4(K),

Hu(V) = Hy=(V*)|det(A)|4.
Thus,
y”vd(K) = yn,nfd(K)-

LemMma 3 [8, Lemma4; 6, Thm. 2]. Letv e M(K) and0 < d < n. GivenaV,
Gr,.4(K,), there is alinear maP, : K} — V, such that, forallx € K}’ \ V, and
basegxy, ..., x4} of V,,

X A AXg AXJl = [IX2 A== AXall - X = Pyl

Let A € GL,(Ky) and V e Gr, 4(K). There is an isomorphism: K"~¢ —
K"/V (as K-vector spacgsand aB € GL,_;(K) such that

HA(W + V) = Ha(V)Hg(W)

forall W e Gr,_; »,(K) andm < n — d, where
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W4V ={xeK": x+Vep(W)}eGr, gim(K).
In particular,
|det(A)|a

Lemma 4. Hermite's constant is the smallest number, (K) such that, for all
A e GL,(Kp) with |[det(A)|a = 1, thereis aV € Gr, 4(K) with

Hy(V) < (v, o(K)Y2

Proof. Let A € GL,(Ky). Leta € K with |a|y = |det(A)|_1/" and letD ¢
GL,(K4) be the diagonal element Wlth diagonal entriesralthen|det(DA) |, =
1and

HA(V) = Hpa(V)|det(a) [/

forall0 <d <nrandV e Gr, 4(K). O

2. Proof of Theorem 1

Fixanumber fieldK. To ease readability, we will writg, , for y, ,(K) throughout
this section. By the adelic version of Minkowski's second convex bodies theorem
(see e.g. the corollary to [7, Thm. 3]), for amye GL,(K,) there are linearly
independenky, . . ., X, € K" with

HaG) -~ Hatx) < 2o DU ey

AV A=V )y vzny A

We may assume without loss of generality tiBi(x;) < --- < Ha(X,). By [5,
Lemma 4.7], for O< d < n we have

Hy(V) < Ha(X1) - - - Ha(Xa),

whereV e Gr, 4(K) is generated by, ..., X,. This proves the first part of
Theorem 1.

For the second part, let@ d < m < nandletd € GL,(K,) with [det(A) |4 =
1. Let V € Gr, 4(K) with smallest heightH,(V) and letW € Gr, ,(K) with
Ha(W) < y2/2. Let¢: K™ — K" be an injective linear map with imagé.
By Lemma 1 there is 8 € GL,,(K,) that satisfiedz(T) = H,(¢(T)) for all
subspace®d < K™.

There is ar’ € Gr,, 4(K) with

1/2 d 1/2 1/2
Hp(T) <y 31det )|y "™ W =y 2 y(w)d/m < M2y dzm,
By construction,
1/2
HA(V) < Ha($(T)) = Hyp(T) < y2y/2".

This proves (6) by Lemma 4.
Another way to prove (6) is as follows. Let@ d < m < n and letA €
GL,(Kx) with |det(A)|, = 1. Take aV € Gr, ,_n (K) With Hy(V) < y M2 .
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By Lemma 3, there is & e GL,,(K,) and ap: K" — K"/V with |det(B)[;* =
Hy(V)k: gnd
Hy(V + W) = Hs(V)Hp(W)
forall W € Gr,, ;n—q(K). Let W € Gr,,, ,—q (K) With
Hp(W) < y,/2 _ 1det(B)[{"~ /KA,

ThenV + W € Gr,, ,_4(K) satisfies

Ha(V + W) < Ha(V)y, %, 1det(s) |~ /"1E 4

m,m—d

= Ha(V) Yt pg HaV) "

1/2
= Ha(V)" v,
12 d/2
= Ymom—d * n,nfnin'

ThUS, ¥, pd < Viemed " Viwtw by Lemma 4, and (6) follows from this and

Lemma 2.

3. A Mean Value Argument

The proof of Theorem 2 uses a mean value argument and is more involved than
the proof of Theorem 1. In this section we give this mean value argument; the
proof of Theorem 2 will be completed in the next section, where we will carry out
a certain computation.
We define
G, ={AeGL,(Ky) : |det(A)[, = 1}.

