Boundary Calculations in Relativ&-Theory

ErRiIK GUENTNER

1. Introduction

In this paper we develop some applications of the relditbeory groups [GueZ2].
The applications we consider are closely modeled on the applications of the relative
K-homology groups [BD2] considered by Baum, Douglas, and Taylor [BDT].

After a preliminary section in which we recall the basic definitions and results of
E-theory and relativéE-theory, in Section 3 we study in detail how a self-adjoint
extension of a first-order, elliptic differential operator on an open manifold deter-
mines an element of aA-theory group. In the cases of manifolds with bound-
ary and complete manifolds, and under additional assumptions, an operator de-
termines an element of a relativetheory group. We describe some invariance
properties of theE-theory classes associated to elliptic operators which propa-
gate, via the excision isomorphism, to invariance properties of rel&titteeory
classes.

In Section 4 we discuss the boundary map in relafiviheory in greater detail.

We begin by recalling the relevant constructions and then give the abstract bound-
ary calculation for relativeE-theory classes represented by compact asymptotic
morphisms.

The abstract boundary calculation is specialized in Section 5 to calculate the
image under the boundary map of the class of the Dolbeault operator on a strongly
pseudoconvex domain ii”. Our approach is based on a vanishing theorem for
a twisted Dolbeault operator on a strongly pseudoconvex domain equipped with
a “Bergman-type” metric obtained independently by Donnelly [Don] and myself
and Higson [GH].

In the final section we make a few remarks on the case of operators on manifolds
with boundary considered by Baum, Douglas, and Taylor. We shall see how our
results in the context of relative-theory reproduce those of relatikehomology.

In particular, we recover a number of results from [BDT].

The material in this paper formed part of my Ph.D. thesis at the Pennsylvania
State University, although the construction of the boundary map has been greatly
simplified and the material in Section 6 is presented here in a completely different
manner. | am greatly indebted to my advisor N. Higson and would like to thank
him for his invaluable help and encouragement.

Received March 5, 1997. Revision received August 25, 1997.
Michigan Math. J. 45 (1998).
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2. E-Theory

In this section we present a brief review of the definitions of asymptotic mor-
phisms,E-theory, and relativeéZ-theory groups. It is not our intention to give a
thorough survey of the subject, but rather to collect for the reader’s convenience
results we will use in the sequel. For more extensive information as well as de-
tailed proofs, the reader is encouraged to consult one of the many references on the
subject. Our treatment follows most closely that of Dadarlat [Dad], which is re-
viewed briefly in [Gue2], the primary source for the material on relakivimeory.

Other sources include [CHL1; CH2; Con].

In this paper allC*-algebras are assumed separable unless specifically stated
otherwise. LetA and B be separabl€*-algebras. Arasymptotic morphisris a
family of functions{¢,}: A — B, indexed byt € [1, c0), satisfying the continuity
condition for alla € A:

t— @,(a): [1, 00) — B is continuous,
as well as the following asymptotic conditions foralla’ € A andx € C:

Pt (aa/) 2 (a)<p,(a/) — 0,
@i(a+ra") — ¢ (a) — rp(a’) — O,
g (@)* — ¢, (@) — 0 ast— oo.

A continuous family of«-homomorphisms fromi to B is an asymptotic mor-
phism. In particular, a single-homomorphism fromA to B is the “constant”
asymptotic morphism.

We introduce the following notational conventions. DenoteH¥ the C*-
algebra of continuouB-valued functions vanishing at infinity on the locally com-
pact spaceX. Thus,BX = Co(X) ® B. Most often we use this notation wheh
is an interval.

Two asymptotic morphismg°} and{pl}: A — B areasymptotically equiva-
lent or simplyequivalentf, for all a € A,

(p?(a) — <ptl(a) — 0 ast— oo.

They arehomotopidf there is an asymptotic morphisfp,}: A — B[O, 1] such
that

evoogo,:go,o and e\iO(p,z(ptl,

where ey and ey are evaluation at 0 and fespectively. Asymptotic equivalence
and homotopy are equivalence relations on the set of asymptotic morphisms from
A to B. The set of homotopy classes is denoted B].

The suspensiorof an asymptotic morphisrfy,}: A — B is the asymptotic
morphism{1 ® ¢,}: A(0,1) — B(0, 1) determined (up to equivalence) by the
assignment

{1®¢}:(f = ¢cf)AQ 1) — BO,1).
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If {¢,} is an equicontinuous family of functions, this is easily seen to determine an
asymptotic morphism as required. If not, make use of the fact that every asymp-
totic morphism is equivalent to one given by an equicontinuous family of func-
tions. The operation of suspension is well-defined on asymptotic equivalence and
homotopy classes. Up to homotopy we denaté, 1) by SA and{1 ® ¢,} by
{S¢,}, so that suspension defines a ndap[ A, B] — [SA, SB].

The set A, S¥B] is a group under loop composition fér> 1. Fork > 2 this
group is abelian. The suspension m&pare group homomorphisms.

DEeFINITION 2.1.  TheE-theory groups of th€*-algebraA are defined by
n _ I H k+n k
E (A)_[A,IC]In_h_)mkeNl[S A, S*K],

where/C is the algebra of compact operators on a separable Hilbert space and the
direct limit is taken with respect to the suspension maps.

REMARK. This definition is equivalent to (although not the same as) the one given
by Connes and Higson [CH1, Con]. For a discussion of the equivalence of these
definitions, see Section 2 of [Gue2].

A fundamental result of the theory is the existence of long exact sequences for
arbitrary ideals of”*-algebras.

THEOREM 2.2. Let/ be an ideal of the&C*-algebraA. There is a boundary map
§: E"(A) — E"TY(A/I) and a long exact sequence

S E"(A) — E'(I) —> E"™YA/I) —> E"™YA) — ...
The maps in the sequence other ttdaare induced by appropriate inclusions or
projections.

Proof. Corollary 2.13 of [Gue2] and Theorem 14 of [Dad]. O

A pair of C*-algebrasconsists of aC*-algebraA and a closed two-sided ideal
We introduce the notatioa > I for a pair ofC*-algebras. Aelative asymptotic
morphismis an asymptotic morphisiy,}: A — B such thaip, (1) c J for all
t > 1. We use the notatiofy,}: A>1 — B> J.

Just as for ordinary asymptotic morphisms, there are notions of (asymptotic)
equivalence, homotopy, and suspension of relative asymptotic morphisms. We de-
note the set of homotopy classes of relative asymptotic morphismg by [I,

B > J]. Introducing the notatios(A > I) for the pairSA > SI suspension
givesamal:[A>1, B> J] — [S(A> 1), S(Br> ).

DErINITION 2.3,  The relativeE-theory groups of the pait > I are defined by
n . _ L k+n k
EL(A; D) =[A> 1, B> K], _Il_)mkeNl[S (A 1),S* B> K],

where/C andB are the algebras of compact and bounded operators on a separable
Hilbert space and the direct limit is taken with respect to the suspension maps.
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The fundamental results of relativetheory are the existence of a boundary map
that fits into a long exact sequence and the excision isomorphism. We shall re-
turn to a discussion of the construction of the boundary mag Bdy,,(A; 1) —
E™1(A/I)in Section 4. Atthis stage we are content to state the following theorem.

THEOREM 2.4. Let A > I be a pair ofC*-algebras. There is a commutative
diagram with exact rows

E'A/D) —> E"(A) —> Efy(A; 1) =25 EMNA/D) — ETHHA)

| | Jex | |

E'l(A/I) — > E"(A) —> E"(I) _8> En+l(A/I) SN En+1(A)

Furthermore, the excision mdpx* is an isomorphism.
Proof. Theorem 6.15 and Corollary 6.16 of [GueZ2]. O

In applications we consider only commutati#é-algebras. Consequently we in-
troduce the following notation. For a locally compact, metrizable topological
spaceZ we useE_,(Z) to denoteE"(Co(Z)). For a compact, metrizable topo-
logical spaceX and closed subspadewe useE_,(X; Y) to denoteE], (C(X);
Co(X \ Y)). With this notation the boundary map and excision isomorphism take

the formE_,(X;Y) > E_, 1(Y)andE_,(X,Y) ZE E_,(X\Y).

