The Moduli of Holomorphic Functions
in Lipschitz Spaces

KONSTANTIN M. DYAKONOV

1. Introduction and Results

Given 0 < o < 1, let A* denote the classical Lipschitz space of the real line R,
that is, the set of all complex-valued functions f € C(R) N L*°(R) satisfying

| f(t1) — f(#2)| < constlt; — £,|*, t,t2€R

(the constant on the right may depend only on f). Further, let A% stand for the cor-
responding analytic subspace consisting of those functions in A% whose harmonic
extensions (Poisson integrals) are holomorphic on

C+(-i§-f{z eC:Imz > 0}.

In other words, elements of A% are just H* functions with boundary values in A*
(as usual, H* denotes the algebra of bounded holomorphic functions on C ).

The problem we treat here is to characterize the absolute values of A% func-
tions. More precisely, given a nonnegative function ¢ on R, we are concerned
with explicit conditions under which ¢ agrees with (the boundary values of) the
modulus | ] of some function f € Af}.

The two immediate necessary conditions are

@ € A (1.1)
and, if we exclude the trivial function ¢ = 0 from consideration,
1 t
/ 20 41 > oo (1.2)
oo 1412

In connection with (1.2), see [G, Chap. II, Sec. 4].
Once (1.2) holds, we form the outer function O, with modulus ¢ by setting

O,(2) ¥ ex ifoo L o' VYoo (1) dt eC
§0Z— p7T B t2+1 g@ ) Z -+

o\Z — 1
and note that the above problem is equivalent to ascertaining when

O, € AS. (1.3)
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(The equivalence is due to the fact that the outer part of a A function must itself
belong to A% ; see [H1].)

We now remark that conditions (1.1) and (1.2) alone are not at all sufficient for
(1.3) to hold. In fact, according to [HS] and [H2] (as well as to an unpublished
result of Carleson and Jacobs), (1.1) and (1.2) together imply merely that O, €
A%/?, the exponent az/2 being best possible.

In this paper we point out a new crucial condition on ¢ (stated in several equiv-
alent ways) that provides, in conjunction with (1.1) and (1.2), a complete charac-
terization of outer functions O, lying in A. This is contained in Theorem 1.

An alternative description of A% moduli was obtained earlier by Shirokov (see
[S, Chap. II). His criterion, stated in terms of a certain maximal function associ-
ated with ¢, looks somewhat more complicated than ours, and so does the proof.
On the other hand, Shirokov’s description works also in the case & € (0, +00)\Z,
with the appropriate understanding of the spaces in question. Anyway, both the
results and techniques of the present paper are different from (and independent
of) those in [S]. Moreover, we have been unable to find a direct proof of the
equivalence between the two characterizations.

Now let du , stand for the harmonic measure on R associated with a point z €
C.; that is,

11
du, ) - a1, reR.
Tt —z|

Further, let Lip «(C..) denote the set of all (complex-valued) functions f living

on C. &t C+ UR and satisfying

| f(z1) — f(z2)] < const|z; — 72| whenever z;,2z, € Cy.

Note that AG = H* NLip a(C,.). Our main result is as follows.

THEOREM 1. Let 0 < o < 1 and let ¢ be a nonnegative function on R satisfying
(1.1) and (1.2). The following are equivalent.

i) O, € AS.
(ii) 10,] € Lipa(C.p).
(iii) As z = x + iy ranges over C,., one has

p(x) — |0,(D)] = O(y*).

(iv) As z = x + iy ranges over C, one has

/soduz — exp ([ logcodﬂ«z) = 0(»). (1.4)

Yet another similar criterion, valid for « € (0, 1/2) only (and playing an auxiliary
role in what follows), is given by the next theorem.

THEOREM 2. Let 0 < o < 1/2 and let ¢ = 0 be a function in L*°(R) such that
(1.2) holds true. The following are equivalent.



Moduli of Holomorphic Functions in Lipschitz Spaces 141

(i) O, € A%.
(ii) For z=x+1iy € C,,

/902 du, — eXP<2/10g90d/wz) = 0(™). (1.5)

REMARK. Using the Garsia norm on the space BMO (see [G, Chap. VI] or [K,
Chap. X]), one easily obtains the following supplement to Theorem 2: Given a
nonnegative function ¢ € L2(R,dt/(1 + t?)) satisfying (1.2), we have 0, €
BMOA if and only if the left-hand side of (1.5) is bounded on C,..