Note that GL,(K) is a discrete subgroup ¢f, and thatG,/GL,(K) is compact.
One can construct an invariant Haar measur&pas in [7], where by “invariant”

we mean that the measure is invariant under multiplication on the left or right.
ThenG, /GL,(K) has finite measure; we lgt, be the invariant Haar measure on
G, with

:un(Gn/GLn(K)) =1 (8)
Define
A B
Gpa= {(0 C)eGn:AeGd, CeGn_d},

so that GL,(K)/(GL,,(K) NG, 4) = Gr, 4(K). Let u,, 4 be the measure o, 4
given by
A B (n—d)d
ditn,a 0o c)= dpg(A) X da (B) x din—a(C).

Then
Mn.d(Gn.d/(Gn,d N GLn(K))) =1 (9)

by (7) and (8).
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We will write dv, , for the relatively invariant gauge form on the homogeneous
spaceG, /G, 4 that satisfiegli,, = dv, 4 x du, 4 in the sense of [10]. In other
words, for any integrable functiofi onG,,,

/ f(A) d/»‘bn(A) = / f(AB) dﬂn,d(B) dvn,d(AGn,d)~
Gn Gll/Gn,d Gn,d

For+ > O we will denote the characteristic function of, [y by x,. Forl a
positive integer, le§! =[], S! C (Kx)' be defined by

o { {X, € (K : %ol < 1} if v is Archimedean,
L oy! if v is non-Archimedean.
Then
2lr2V(l)r1V(21)r2
Ish="—>=—"" 10
V=@ (19)

Foramn x d matrixX = (x{ - - - x¥) with x; € (K»)", definey : X — (K )@

by
Y(X) =Xg A AXy.

Define
Fra(X) = inf {lals : y(X) €as@)

aek,

= : 1 c5@
= Aeel[]j(m{ |det(A)] : y(XA™") € St ).

Certainly £, 4(X) is invariant under multiplication on the right by element&if
SO we may viewf, 4 as a function orG, /G, 4, for example (where it is con-
tinuous). Note thatf, 4(A(V)) = Hy (V)X U for all V e Gr, 4(K) andA €
GL,(Kp). Let

c(n,d) = / X1(fn,a(AGn,a)) dv,a(AGy.a).
Gn/Gn,d

LEMMA 5. LetD eGL,(K,) ands > 0. Then
/ Xt (fu.a(DAG, ) dvy.a(AG,.q) = |det(D)|,“c(n, d)t".
Grl/Gn,d
For any measurable functiofi onR,

/ S (fn.a(AGn.a)) Avy a(AG, 4) = ”C(n,d)/ f)x"dx.
Gn/Gn,a 0

/ I B :
n,d:{<61 C)EGn,dCEGn_d}

and letw, , be the measure o, , given by

Proof. Let

I, B o
u;,d< 0 C) = da""D(B) x dp,—a(C),
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so thatdu, s = dug x du,, 4. Letdv, , be the relatively invariant gauge form
onG,/G, ,thatsatisfiedu, = dv, , x dw, 4. Then, by the uniqueness of Haar
measuredv,, , = ¢ - da"? for somec > 0.

By [9, Chap. 4, Thm. 6], Gl«(K4) = R’ x G4, whereR?, is the multiplicative
group of positive real numbers. Here= |det(r - A)|, for r e R, andA € G,
wherer - A denotes the image under an isomorphism fi®inx G, to GL,;(Ky).
LetI" be a fundamental set modulo ({K) of G,. Forn x d matricesX define

n

FraX) =0 {r (X (r - A Hes@ forsomederl ).
Sinceu, (') = 1 by (8), we have

/ Xl(fn,d(DAGn,d)) dvn,d(AGn,d)
Gn/Gn.d

= / x1(f,.4(DAG,, ) dv, ;(AG, ;)
Gu/G,

n,d

=c / xa(f; 4(DX)) [ derCxy)
(Kp)"d ij

= |det(D)|, "¢ / x1(fy 4 CO) [ [ dexip)
(Ka)nd ij
= |det(D)|,%c(n, d).