3. Elliptic Operators

In this section we discuss how a self-adjoint extension of a first-order, elliptic dif-
ferential operatoD on an open manifold? determines an element of tietheory
groupE, (M), wheren = 0,1 according as the dimension 8f is even or odd
(in the even-dimensional case it is of course necessary to assume that the oper-
ator D is odd with respect to a grading operator). Although the formula used in
defining the asymptotic morphism associatedtds known, it has not appeared
in the literature and we go into some detail. We proceed to show that the element
is independent of the choice of self-adjoint extension, so that we may unambigu-
ously write

[D] € E,(M).

We will describe the following stability results for the clag3][e E,,(M):

(a) [D] depends only on the principal symbol bf and
(b) if D is a “geometric operator” ther] is independent of the choice of Rie-
mannian structure oM.

In our applications the manifolt will typically be the interior of a manifold
with boundary, or a complete Riemannian manifold. In these cases, and under
certain additional conditions, the operaf@rdetermines an element of a relative
E-theory group
[D] € Eo(M, 9M),
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WhgreM is a suitable compactification af andoM = M \ M is the boundary
of M.

3.1. The Class of an Operator

Let M be an open, Riemannian manifold. LBtbe a first-order differential op-
erator acting on smooth sections of a Hermitian vector buidia M. Assume
that D is formally self-adjoint. We consided as an unbounded symmetric op-
erator on the Hilbert spack?(S), with domainC(S), the smooth compactly
supported sections ¢f.

To eachy e C>(M) we associate the operator of multiplicationgopn L2(S).
To simplify notation we denote this operator alsodyyalthough occasionally we
write M, for emphasis. Each of the operatdfs maps the domain d into itself.
Thus, the commutatorZ}, ¢] is defined on domaifD) and satisfies theymbol
identity,

[D, gls(x) = sym(D)(x, dp,)s(x), @

wheres € C°(S) and syngD) is the principal symbol oD. It follows that the

commutator P, ¢] is a pointwise skew-adjoint multiplication operator with do-

main C2°(S). It may or may not extend by continuity to a bounded operator on

L?(S), depending on the particular choice of operaioand smooth functiogp.
Thelocal propagation speedf the operatoD atx € M is

Prop. (D) = sup{ [[sym(D)(x, &) : (x,§) € T/M, [|§]l =1},

where the norm on the right is the operator norm on&npyd

LemMma 3.1. Let ¢ be a smooth compactly supported functiondnThen the
commutatof D, ¢] extends to a bounded operatad, ¢] on L?(S) and

I[D, ¢lll < sup{ llde. || Prop.(D) : x € M }.
Proof. Immediate from the definitions and the symbol identity (1). O

To obtain an element of the-theory groupE (M) we must associate an asymp-
totic morphism toD. Since our formula will involve the functional calculus for
unbounded self-adjoint operators, we are led to consider extensidndmiin-
bounded self-adjoint operators @R(S).

Prior to discussing these extensions, we fix some notationmihienal exten-
sionof D is denoted byp™" and themaximal extensionf D is denoted byD ™2,
We assume thdb is formally self-adjoint, so we hav@™® = D*, theadjoint of
D [BDT].

Lemma 3.2, Multiplication byg € C2°(M ) maps the domains ab™" and D™
into themselves, and the commutatids™", ¢] and[ D™, ¢] extend to bounded
operators onL?(S). There is an identity of bounded operators bf(S):

[D™, ¢] =[D, ¢] =[D"™, ¢].
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Proof. Straightforward calculation from the definitions. O
From now on we assume that the operdhois elliptic.

ProposiTION 3.3. Lets e L?(S) be compactly supported. Then

s € H(élomp(S) —=se€ domair’(Dmi”) = s € domair(DmaX).

Sketch of ProofUsing the previous lemma and a finite partition of unity for a
compact neighborhood of the supportsothe proof may be reduced to the case
of a compactly supported operator &fi. The proof for this case is a standard
Friedrich’s mollifier argument (see e.g. [Tay; Fol]). O

It follows immediately from these propositions that multiplication by smooth com-
pactly supported functions maps the domaid™* into the domain o>™". We
consider an extensiof of D to an unbounded self-adjoint operator bA(S).
Such an extension necessarily satisfig8" ¢ D ¢ D™ Forg e C>®(M) we
therefore conclude that:

(a) multiplication byp maps the domain ab into itself; and

(b) the commutator D, ¢], an operator on doma(m)) extends to a bounded
operator onL2(S) equal to[D, ¢] (since [D, ¢] and [D™, ¢] agree on
domainD) c domain D™a)).

We need to add a little extra structure, typical of operators on even-dimensional
manifolds, before continuing. Arading operatoron the vector bundle is a
self-adjoint endomorphism of S satisfyinge? = 1. The vector bundle decom-
poses a8 = S @ S_, whereS, is thet+1-eigenbundle of. There are similar
decompositions on spaces of smooth compactly supported and square integrable
sections ofS. An operatorD is odd with respect to the gradin§eD = —De. In
this caseD is represented by the off-diagonal matrix

0 D_
b= (D+ 0 )
with respect to the decompositi@rf®(S) = C(S4) & C2(S-).

Assume that the Hermitian vector bundlés graded, with grading operatey
and that the operatdp is odd with respect to the grading.

ReEMaARK. Under the assumptions just outlined,

~ 0 pmn
o= %)

defines a self-adjoint extension &f [BDT]. It will be used frequently in the
sequel.

We now explain how to associate an asymptotic morphism fattteory class, to
the operatoD. As mentioned in Section 1, this result is part of the folklore and
originally appeared without proof in the unpublished manuscript [CH1].
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THEOREM 3.4. An ethensiorﬁ of D to an unbounded self-adjoint operator de-
termines an elemeD] of the E-theory groupEq(M) by the assignment

(APY: F @@ > M, f(t™D +xe), feCo(R), ¢eCo(M).

We write M,, for the bounded operator oi?(S) of multiplication byg. The
bounded operatoy (t 1D + x&) on L?(S) is defined by the functional calculus.

In the proof of this theorem we need the following result. For the sake of com-
pleteness we shall record a proof (but see also [Hig2]).

LEMMA 3.5. For f € Co(R) andg € Co(M), the operatonpf(b) is a compact
operator onL?(S).

Proof. It suffices to consider the case where C>°(M) and f is one of the re-
solvent functions-. (x) = (x &+ +/—1)~L. Note thatr.. (D) mapsL?(S) into the
domain of D and hence thapr.. (D) mapsL2(S) into H(supporty), S).

It follows from the Rellich lemma thak Y(supporty), S) — L2(S) is a com-
pact inclusion. From the boundedness of this inclusion we seethaD), con-
sidered as an operator inf$*(supporte), S), has closed graph. By the closed
graph theoremyr. (D) is bounded as an operator it (supporty), S). By the
compactness of the inclusion we conclude that(D) is compact as an operator
onL3(S). O

For future reference we record thesolvent identitfor a self-adjoint unbounded
operatorT (wherer.. are as before):

[re(T), ] = re(Dle, T1re(T). @

Proof of Theorem 3.4We must show thatA”} determines an asymptotic mor-
phism (up to equivalence) frofig(R) ® Co(M) to Co(R) ® K, where is the
algebra of compact operators 6A(S). Denote byB the algebra of bounded op-
erators onl.2(S). The proof comprises three steps:
(i) the assignmenp — M, is ax-homomorphisnCo(M) — B;
(ii) the assignmeni — f(t~1D + xe) is a continuous family o&-homomor-
phismsCy(R) — Co(R) ® B; and

(i) [@, f(t7ID + xe)] — 0 ast — oo for ¢ € Co(M) and f € Co(R).
The theorem then follows from the previous lemma and Lemma 7.1 of Section 7.
(In applying this lemma, taka = Co(R), B = J = Co(M), C = C»(R, B) and
K = Co(R).)