Our further strategy is as follows. In Section 2, we give two useful characteri-
zations of A% functions. One of these involves Poisson integrals; the other is a
remarkable theorem of Dyn’kin on the so-called pseudoanalytic extension.

In Section 3, we first prove Theorem 2 and then use it to derive Theorem 1. The
proof of Theorem 2 is quite elementary (it relies on the Poisson integral character-
ization from Section 2), but the passage to Theorem 1 seems to require more so-
phisticated reasoning. It is here that Dyn’kin’s 8 techniques are brought into play.
Finally, Section 4 contains a few concluding remarks.

2. Preliminaries on Lipschitz Spaces

The following lemma is essentially known (in connection with part (1), see e.g.
[CS, Prop. 1]). Nonetheless, we include a short proof.

LEMMA 1. Assume that f € H*®.

(1) If 0 < a < 1, then conditions (a) and (b) are equivalent:
(@) f e AL
(b) forz=x+1iyeC,,

[ 170 = r@idua® = 06, @.1)
(@) I 0 < @ < 1/2, then (2) and (b) are also equivalent 10 the following cond-
n(oc};:for z=x+iyeC,,
170 - s du.@) = 06, 22)
Proof. If (a) holds then, for0 < o < 1,
[ 170 = s@1dy < const [ 1 = 21 duet) = 00,

Similarly, in the case 0 < o < 1/2, (a) yields

f LF(6) = F@I ds(t) < const f 1t — 22 duy (1) = 0.
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The implications (a) = (b) and (a) = (c) are thus established for the appropriate
values of «.

Since (c) = (b) by the Cauchy—Schwarz inequality, it remains to prove that
(b) = (a). To this end, we write

170 - s@tdu. = L [LO=LDL,,
T |t — z|
L [ fO-F@ | . .
> 2y‘2m. =27 dt| =2y|f @)I.
In conjunction with (b), this gives
fl@=0u"",
which is but a well-known restatement of (a) (see e.g. [St, Chap. V]). |

As another auxiliary result, we cite an important theorem due to Dyn’kin. Before
stating it, we introduce the notation C_ for the lower half-plane, so that

C_EC\(C,LUR),

and recall that the Cauchy—Riemann operator 3 is defined by

9 9 _1 a+i8 +i
= —=—|—4+i—], = x +iy.
0z 2\ax 'ay)’ °© Y

LEMMA 2 (cf. [Dynl; Dyn2]). Let f be an H* function continuous up to R. In
order that f € A} (0 < a < 1), it is necessary and sufficient that there exist a
function F € C1(C_.) such that

11_1)1} F(z) = f(t) forall t eR 2.3)
zeC_
and
dF(z) = O(ly|*™D, z=x+iyeC_. (2.4)

3. Proofs of the Theorems

PrOOF OF THEOREM 2. In view of Lemma 1(2), condition (i) of Theorem 2 is
equivalent to the relation

/|0¢(t) — 0, du,(1) = 0(y*), z€Cy (3.1)
(this is precisely (2.2) with f = O,). Rewriting the left-hand side of (3.1) as
[ 1002 due = 10,1 = [ ¢ die ~ exo (2 / logqoduz) .62

we see that (3.1) coincides with (1.5). The desired equivalence relation is thus es-
tablished. (I
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PrROOF OF THEOREM 1. Since the modulus of a Lip o function is again a Lip«
function, it is clear that (i) implies (ii). The implication (ii) = (iii) is also obvious.
To see that (iii) implies (iv), we note that the left-hand side of (1.4) equals

/wdﬂz — 10y (2)| = {fﬁoduz - ¢(x)} + {p(x) — 10, ()|}

A + BQ).

Since the Poisson integral of a A% function belongs to Lip a(C.) (cf. [St, Chap.
V1), we have A(z) = O(y%). On the other hand, condition (iii) says B(z) =
O (y%). The two estimates yield (iv).

Itremains to prove that (iv) implies (i). Setting gol f (here NE is the positive
branch of the square root) and substituting ¢ = ¢? into (1.4), we obtain

f @f dit; — exp (2 / log g1 dpuz) = 0(y%), (3.3)

which is precisely condition (1.5) with ¢ replaced by gol and o replaced by o/2.
By Theorem 2, this means that the outer function fl (9¢1 belongs to A /2

Since our aim is to show that f = (’)(p belongs to A9, it now suffices to verify
the following.

Claim. Tt f; is an outer function in A%? with | f,|2 € A%, then f2 € A%.