This proves the first part of the lemma whesa: 1.
Now letz > 0 and leta € K with |a|y, = =Y. Let D, € GL,(K,) be the
diagonal element with diagonal entries all equat tdhen

/ Xl(fn,d(DAGn,d)) dvn,d(AGn.d)
Gn/Gn,d

= / Xx1(fn,a(D: DAG, ) dv,,a(AG,, 4)
Gn/Gn.cl

= |det(D, D)|“c(n, d)
= |det(D)|,“c(n, d)t"

by what we have already shown. This shows that the first part of the lemma is
true. In particular, the second part of the lemmais trueffes x,, and thus forf

any simple function. The case for genefafollows by approximating with sim-

ple functions. O

We now give our mean value argument for proving Theorem 2.

LeEmMma 6. Letr > Osatisfyr™ > c(n, d). Then there is am € G, such that,
forall V € Gr, 4(K),
Ha(WEQ 5
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In particular, by Lemma 4,

Voa(K) = c(n, d)?/"E A,

This will prove Theorem 2 once we computé:, d), which will be done in the
next section.

Proof. Lete > 0 satisfy(t" + ¢)c(n,d) < 1. Let

1 if x <t,
f(X)={

(x/t)~"—""eif x> 1.
Then, by Lemma 5,
/ FCfoa(AGn 2)) dvn.a(AGn.a) = nen, d) / ¥ () dx
Gn/Gn,d 0

<"+ ¢&)e(n,d)
<1

Sincef o f, 4 iS a positive, continuous, and integrable function, we may apply
[10, Lemma 2.4.2] to yield

/ f(fnd(AGnd)) dl)n,d(AGn,d)
Glz/Gn,d

= / [ > f(fn,d<A(V>))] dpa(A),
Gn/GLy(K) Ly eGr, 4(K)

by (9). By (8), there is a € G,, such that
1> > f(fa(Avy).

VeGr, 4(K)

Thus, HA(W)IKA = £, ,(A(V)) > tforall V e Gr, 4(K). O

4. A Computation

We will not computec(n, d) directly ford > 1, but instead prove the following
theorem.

THEOREM 3. ForO0 < d < n,

n d—1 )
coy = (0 Dottt D,
[T2c(ij =D

where the empty product is interpretedls

S

Note that Theorem 3 implies(n, d) = c¢(n,n — d). In particular,c(j, j — 1) =
¢(j, 1) and so Theorem 2 follows from Lemma 6, Theorem 3, (10), and the fol-
lowing result.
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LemMma 7 [7, Lemmal]. Forn > 1,
"SNP (K)R(K)
w(K) Sk (n)
Our proof of Theorem 3 requires some preliminary considerations. Define

A B
gn,d={(0 C>€Gn,d1A€Gd,d—1}

A B
={<0 C>€Gn,d:C€Gnd+l,l}

= Gn,d N Gn,d—l~
For D € g, 4, we may write
A B1 B
D= (0 B3 B4> ,
0O 0 cC

whereA € G4-1, B3 € G1, andC € G,_4. We leto, 4 be the measure og, 4
given by

c(n,l) =

oy, ¢(D) = dpg-1(A) x da’"(By) x da"~(B,)
x dpa(B3) x do"~*(Ba) x djn—a(C).

(A B (B3 B
Ao—<o B3> and Co—(o C),
we have

do,,¢(D) = ditg a-1(Ag) x da" DU (By) x da"(Bs) x dp,—a(C)
= dug-1(A) x da® 1 (B1) x da""D(By) x dptn—a411(Co). (11)

Writing

LemMa 8. For Ae G, andC € G,_441, Write

A’=(‘3 Iod>€Gn,d and C/=<I"01 g)GGn,d—l.

Lett, 4 be the relatively invariant gauge form on the homogeneous SBage, 4
that satisfiesdu, = dt,.4 x do, 4. Then, for f any measurable function on
G./gn.q4, We have

/ f(Dgn,d) dfn,d(Dgn,d)
Gn/gn,d
= / / f(DA'gy a) dvg,q-1(AGg,4-1) Avy ¢ (DG, q)
Gn/Gnd YGa/Ga,a-1

=/ / f(DC'gp.a) dvy—43+1,1(CGr—gs1,1)
n/Gn.d-1 Y Gn—d+1/Gn-d+1.1

dvy 4-1(DG, 4-1).
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Proof. We have