Of these three points, (i) is obvious. For (ii), we begin by checkingffa
Co(R) that f(: D + xe) is a continuous operator-valued functionxofanishing
at infinity; by the spectral theorem and an approximation argument, it suffices to
check this for the resolvent functions. The difference

re(tID + xe) —re(t 7D + ye) = ro (17D + xe) ((y — x)&)re (171D + ye)

has norm bounded by — y|. It follows thatr, (t~1D + xg) is continuous inx.
Notice now that
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(t_lﬁ + xa)2 =172D? + x? > x?

independently of > 1. Hence, for each > 1, the spectrum on‘:lﬁ + xe is con-
tained in the complement @f-x, x). We conclude that. (D + x¢) vanishes
at infinity. In fact,

lre(t™'D + xe)|l < supllre (W) : [yl > |x]} = (x? + 1)~Y2,

Next we must check that fof € Co(R) the family of operator-valued functions
f(t~1D + xe) is continuous it € [1, co). Again we may reduce to the cage=
r+. It follows from the factorization

ri(t_lD + xg) — ri(s_lﬁ + x¢)
= ri(t_lﬁ + xe?)(s_l — t_l) Dri(s_lb + x¢)
=r.(t D +xe)(L— st H(s7ID + xe)re(s 1D + x¢)
+re(t7D 4+ xe)(L — st (—xe)ra (s 7D + xe)
that, for eachx e R,

Ire(t72D + x8) — re(s 7D 4 xe)| < (1 — stl)( LI ! )

+ * = x2+1 " 22 )
Hence, fors — ¢, the operator-valued functions (s 1D + x¢) of x € R converge
uniformly tors (: 71D + xe).

Turning now to (iii), it suffices to considere C°(M) and f = ry. It follows
from the resolvent identity (2) that

Ilr+(~*D + xe), ¢l < 1 *l[g, D] - 0 ast — oo. O
RemArk. Of the three points discussed in the proof the first two hold in great
generality; the first for th€ *-algebra of continuous bounded functions, and the

second for any self-adjoint unbounded operataon L?(S). Generalizations of
the third will concern us later.

REMARK. Itis often useful to observe that the asymptotic morpmstﬁ} is also
defined (up to equivalence) by the assignment
f®¢> fGD+xe)M,, feCo(R), ¢ecCo(M).

This follows from an approximation argument and the resolvent identity (2), as in
the previous proof.

ProrosiTioN 3.6. Different self-adjoint extensions of the operaf@rdetermine
the same element of tlietheory groupEo(M). In fact, the asymptotic morphisms
associated to different self-adjoint extensiondnére asymptotically equivalent.

Proof. By an approximation argument and the previous remark, it suffices to show
that forg € C°(M),

AP(ry ® 9) —re(t™ D + x6)p - 0 ast — oc. (3)
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But for ¢ € C°(M) we havey domain D) ¢ domain D™") ¢ domain(D), so
we may factor

A?(Ti ® @) —re(t™1D + xe)p
= ri(t_lﬁ + xe)t_l(b<p — gpf))ri(t_lb + xe¢)
=r (D + xe)t_l((ﬁ — D)o +[D, (p])ri(t_lf) + x¢e).
BecauseD andD agree on domaifD™"), we see that
(D= D)oro(t™*D + xe) = 0.
Hence, the norm of (3) is bounded by!||[ D, ¢]|| — 0 ast — oo. O

Armed with this proposition, we writel}] € Eq(M ) for the E-theory class unam-
biguously assigned to the operafrby Theorem 3.4.

We now describe the stability results for the claB3 fnentioned at the begin-
ning of this section. We limit ourselves to a description of the relevant results,
which are not surprising in their content to the experienced reader. For a detailed
discussion and proofs we refer to [Guel].

We begin by observing that, just as the index of a Fredholm operator is stable
under compact perturbations, tBetheory class of P] depends only on the prin-
cipal symbol ofD. Let V be a “zeroth-order potential” oM, that is, a pointwise
self-adjoint, smooth endomorphism of the Hermitian burgll®ointwise multi-
plication by V determines an operator drf(S). We make no assumptions about
the boundedness of the potentigland this operator is not necessarily bounded.

It is, however, formally self-adjoint on the domaiff°(S). We do assume that
eachV(x), which is an endomorphism of the finite-dimensional vector sgace
is odd with respect to the grading. We are interested in comparing itheory
classes associated to the operaf@randDy = D + V.

ProrosiTION 3.7. The E-theory classes associated to the operatbrand Dy
are equal
[D] =[Dv] € Eo(M).

In fact, the asymptotic morphisms associated to the operaloend Dy are
asymptotically equivalent.

Sketch of Proof We use the self-adjoint extensiofsand Dy described in the
remark immediately preceding the statement of Theorem 3.4. As a representative
of [ D] € Eo(M) we take the asymptotic morphism associated to the extemsion

(AP} F @@ > M, f(t7'D + xe). 4)

As arepresentative of]y] € Eq(M ) we take the asymptotic morphism associated
to Dy, using the remark following the proof of Theorem 3.4:

f®@r ftDy +xe)M,. (5)
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Factorizations similar to those in proof of the previous proposition show that, for
9 e C>X(M) and f = ry, the norm of the difference of (4) and (5) is bounded by
X1Vl + D, M,]1) — O ast — oo. 0

We now turn to our second stability result. We show thatAh#heory class asso-
ciated to an elliptic operator depends only on its homotopy class and not, for exam-
ple, on the Hermitian structure of the vector bunsller the Riemannian structure

of the manifoldM.

An operator homotopyD,} is a first-order differential operator on the cross-
productM x [0, 1] acting on smooth compactly supported sections of the pulled-
back vector bundl§ such that, with respect to local coordinates: (x, . . ., x,)
on M and a local trivialization of over M,

n P
Ds = Zlaj(x, S)a—x] +b()€, S),
J= ’

where g;(x, s) and b(x,s) are smooth matrix-valued functions @k,s) €
M x [0, 1] and wherée_ a;(x, 5)&; is invertible for all 0#£ & = (&1, .. ., &,) € R”
and(x, s) e M x [0, 1].

REMARK. There is no derivative in thedirection, so an operator homotopy does
restrict, for each € [0, 1], to an operator oM. The definition has been phrased so
that there is some control over the zeroth-order part of the individual opefators

REMARK. An operator homotopy is nothing other than a homotopy within first-
order elliptic symbols from the principal symbol X, to that of D;. More pre-
cisely, the principal symbol of an operator homotopy can be used to construct a
homotopy of the principal symbols of the restricted operators. Conversely, a first-
order differential operator associated to a homotopy of principal symbols, con-
sidered as a first-order symbol a# x [0, 1], is an operator homotopy as in the
definition.

ProrosiTION 3.8. For the fixed Riemannian structure ahand Hermitian struc-
ture onS, the class of the operatad depends only on its homotopy class.

Sketch of Prooflet{D,} be an operator homotopy. We must show tha¢] =
[D1] € Eo(M). The idea of the proof is to show that the family of asymptotic
morphisms for € [0, 1],

{APY: f @@ > My f(t7D; + xe),

fit together to form a homotopy of asymptotic morphisms. The asymptotic prop-
erties of the4” hold uniformly ins. Hence, the family{.4”*} would define an
asymptotic morphism as required if it were continuous in the homotopy variable
s. Observe that it is continuous imast — oo in the sense that, for aft € Co(R),

9 e CX(M), ande > 0, there exisT" > 0 and$ > 0 such that

IAP (f @ @) — AP (f @) <& Vi >T andV|s —s'| <3,
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the norm being taken i@y (R) ® K. From this it follows that the faminA?ﬁ} may
be adjusted up to equivalence to obtain an asymptotic morphism as required.

Thepositive partof the operatoD = (Li DO’ ) is D, . To study the dependence of

the E-theory class oD on the Riemannian structure &f and the Hermitian struc-
ture of S, we change focus slightly and consid@y. instead ofD. To emphasize
this change of focus we refer to tlietheory class oD, .

Our assumption thab be formally self-adjoint on the domaifi>°(S) forces
this change of focus; we are free to change neither the Riemannian structure of
M nor the Hermitian structure ¢f without alteringD in some way. On the other
hand,D and D, determine each other. Clearl®, determinesD... Conversely,
a Riemannian structure oy and a Hermitian structure o$idetermine an inner
product onC°(S). We assume thab is formally self-adjoint on this domain, so
D is determined byD, .

ProrosiTiON 3.9. The class of the operatdp, is independent of the choice of
Riemannian structure on the underlying manifold.

Sketch of Prooflet M be equipped with a Riemannian structure ghdith a
Hermitian structure, and & be an operator as before. Lt denoteM but with
a different Riemannian structure. The volume formabandM’ are related by
multiplication by a positive real-valued smooth functieh Multiplication by u
defines a unitary isomorphisbh: L?(M, S) — L?(M’, S).

SinceU commutes with multiplication by smooth bounded functionsin
we see that there exists an operaldrsuch that/DU ! and D’ have the same
positive part and differ by a zeroth-order potential. The result now follows from
Proposition 3.7. O

ProrosiTioN 3.10. The class of the operatdy, is independent of the Hermitian
structure on the vector bundie

Sketch of Proof Let M be equipped with a Riemannian structure andth a Her-
mitian structure, and léD be an operator as before. L¥tdenoteS but with a dif-
ferent Hermitian structure, and I&t' be an operator oS’ such that sy, ) =
sym(D, ). Note that any two sucld’ differ by a zeroth-order term and so, by
Proposition 3.7,D’] € Eo(M) is well-defined. We must show)'] = [D].

Letz: M x [0,1] — M be the projection. Denote by*S the pullback of
S with the constant Hermitian structure 8f Denote byS” the pullback ofS
equipped with a Hermitian structure smoothly varying from thaf et s = 0 to
that of " ats = 1.

Extend the principal symbol ob,, pulled back overs”, to a skew-adjoint
endomorphismo (x, &) of S”, and letD” = {D/} be any first-order differential
operator with principal symbat.

There is a unitary bundle isomorphism fromiS to S” that is the identity over
s = 0 and conjugates the operatbr’ to an operator homotopyD,} over*S.
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This homotopy is fromDy = D to D1, and D; is unitarily equivalent ta>’. Now
apply Proposition 3.8. O

3.2. Complete Manifolds

Let M be a complete, open Riemannian manifold. Debe an operator of the
type considered in Section 3.1. Thati3,s a first-order, elliptic differential op-
erator, formally self-adjoint on the domain of smooth compactly supported sec-
tions of a Hermitian vector bundlg on M. We are interested in associatingiio
an element of the relativE-theory groups£o(M, dM ) for suitable compactifica-
tions M of M. In order to ensure that the formula of Theorem 3.4 defines a rela-
tive asymptotic morphism, we need to place restrictions on the opdpatsrwell
as on the compactificatiodf .

The operatorD hasfinite propagation speed its symbol is bounded on the
cosphere bundle o¥f. Equivalently, the local propagation Prg®) defined ear-
lier is bounded independently af € M. The propagation boundf D is then
defined by

Prop(D) = supProp. (D).
xeM

Let C,(M) be theC*-algebra of continuous bounded functions &f and
let C,(M) be the commutative unital'*-subalgebra o€, (M) generated by the
smooth bounded functions o whose gradients vanish at infinity. (The nota-
tion C,(M) is taken from [Roe3].) Ametric compactificatiorof M is the max-
imal ideal spacé of a separable, unital™*-subalgebra ot’,(M). The bound-
arydM = M \ M is ametric coronaof M. We haveCo(M) < C(M) C Cp(M)
andC(dM) = C(M)/Co(M). Further,M is a compactification o#/ in the usual
sense, meaning thaf is a compact topological space containikigas an open
dense subset.

As suggested by Higson [Higl; Hig2] and Roe [Roe3], the notions of met-
ric compactification and finite propagation speed are dual for the purpogés of
homology.

LemMA 3.11. Lety be a smooth function oM with bounded gradient. Then the
commutatof D, ¢] extends to a bounded operatad, ¢] on L?(S) and

I[D, ¢lll < lld¢xlloc Prop(D).

Furthermore, multiplication by maps the domai®™" into itself. The commu-
tator [D™", ¢] extends continuously to the bounded operidr ¢] on L2(S).

Proof. The first assertion follows from the symbol identity (1). The second is a
direct calculation from the definitions (cf. Lemmas 3.1 and 3.2). O

Let now M be a metric compactification dff, and assume that dit¥ is even.

Let D be an operator as before. Assume that the bufiiegraded with grading
operatore and thatD has odd grading degree. The assumption of finite propoga-
tion speed ensures thhtis essentially self-adjoint [Che; Wol; GL] and allows us
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to dispense with the various extensiongoéonsidered previously. With an abuse
of notation we denote the unique self-adjoint extensioP@iso byD.

Tueorem 3.12.  The operatorD determines an element of the relatizetheory
group[D] € Eo(M, aM ). The elemenitD] is determined by the assignment

(AP} f@ @ M,f(t7D +xe), feCo(R), peC(M).

Proof. We must show thgt4”} determines a relative asymptotic morphism (up to
equivalence) fron€o(R)@C (M) > Co(R)®Co(M) 10 Co(R)®B > Co(R)®K,
whereK andB are the algebras of compact and bounded operators on the Hilbert
spaceL?(S), respectively.

The proof of Theorem 3.4 generalizes immediately to this situation. We need
simply observe that, fop € C*°(M) bounded with bounded gradient, the resol-
vent identity (2) shows that

I[r+ (D + xe), ]Il <t g, D]I| <t |dg|l PropgD) — 0 ast — oo.

Now invoke Lemma 7.1. OJ

A close inspection of the proofs reveals that we have not exploited in full the
definition of the metric compactification. In particular, these results remain true
if we consider bounded functions with bounded gradient. The interplay be-
tween the functions of vanishing gradient and operators of finite propagation will
be exploited in calculating the image of the clagy under the boundary map
Eo(M; M) — E_1(3M). In this regard, the following proposition will prove
useful in a subsequent section.

ProrosiTioN 3.13. Let g be a smooth function oM with gradient vanishing at
infinity. Then, forD an operator with finite propagation speed apids Co(R),
the commutatof f (D), ¢] is compact.

Proof. It suffices to consider the cage= r... Recall the resolvent identity (2):
[r+(D), ¢] = r+(D)[¢, D]r+(D).

Since the gradient af vanishes at infinity, it follows from the symbol identity (1)
that the commutatogd, D] is multiplication by a smooth section of the endomor-
phism bundle of vanishing at infinity. Arguing as in the proof of Proposition 3.5,
we see that the produgp [ D]r. (D) is a compact operator. O

3.3. Manifolds with Boundary

Let M be a Riemannian manifold with boundary and Aétdenote the interior
of M. Let D be an operator of the type considered previously. Thabiss a
first-order, elliptic differential operator aif, formally self-adjoint on the domain
of smooth compactly supported sections of a Hermitian vector busidkeldi-
tionally, assume that the operatbrextends to a closed Riemannian maniféfd
containingM as a submanifold with smooth boundary.
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REMARK. This added assumption is not a serious restrictiof i a Dirac-type
operator (i.e., associated to a Clifford moduleMn, then D extends to an oper-
ator D’ on the doubleV’ = M Uy, M of M. All operators we typically consider
in applications (e.g., the deRhamy2 times), Dolbeault, and Dirac operators) are
of Dirac type.

Since we have sacrificed the assumption of completenets tife operatoD
need not be essentially self-adjoint. Extension®afo unbounded self-adjoint
operators or.?(S) are customarily given by imposing boundary conditiongon
To compensate for the fact that we are considering a class of functions broader than
Co(M), we restrict the class of extensions. We consider self-adjoint extensions
D of D satisfying

¢ domainD) c domain(D), ¢ e C>®(M).

Such extensions were considered in [BDT], where they were said to be given by
“(generalized) local boundary conditions”.

TueoreM 3.14. An extensiorD of D given by generalized local boundary con-
ditions determines an element of the relativegheory group[D] € Eo(M, M)
by the assignment

(AP} F @@ > @f 7D +xe),  feCo(R), peC(M).

Further, this class is independent of the choice of extension, and we obtain a
uniquely defined class denotgl] € Eq(M, oM ).

Proof. Observe that (ip € C*°(M) is bounded with bounded gradient and (i)
has finite propagation speed—the first sipde the restriction ta\/ of a smooth
function onM’, and the second sina@® is the restriction ta”>°(S) of D’ defined
on all of the closed manifold/’.

The proof that we obtain a relative-theory class is now completely analogous
to the proofs of Theorems 3.4 and 3.12. That this class is independent of the choice
of extension follows immediately from Proposition 3.6 and the excision isomor-
phismEo(M, dM) = Eo(M). O

REMARK. Under the excision isomorphisifiy(M, dM) = Eo(M), the relative
E-theory class defined b# corresponds to it&-theory class. Accordingly, the
stability properties described in Section 3.1 extend to the rel&titleeory class of

D. This remark holds for operators on complete Riemannian manifolds considered
in Section 3.2, as well as for operators on manifolds with boundary considered in
this section.