Gi/Gaa-1 = Gna/gna aNd Gu_441/Gn—us11 = Gn,a—1/8n.a

via the mapsAG, 41 — A'gy, andCG,_4111 +> C'gy.q. Further, ifry andzy
satisfydu, s = dt; x do, 4 anddu,, 41 = dt x do, 4, then

dti(A'gy.q) = dv, a(AGq4-1) and
dto(C'gn ) = dvy—q11,1(CGp_qy1,1)
by (11). Thus,

/ f(Dgn,d)dfn,d(Dgn,d)
Gn/8n.d
:/ / f(DA/gn,d)dtl(A/gn,d)an,d(DGn,d)
Gun/Gn,a Gn,d/gn,d
Z/ / F(DA'g, q) dvga-1(AGg,4-1) dvy (DG q)
Gn/Gn.d Gd/Gd,d—l
2/ / f(DC'gy.a) dt2(Cgn.a) dvp,a-1(DGp q-1)
Gn/Gn,a-1 Y Gn.d-1/8n.d

= f / f(DC'gn.a) dvy—a4+11(CGpr_ay1,1)
n/Gn,d—l Gll*d‘Fl/thd‘Fl,l
dvy,a-1(DGpg-1). O

Proof of Theorem 3We will prove Theorem 3 by induction ah The casel =
1 is trivially true. Now suppose & d < n. We will compute the quantity

Cn,d) = / X1(fn,a(A&n,a)) X1(fn,a-1(Agn,a)) dTn,a(Agn,a)
Grl/gn,d

two different ways.
By Lemma 1, for evenD € G, there is aD’ € GL,(K ) with

fn.a(DGp q) = |det(D")|a
and
fna-1(DA'gy a) = fa,a-1(D'AGg,4-1)

forall A € G,, whereA’ e G, 4 as in Lemma 8. By Lemma 5,
/ X1(fa,a-1(D'AG4,4-1)) dvg,a-1(AG g 4-1)
Ga/Gad,a-1

= c(d,d — 1)|det(D")|}
=c(d,d — D(fr,a(DG, ).

Hence, by Lemmas 5 and 8,
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C(n,d)=c(d,d -1 X1(Fr.d(DG ) (fr.a(DGp )™ dv, (DG 0)
Gn/Gn.d

1
=cw¢i—ncm¢nn/‘x**””dx
0

n
=c(d,d—-1 ,d)———. 12
c( )c(n )n—d+1 (12)
Now let D € G, with columnsdY, ..., d € (K4)". For each place € M (K),

let v, € Gr, 4—1(K,) be generated bgd,),, . . ., (ds_1), and takeP,: K] — V,
asinLemma 3. Led’,, ..., d) € (Ky)" be given byd’), = (d;), — P,(d;), for
eachv € M(K) andi = d, ...,n. Then, lettingX be then x (n — d + 1) ma-
trix with columns(d’)", . . ., (d’)" and lettingY be then x (d — 1) matrix with
columnsdy, ..., dY_,, we have

San—a+1(X) fu,a—1(Y) = |det(D)]|s = 1.

Thus, by Lemma 1 we obtaina’ € GL,,_4.1(K ) with

fud-1(DGyq-1) = |det(D")[;*
Jn.a(DC'8n.a) = fn,a—1(DGp a-1) fu—a+1,1(D'CGy_as1,1) (13)

forall C € G,—4+1, WwhereC’ € G, 41 as in Lemma 8.
By Lemma 5,

/ Xt (fu-a+1,1(D'CGr_g+1,1)) dva—a+1,1(CGr_g+11)
Gp—d+1/Gn-d+1.1

=c(n —d +1,1)|det(D")[ "
Settingt = (f,.a-1(DG,.4-1))" %, by Lemma 8 and (13) we have

C(n,d)
=cn—d+11)

X / X1(fr.a-1(DGr.a-1))(f.a-1(DGp.a-1))" " dvy a-1(DG . a-1)
G:l/Gn,d—l

1
cn—d+1,Dchn,d— 1)n/ xR gy

0
=cM—d+Lded—Dg. (14)

Comparing (12) and (14) gives

n—d+1 cn—d+1 Dcn,d—-1

cln.d) =— cd,d—1)

Theorem 3 now follows by the induction hypothesis. O
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