In order to analyze the image of the clad3] [under the boundary morphism
Eo(M, 3M) — E_1(dM), we would like to see (as in Section 3.2) th#t D), ¢]

is compact forp € C(M) and f € Co(R). Despite the fact that the gradientgfs

no longer assumed to vanish at infinity, we can recover this property for suitable
choices of extensiom (cf. [BDT]).
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The case that is of particular interest for our applications is the self-adjoint ex-
tension considered in the remark immediately preceeding the statement of Theo-

rem 3.4, .
~ 0 pmn
(e %)

We have previously observed that multiplication by a smooth bounded function
with bounded gradient maps the domainibinto itself (compare to Lemma 3.2).
That is, this extension is defined by generalized local boundary conditions.

A self-adjoint operatord has apunctured gapn its spectrum if there exists a
constanty > 0 such that spéa) N (—y, y) C {0}. The following lemma is the
“principle of convergence transfer” [Roe2].

CONVERGENCE TRANSFER. LetT be a closed unbounded operator. TIf T is
bounded below the@is isolated in the spectrum of the operator

o r*
=(2 )

Proof. If T*T is bounded below then, since it is self-adjoint, there exists-a
0 such that spg@*T) C [y2, o). By the polar decomposition for closed un-
bounded operators, the spectraloéf * andT*T agree (except possibly fon 0

Hence
> (T*T O
4 —< 0 TT*

has a punctured gap of widjf? in its spectrum. By the spectral theoremthus
has a punctured gap of widih O

REMARK. Itis similarly proved that iff * T has compact resolvent th&i7* has
compact resolvent on the orthogonal complement of the kern&l*ofThus, if
one of T*T or TT* has compact resolvent thenhas compact resolvent on the
orthogonal complement of its kernel.

ProposITION 3.15. LetD be the foregoing extension Hfto an unbounded self-
adjoint operator orle(S). ThenD has compact resolvent on the orthogonal com-
plement ofkernek D) N L?(S,) = kernel D).

Proof. From the basic elliptic estimate f&@’ [Roel],
sl < Cisll + 1ID’s ),

it follows that the domain o>™" is the closure olC>* (M, S_) in the Sobolev
spaceHY(M’, S’). By the Rellich lemma the inclusioH*(M’, §") — L?(S")
is compact. Sincd.?(S_) c L?(S’) is a closed subspace, we surmise that the
inclusion

domain D™") — L3(S_)

is compact.
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By a theorem of von Neuman®)TD™" s a self-adjoint unbounded oper-
ator whose domain is a core f@™" [RS; Kat]. The resolvent. (DI"**D™")
is therefore defined and map$(S_) into domain DT*D™M") ¢ domain D™").
Arguing now as in the proof of Lemma 3.5, we conclude m;:(thaXDL“i“) is
compact. That isD_TaXDr_"‘” has compactresolvent. In particular, kel =
kernel DI"*D™") is finite-dimensional.

We calculate )
min m
52— <D D 0 )
0 D_TaxDT|n :
By the previous remarkl) has compact resolvent on the orthogonal complement
of its kernel inL2(S). Since

kernel D) = kernek D) @ kerne(D™")

and kernelD™") is finite-dimensional, the proposition is proved. O

PROPOSITION 3.16. Let ¢ be a smooth function oft, and let D be the above
extension ofD to an unbounded self-adjoint operator @1(S). Then, forf e
Co(R), the commutatof (D), ¢] is compact.

Proof. By an approximation argument it suffices to consider the ¢gaser.. We
analyze the resolvent identity

[re(D), ¢] = r+(D)[g, D]r+(D)

on the kernel o> and its orthogonal complement Irf (S).

On the orthogonal complement of the kernell@f®*, we see that the commu-
tator [ (D), ¢] is the product of
(a) the compact operator (D): kernel(fo""X)L — L%(S), and
(b) the bounded operatet (D)[¢, D] on L3(S).

Hence, Ei(D), @] is compact on kerneDfa")i.

Onthe kernel oDTinn L2(S), the operator (D) is multiplication byF+/—1.
The commutatorg, D] is odd and hence maps kergBI™®) into L?(S_). Thus,
the commutatordy. (D), ¢] is the product of
(a) the bounded operatap[D]r+(D): kernelDT®) — L2(S_), and
(b) the compact operates. (D): L3(S_) — L?(S).

Hence, [ (D), ¢] is compact on kerngD"®). O

4. The Abstract Boundary Calculation

In this section we outline a general procedure used to calculate the image of a rela-
tive E-theory class associated to an elliptic operator under the boundary map. An
analogous treatment of a special case is contained in the discussion surrounding
Proposition 4.12 of [Gue2].
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We begin by recalling, for the convenience of the reader, the definition of the
boundary map and related facts we will be using. Complete details may be found
in [Gue2].

Let A > I andB > J be pairs ofC*-algebras. Aquotientof a relative asymp-
totic morphism{¢,}: A > I — B > J is an asymptotic morphisty,}: A/l —

B/J, making the diagram

A {or} B

Lo

Al 2 gy

asymptotically commute. Quotients are defined only up to equivalence (hence the
indefinite article). Letp: B — B/J be the projection and latbe any set the-
oretic section ofA — A/I. The simple formulap,(a) = p o ¢,(s(a)) defines a
quotient of{g, }. It is easily verified that, as defined by this formuja,} is (up to
equivalence) independent of the choice of

A relative asymptotic morphisriy,}: A > I — B > J is compactif its quo-
tient{g,} is a continuous familiy ok-homomorphisms. (This definition is not the
same as the one given in [Gue2]; the precise relationship between these definitions
is given in Section 7.) Compact relative asymptotic morphisms are cadlagact
asymptotic morphism®r short. We will prove later that the relative asymptotic
morphism defining the relative-theory class of an operator as in the previous
section is compact.

Let @ = B/K be the Calkin algebra. The boundary map in relafiveheory
is the composition of two maps:

Ep(A D) —"> [A/1.Ql, —2> E™NA/D,
whereq is induced by the quotient construction ghi the connecting map in the
second variable for the stable homotopy theory of asymptotic morphisms [Dad;
Gue2].

Botha andp are homomorphisms of abelian groups, where the group operation
is loop composition. In each case the group operation is also given by “diagonal
sum”. For the ordinary-theory group on the right, this is a familiar result. For
the relativeE-theory groupE (A, I) and the stable homotopy grougf7, 9 ..,
this is proven in [Gue2].

With these preliminaries out of the way, we return to our open Riemannian man-
ifold M and compactificatio?. Our methods apply equally to both situations dis-
cussed in the previous section. This,is either a manifold with boundargn
and interiorM, or a metric compactification of the complete Riemannian mani-
fold M. Let D be afirst-order, elliptic differential operator acting on smooth com-
pactly supported sections of a Hermitian vector burfdéa M. Assume thas is
graded, with grading operateyand thatD is odd with respect to the grading. We
consider, as usual, a fixed extensionZnfo an unbounded self-adjoint operator.
With an abuse of notation we denote this extension alsp by
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We need to introduce two additional concepts to unify the cases of manifolds
with boundary and complete manifolds. The operddis commutator compact
if, for f € Co(R) andg € C(M), the commutator f(D), ¢] is compact. We
will shortly see that this ensures the compactness of the associated asymptotic
morphism. The operatad is spectrally isolatedf it has a punctured gap in its
spectrum, that is, if there existg/a> 0 such that spe®) N (—y, y) C {0}.

We make the additional assumption thatis commutator compact and spec-
trally isolated.

REMARK. |f M is a manifold with boundary and i is a first-order, elliptic
differential operator with initial domain the space of smooth sections, compactly
supported on the interiag¥ of M, then the self-adjoint extension

~ 0 Dmin
(2 %)

is a commutator compact and spectrally isolated by Propositions 3.16 and 3.15,
respectively.

REMaRrk. If D is an operator with finite propogation on the complete Riemann-

ian manifold M, and if M is a metric compactification afZ, then by Proposi-

tion 3.13 the closure ab is commutator compact. In this case we must verify by

hand thatD is spectrally isolated (after perhaps making additional assumptions).
If D is commutator compact and spectrally isolated then we may define Toeplitz

operators on the kernel &. Forg € C(M), the Toeplitz operatdF, with symbol

@ is defined as the composition

Itiply b j
kernel D) multiply by ¢ L2(S) project

kernel D).

In a similar manner we define Toeplitz operatﬁg% on the kernels oD... These
are related by
T 0
— %4
(% 2)

ProposiTiON 4.1. The assignmentg +—> Ti definex-homomorphisms from
C (M) to the Calkin algebra®(kernel D..)). These pass te-homomorphisms

T+ C(0M) — O(kernelDy)).
Proof. It suffices to prove the analogous statementsjpiSince

it suffices to show that the commutata?,[¢] is compact forp € C(M). But if
f € Co(R) is such thatf(0) = 1 and is identically zero on sp&®) \ {0} then
we haveP = f(D) and, by our assumptions dn, [ (D), ¢] is compact.

The remainder of the proposition follows because @ Co(M ), the opera-
tor ¢ f (D) is compact and” (dM) = C(M)/Co(M). O
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LEmMMA 4.2. For ¢ € C(M), the operators(1 — P)pP and Pp(1 — P) are
compact.

Proof. Asobserved inthe proofofthe previous proposition, the commut&tas|
is a compact operator ai?(S). The result now follows from

(1-P)pP =1—-P)Pp—(1—P)[P,¢] = (P - D[P, ¢]. O

The Toeplitz extensiong*: C(dM) — Q(kerne(D.)) determineE-theory
classes
[T*] € E_2(0M)

that admit two distinct descriptions. To describe these we recall that Connes and
Higson associate to a short exact sequenee ® —~ A — A/I — 0 of separa-
ble C*-algebras a unique homotopy class of asymptotic morphisms’) — I
[CH2].

The first description is as the homotopy class of the asymptotic morphism asso-
ciated to the pulled-back extension ©f-algebras (we suppress the kefil)
for notational convenience):

0 K £s COM) —> 0
| =
0 K B 0 —o

Note that the separability @ (M) implies that of€... The second description is
as the compositions

Co0, 1) ® COM) 22555 Co(0,1) ® £, /K — K,

wheref!, is the image in3(kernek D)) of £1 and the second map is an asymp-
totic morphism associated as before to a short exact sequence. Noti€§ tisat
the separable subalgebra®fkernel D)) generated byC(kernel D)) and the
Toeplitz operatord’*, ¢ € C(0M).

The equivalence of these descriptions is not hard to establish and embodies the
naturality of the construction of Connes and Higson with respect to pullbacks.
For details compare Theorem 10 of [Dad] or the discussion surrounding Proposi-
tion 4.12 of [GueZ2]. We shall use the second description.

ProposiTion 4.3.  Let D be commutator compact and spectrally isolated. Under
the boundary mag (M, oM ) — E_,1(dM), the class oD maps to the difference
[TF]-[T7].

We prepare for the proof of this proposition with a few results.

LEmMA 4.4. LetT be an unbounded self-adjoint operator andAdte a bounded
self-adjoint operator such thatA| < 1. If B is a bounded operator such that the

commutator§(7 + /—1)"%, B] and [A, B] are compact, then the commutator
(T + A+ +/—1)"%, B] is compact.
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Proof. Begin by noting that the operat@r + A is self-adjoint on domai(T’) so
thatT + A + /—1is surely invertible. However, by our assumptionsAarthere
is an equality of bounded operators

T+A+V/-D) 7 =T+ (AT + V=D

n=0
(the series converges in the operator norm topology). It follows from the identity

[A(T +v=1)", Bl = A[(T + V=1)"%, B] + [A, BI(T +v/—-1)7!

that the commutator o with A(T + +/—1)~! is compact, and by induction on
n that the commutator oB with each term of the series is compact. Hence the
commutator ofB with (T + A 4+ «/—1)~' is compact. O

ProposiTiON 4.5, Let D be commutator compact. Then, for Co(R) andg €
C (M), the commutatof £ (r 1D +x¢), ¢] is compact. Thus, the relative-theory
class ofD is represented by a compact asymptotic morphism.

Proof. By an approximation argument it suffices to consider the case whete
r+ andg is a smooth function.

We begin by considering the case= 0. The commutator, (r D), ¢] is
compact for = 1. We calculate

re(t7ID) = ts’1r+(s’1D + (st = 1)\/—_1)71.

By the previous lemma, ifr.(s~1D), ¢] is compact and if O< r < 2s, so that
lts~t—1] < 1, then |, (t~1D), ¢]is compact. It follows easily that[ (: D), ¢]
is compact for alt > 1.

For generat note that it follows, again from the previous lemma, thati y| <
1and f,.(t71D + ye), ¢] is compact then so is-[ (1D + x¢), ¢]. The final as-
sertion follows from the definitions and Lemma 7.2. O

Proof of Proposition 4.3.The boundary map is the composition

Eo(M,0M) — [C(dM), Qlo —> E_y(3M).
The image of D] under the first of these maps is represented by the asymptotic
morphismSC(0M) — SQ;

F®@ p(ft D +x8)¢), ¢eC@OM), feCo(R),

whereg € C(M) is any continuous extension efto all of M andp is the quotient
mapB — Q. By the previous proposition, this asymptotic morphism is in fact
a continuous family of--homomorphisms and hence homotopic to the constant
asymptotic morphism obtained by setting- 1:

a[D] =[f ® ¢ = p(f(D +xe)@)] € [C(3M), Qlo. (6)
By definition, [£*] = B[T*]., where [E*] is the class of the-homomorphism
TEin[COM), Q] o. (The maps is induced by composition with asymptotic mor-
phismsS(£/K) — K associated to separable subalgelifas £ c B.) Using
the various descriptions of addition in this group, we see that
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er-ters[oe (5 9[- (5 2]
oo (757 2]
oo (57 9]

~[roen (757 Q)] ™

The matrices in this equation are written with respect to the orthogonal decompo-
sition L2(S) = kernel D) @ kernel D) or to a similar decomposition fdr?(S..)

as appropriate. Note that sinéeis odd with respect to the grading, the operator

& maps the kernel ob into itself.

We conclude the proof by constructing an explicit homotopy of asymptotic mor-
phisms from (6) to (7). A homotopy of asymptotic morphisms will be determined
by a homotopy ok-homomorphisms. An explicithomotopy#fhomomorphisms
is given by

p(f(s™ID 4+ x8)¢), s >0,

f®p— { <f(XS)T¢ 0)
p , s=0.
0 0

It follows (as in Proposition 4.5) that for eagh> 0 we obtain a&-homomorphism
and (from Proposition 4.1) that fer= 0 we obtain a--homomorphism. Further,
as was shown in the proof of Theorem 3.4, the farfiffys —D + x¢)} is continu-
ous ins for s > 0. It remains only to check continuity at= 0. That is, it remains
to show, forf € Co(R) and@ € C (M), that

p(f(s7ID + x&)@) — p<f(xg)T¢ g) ass — 0. (8)

To do this writes ™D + xe and¢ as 2x 2 matrices with respect to the decom-
positionL?(S) = kernek D) @ kernelD)*. For the first we have

—1 [ x¢ 0
™D+ xe = ( 0 T(s,x))’

whereT (s, x) is an unbounded self-adjoint operator. By virtue of the identity
(sle + xe)2 =s5°D?+ x> s72D?,

T(s, x) is bounded below by, wherey is the width of the gap in the spectrum
of D. It follows that

I £(T (s, ) <supl | fDW): 1yl =5y} —>0 ass—0
and hence that

0 0
f(s7ID 4+ xe) = (f(())cs) f(T(s,x))) — <f(38) 0) ass —> 0. (9)

For the second we have (as operators) using Lemma 4.2



180 ERIK GUENTNER

- T; P@(1—P) (T 0 (10)

=la-prer a-Psa-p w0 a-prga-r )

The proof is concluded by noting that (8) follows immediately from (9) and (10).
O

5. Strongly Pseudoconvex Domains

In this section we present a new approach to one of the results of Baum, Douglas,
and Taylor. LetQ be a strongly pseudoconvex domain with smooth boundary.
Our goal is to prove the identity

I[D] = [T] € E_1(0%).

Here, [£]is the E-theory class associated to the Toeplitz extension on the Bergman
space of square integrable holomorphic function§orand [D] is the E-theory
class associated to the Dolbeault operatar of

This result was obtained by Baum, Douglas, and Taylor in the setting of relative
K-homology theory. The contrast between their methods and those employed in
this section is interesting. In their calculations it is necessary to find the appropri-
ate local boundary conditions for an operator on a manifold with boundary, here
thed-Neumann conditions. We, however, trade these analytic aspects for geomet-
ric ones—namely, finding an appropriate vanishing theorem for an operator on a
complete manifold. We note that the approach adopted here is easily modified to
fit in their framework.

Our method is rather straightforward; we check that the Dolbeault opdpator
constructed with respect to an appropriate complete Kéhler metric on the strongly
pseudoconvex domafn, is spectrally isolated. This completes the assumptions of
Section 4 and enables us to apply the abstract boundary calculation of that section
to obtain the desired identity.

Let Q be a bounded domain idi” with smooth boundary. Alefining function
r for Q is a smooth, real-valued function @ such that? = {r(p) > 0} and
such that gra@) is nowhere vanishing o#€2. (Our conventions for defining func-
tions arenot the same in [FS; Kra]; they do however, agree with those in [GH] to
which we will refer frequently.) Observe thaf2 = {r(p) = 0}. The domain
is strongly pseudoconveékit has a defining functiom such that, for alk € C",

or %r
a #0 and Za,a—ZZZO — ;ma,ﬂj <0 for peodq.

This condition depends only on the domé&irand not on the particular choice of
defining function [FS]. It is always possible [FS] to modify the defining function
so that, for alz € C",

a;é0:>Z

aja; <0 for peQ.
Zl Z]

Note that this condition holds not only on the boundary2ofout at each point of
Q. From now on we shall assume that our defining functions satisfy this condition.
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ProrosiTiON 5.1. The form

_ 92log(r) _
hijdz; ®dz; = — ) ————dz; ®dz;
%: jdzi @ dzj Zj: 92:0, ;i ®dz;

defines a Hermitian metric oR. The real part of#;; is a complete Riemann-
ian metric onQ2. Furthermore,2 is a metric compactification of the complete
Riemannian manifold2.

Proof. Lemmas 1 and 2 of [GH, Sec. 1]. See also the paper of Donnelly [Don].
O
From now on we will consider the strongly pseudoconvex dorfdimbe equipped
with the Hermitian metric defined in this proposition.
We recall the construction of the Dolbeault operator of the Hermitian manifold
Q. According to the decomposition of the complexified cotangent bundle,

TeQ = AY°Q @ A°1Q,

there is a decomposition of the exterior algebra bundle and hence of the spaces of
smooth compactly supported complex-valuetbrms onQ:

A= are,
pt+q=n
whereA?-1 is the space of smooth compactly supported forms of type). Hav-
ing specified a Hermitian metric a2 (and so a Riemannian metric and orienta-
tion), we see that the spa@e? has a natural inner product. Denote Aj? the
Hilbert space completion. The formal adjointdfs denoted*. The Dolbeault
operator of2 is

3+ 0*: @ A% @Ao‘q,

q even g odd
d0+9%: P A% — P .
¢ odd g even

We are interested in thevistedDolbeault operator,

D,=0+0: @ A" — P A,

q even g odd
D_=0+0: A P A
¢ odd q even

as usual, we write
0 D_
b-(2 5
It is well known that the (twisted) Dolbeault operator is a Dirac-type operator,

meaning that it is associated to a Clifford module [Roel; BGV; Gil]. As such,
it has finite propagation speed. We are thus in the setup of Section 3.2, and the



182 ERIK GUENTNER

twisted Dolbeault operator has a class in the relafivéveory groupEq (2, 92).
We shall denote this class, with a slight abuse of notation, by

[8] € Eo(Q2, 9R2).

ReEMARK. The twisted Dolbeault operator is nothing other than the classical Dol-
beault operator with coefficients in the canonical line buadt€<2. This line bun-

dle is of course topologically trivial, and its presence amounts to a change in the
Hermitian structure of the vector bundle on whithacts. Thus, by the results

of Section 3.1, the Dolbeault and twisted Dolbeault operators determine the same
relative E-theory class.

The following proposition completes the verification that the twisted Dolbeault
operator satisfies the hypotheses of Section 4 [GH; Donl].

ProrosiTION 5.2. Zero is isolated in the spectrum of the twisted Dolbeault op-
erator. Furthermore, its kernel consists of forms of typg0):

kernekD) = kernek D) C A’;l‘o.

Proof. This follows from Proposition 2 of Section 2 of [GH] as discussed in Sec-
tion 3 of that paper. See also [Don]. O

The final ingredient necessary to apply the generalized boundary calculation of
Section 4 and so obtain our result is the following lemma [GH].

LemMma 5.3. The assignment
@ 927"2%dzy. . . dz,

extends to a unitary isomorphism frari($2) (computed using the usual Lebesgue
measure or2) to AZ'O. It maps the Bergman spad&(Q) of holomorphicL?-
functions to the space of holomorphiic, 0)-forms inA’,‘l’O.

Proof. The proof is an exercise in the conventions for the metrics. O

THEOREM 5.4. The image of the clag8] under the boundary maBo(Q, 9Q) —
E_1(09) is the class of the Toeplitz extensi®ron the Bergman space

9[0] = [T] € E_1(3Q2).

Proof. By the general boundary calculation in Proposition 4.3, the imagé]of [

is the class of the Toeplitz extension on the kernel of the twisted Dolbeault op-
erator. By the previous theorem this is the space of holomorphic forMéZ’fh
which the previous lemma identifies with the Bergman spa@e). Furthermore,

this identification actually identifies by conjugation the Toeplitz extensions on the
respective spaces. O

REMARK. It is not necessary to prove the existence of the Toeplitz extension on
the Bergman space, as this follows from the discussion of Section 4. In fact, the
results there, combined with Lemma 5.3, show thatfoy € C(€2) we have
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T,Ty — T,y €K,
whereT,, is the Toeplitz operator

B(Q) multiply by ¢ LZ(Q) project B(Q).
A direct proof of this fact, without appeal to the Dolbeault operator, would consist
of identifying the Toeplitz operators as integral operators and carrying out the del-
icate analysis of the integral kernel on the dom@iWWe have carried out a similar
analysis for Toeplitz operators on the Fock space [Gue3]. The analysis is acces-
sible—although already somewhat more complicated for the Poincaré disk—and
relies on the methods of Jova@viJov]. In general, it appears to be quite difficult
since it involves the delicate analysis of the Bergman kernél.of

6. Remarks on the Results of Baum—Douglas—Taylor

In this short section we collect a few remarks relating our results to those ob-
tained by Baum, Douglas, and Taylor (hereafter “BDT") in the setting of rela-
tive K-homology [BD2; BDT]. In particular, we explain how their results can be
duplicated in the setting of relativE-theory by virtue of the abstract boundary
calculation of Proposition 4.3 and the groundwork done in Section 3.3 associating
relative E-theory classes to operators on manifolds with boundary.

We begin by recalling that a cycle for the relatiehomology grougk o (M, 9M)
consists of a graded Hilbert spatle= H, @ H_, together with a representation
C(M) — B(H) as even operators, and a bounded operAtoH, — H_ that
satisfies the following assumptions:

(a) T has closed range, and is a partial isometry plus a compact operator;

(b) oT — Tp e K(H,, H_) forall ¢ € C(M); and

(c) P+ e K(Hy) forall ¢ € Co(M), where P, is the projection onto kernél)
and P_ that onto kerndlr"*).

Theimage of '] € Ko(M3M ) under the boundary may(M, dM) — K_1(dM)
is the difference,{,] — [t_] € K_1(0M) of the Toeplitz extensions on the kernels
of T andT*.

Let D, be a first-order, elliptic differential operator on a manifdifl with
boundary. LetD., be an extension ab, to a closed unbounded operator satisfy-
ing these two conditions:

(i) multiplication byy e C>(M) preserves domaii, ); and

(ii) either D, D* or D* D, has compact resolvent.

(In the notation of [BDT], ourD, is D and ourD,. is Dg.) In their paper BDT
prove that?’ = D, (DD, + 1)~* determines an elemenbL] € Ko(M, M).
Assume for definiteness thét, D} has compact resolvent. Then the image of
[Ds]under the boundary map is [kerriél, )] € K_1(dM), the Toeplitz extension
on the kernel oD, :

d[D,] = [Toeplitz extension on kern@D_)] € K_1(dM).
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We recast these results in the framework of relafivéheory. Begin by observ-
ing that assumption (i) shows that, fore C*>°(M), the commutator¢, D, ] is
defined. Arguments as in Section 3 show that it extends to a bounded operator
and that multiplication by preserves the domain dfij. Thus, we can apply the
formula of Theorem 3.14 to see that= ( 0 Di) determines an element of the
relative E-theory [D.] € Eo(M, dM). v 0

Assume for definiteness that, [)i has compactresolvent. Thenthe arguments
of Section 3.3 carry over verbatim to show thas spectrally isolated and commu-
tator compact. Thus the abstract boundary calculation applies. ﬁpf)s]; has
compact resolvent, the kernel bf; is finite-dimensional and contributes nothing
to the boundary calculation; hence we obtain

d[D,] = [Toeplitz extension on kerneb_ )] € E_1(dM).

We close this section by recalling two results from BDT, which are recast into
the framework of relativeE-theory. The first is the calculation of the previous
section, but approached from the point of view of a manifold with boundary.

ProrosiTiON 6.1. The boundary of the Dolbeault operator of a strongly pseudo-
convex domaifnow computed with respect to its usual Euclidean strugtigréne
Toeplitz extension on the Bergman space.

Proof. This is Proposition 4.5 of [BDT]. The self-adjoint extension used to define
the relativeE -theory element is the one given ByNeumann conditions. This op-
erator satisfies the assumptions of BDT, and hence also our assumptiongl]

RemARkK. Notice that this calculation follows directly from our results. The sta-
bility results for theE-theory and relativeZ-theory class of an operator show that
the class of the Dolbeault operator is independent of the self-adjoint extension, or
even the metric on the underlying manifold.

ProrosiTION 6.2. The image under the boundary map of the Dirac operator of
a spirf-manifold M with boundary is the Dirac operator of the boundargfor

an explanation of the terminology of Dirac operators and ‘spianifolds, see
[BD2].)

Proof. This is Proposition 4.4 of [BDT] and surrounding discussion. The ap-
propriate self-adjoint extension of the Dirac operaidrof M is the extension
described in Section 3.3. By the previous discussion we obtain

d[ D] = [Toeplitz extension on kerneD"®)] € E_1(dM).

Following BDT, the kernel o>"® identifies, up to a finite-dimensional sub-
space, with the positive spectral space/®nf, the Dirac operator of the bound-
ary. Further, by conjugation this identification yields an equivalenceoeflitz
extensions

[kernel(D®)] = [positive spectral space @¥;] € K_1(3).
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Our result now follows from the fact that unitarily equivalent extensions determine
the same element iA-theory. We conclude that

d[ D] = [Toeplitz extension on positive spectral spacéyfc E_1(0M). O

ReMaRK. Another proof of this last result iB-theory is possible, and proceeds
along the lines of an earlier proof of Higson [Hig2]. This approach has a more
topological and less analytic feel than the one taken here. It was adopted in [Guel].

7. Appendix

We present a few technical lemmas about relative asymptotic morphisms. They
should be viewed as supplements to the material on relative asymptotic morphisms
presented in [GueZ2].

Recall once again that alf*-algebras in this paper are assumed separable.
Let C,(T, B) denote theC*-algebra of continuou®-valued bounded functions
onT = [1,00) and letB,, = C,(T, B)/B. The set of equivalence classes of
asymptotic morphismd — B is in bijective correspondence with the setiof
homomorphismsA — B,,. Under this correspondence, the classes of relative
asymptotic morphismd > I — B > J correspond to the-homomorphisms of
pairsA > I — Bo, > J. Denote byp: A — By thex-homomorphism defined
by {¢,;}: A — B.

LEmMA 7.1. LetA be anucleaC*-algebra, and leB > J andC > K be pairs
of C*-algebras. Let{p}: A — C and{y}: B — C be asymptotic morphisms
such that, for allz € A,

(i) [¢:(a), ¥;(b)] — O forall be B, and
(i) @ (@)Y, (b)eK forallbe J.

Then there exists a relative asymptotic morphigm: AQ (B> J) > C > K
such that

0,(a ®b) — @ (a)y;(b) - 0 forall ac A, beB.

Proof. The proof is a simple adaptation of that of Lemma 5 of [CHZ2], once one
is familiar with the notation. Denote hy: A — C,, thex-homomorphism asso-
ciated to{¢,} and likewise foryr. By the universal property of the tensor product
and our first assumption, the linear map

a®b @b AOB — Cu

extends uniquely to a-homomorphismA ® B — C.. Further, the composi-
tonA® J — A® B — (4 is the unique extension of © J — K, and
hence maps int&,,. Any relative asymptotic morphisr9,} associated to the
resultingx-homomorphism of pairgt ® (B > J) — Cs > K satisfies our
requirements. O

REMARK. The nuclearity ofA is used to ensure that® J is an ideal ofA ® B.
In the proof of the next lemma we also use the fact (see [WOA@B/AQ J =



186 ERIK GUENTNER

A® (B/J). The universal property is that of the maximal tensor product, although
by the nuclearity ofA the maximal and minimal tensor products coincide.

In the proof of the following lemma, we use the simple fact that an asymptotic mor-
phism{¢,}: A — B is equivalent to a continuous family @homomorphisms if
and only if the associateesthomomorphismp: A — B, lifts to a x-homomor-
phismg: A — C,(T, B).

LemMma 7.2. LetA, B > J andC > K be as in the previous lemma. Let
{p:;}: A - C and {y,}: B — C be continuous families of-homomorphisms
satisfying the conditions of the previous lemma and the further condition

[@:(a), Yy,(b)]e K forall ac A andbe B.

Then there exists a compact asymptotic morpH&m AQ (B> J) - C > K
satisfying the conclusion of the previous lemma.

Proof. Let p: C — C/K be the projection. The assignment
a®br p@a)yb):AOB— Cy(T,C/K) forall ac A, be B

extends to a uniqgue-homomorphismx. Arguing as in the proof of the previ-
ous lemma, we see thatmapsA ® J — 0. Thusa descends uniquely to a
x-homomorphisnm: A ® (B/J) — C,(T, C/K).

Let {6,} be as in the previous lemma, with quotient asymptotic morplisin
Letw: Cyo(T, C/K) — (C/K)o be the projection. The proof is completed by
showing thatr o & = 6. Notice thatp 0 : A® B — (C/K)o MapsA ® J — 0
and, by definitiond is its unique factorization to-ehomomorphismA ® (B/J) —
(C/K)wo. It therefore suffices to showoa = p o8, which follows from the func-
toriality of = with respect to-homomorphisms. O

We close this appendix with a lemma relating the definition of compact asymp-
totic morphisms given in this paper to that given in [Gue2]. For the purposes of
this lemma, we use the terstrongly compactor a relative asymptotic morphism
{:}: A>T — B 1> J for which

@i(aa") — g (@) (a') € J, @(a@*) —gi(a)* €,
and ¢,(a+ra") —¢(a) —rp(a') e

foralla,a’ € A, A € C, andr > 1. This is the definition from [GueZ2].

LemmMma 7.3.  Arelative asymptotic morphism is equivalent to a strongly compact
asymptotic morphism if and only if it is compact.

Proof. Clearly, a strongly compact asymptotic morphism is compact. Further,
since the quotient construction is well-defined on equivalence classes, a relative
asymptotic morphism that is equivalent to a compact asymptotic morphism is also
compact. This proves one implication.
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It remains to show that a compact asymptotic morphism is equivalent to a
strongly compact one. L, } be a compact asymptotic morphism. By definition
this means that thig, } is equivalent to a continuous family efhomomorphisms,
{a;}. Letg: A — A/I be the projection so thdty, o ¢} is a continuous fam-
ily of x-homomorphismsA — B/J, each mappind — 0. By definition of the
quotient,{p o ¢;} is equivalent td¢; o ¢}, which is equivalent tda; o ¢}.

Let {8} = {poy, —a, oq} sothat{,}: A — B/J[1, co). Finally define
{¥:} = {¢, — s 0 B;}, wheres: B/J — B is a continuous section ¢f for which
s(0) = 0. Since{y,}: A — C,(T, B) and is equivalent tdy;, }, it is an asymp-
totic morphism. Because eaehog maps/ — 0 and{¢,} is a relative asymptotic
morphism, so igy, }. One easily checks th&t,} is strongly compact. O
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