The proof of this assertion will be based on Lemma 2. As before, we put f = ff‘
and ¢ = | f| = | f1|. (It is understood that f; and f live on C, UR, while ¢ lives
on R.) In order to show that f € A%, we shall construct an appropriate pseudo-
analytic extension of f into C_, that is, a function F € C'(C_) satisfying (2.3)
and (2.4).

Throughout the rest of this section, z = x + iy will denote a point in C_, so
that y < 0. Set

def

RO @, v [ o0 duo.
and
F(2) = 92 @)/F®).
Further, let x € C'[0, +00) be a nondecreasing function such that
x#) =0 for 0<t<l1
and

x@) =1 for 2 <t < +o0.
Finally, we define the desired pseudoanalytic extension by

Fo¥ R (z){l - x('lj;(f) ')} + Fz(z)x(llfy(lzz ') . (3.4

In order to check (2.3) and (2.4), we introduce the sets
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EiE{zeC_:|f@|<y*}),

E,E(zeC_:|f@| =2y},

EsE C_\(E, UEy).
We distinguish three cases.
Case 1: z € E;. It follows that F(z) = F(z) = f(2), whence
}12 F(i) = f@), teRnNcloskE,. 3.9
L€k
Also, since f = f7, we have
0F(z) = f'@) =21 @ f{ D,
and so
10F(2)] = 2| fi@)I| f{ @] < const|y|*/?|y|*/*"! = const|y]*~".

(Here we have used the inequality | f1(z)| < |y]|%/?, valid because z € Ey, and the
estimate f{(z) = O(|y|*/>7!), which is due to the hypothesis that f € A‘:\/ %)
Thus

dF(z) = O(|y|*™Y), zeE,. (3.6)
Case 2: 7 € E,. We have then
F(z) = F2(z) = ¥*(2)/ ) 3.7)
Next, we observe that v
Z
= 0(1). 3.8
o~ oW G9

Indeed, one has

v(@ _ ¥v@ - 1f@)
| f (@I | f @I

1
= m{/¢duz~eXp(/logdez)] + 1.

By (1.4), the expression in {braces} is O(|y|%), while | f(z)| = 2|y|“ because
z € E,. Consequently, the ratio in question is bounded.

(We remark that condition (1.4), employed here with z replaced by z, actually
follows from the hypotheses of the Claim. In fact, we have seen that the inclu-

sion f; € AY? is equivalent to (3.3) with ¢; = | f1|, which in turn coincides with
(1.4).)
It is now clear that
lim F(&) = f(t), teRNcloskE,. 3.9
—t
;s“ €Ey

Indeed, if f(z) # O then (3.9) is immediate from (3.7) and the fact that {¥/|gr =
¢ = | f|. In case f(¢t) = 0, one should also invoke (3.8).

+1
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Further, since ¢ € A% and ¢ is the Poisson integral of ¢, we have
IV ()| = 0(y1*™h
(cf. [St, Chap. V, Sec. 4]), and hence also
0y (z) = 0(lyl* ™). (3.10)

Using (3.7) and the fact that the function z > 1/ f(Z) is holomorphic on C_, we
write

_ 1 _
(2) 76 ¥ (z) - 0¥ (2)

Z
and then conclude from (3.8) and (3.10) that
dF(z) = O(ly|*™Y), ze€ E,. (3.11)
Case 3: z € E3. In this case, we have
% < 1f@I < 2[yl*. (3.12)
The arguments pertaining to Cases 1 and 2 show also that
Fi(z) = O0(lyl%), Fa(z) = O(|y1%) (3.13)
and _ ) _ |
AF1(z) = O(IyI*7), dF2(z) = O(Iy|*™). (3.14)

Given t € R N clos E3, it follows at once from (3.12) that f(z) = 0. Therefore,

(3.13) yields
gim F()= f@), teRnNcloskEs. (3.15)
—t

{€E;3
Differentiating (3.4) gives

8F(2) = éFl(z){l - x('lfy(f)')] +3F2(2) x(',’;(fj')

+(Fa(0) - Fu@) - x’('f@') -5(”(2)'). (3.16)
|y|® |y

The first two terms on the right are O(|y|*~1), as is readily seen from (3.14). In
order to obtain a similar estimate for the third term, we note that

Fy(2) — Fi1(z) = O(ly|")
(see (3.13)), while x’ is bounded; thus, it would suffice to check that

5(|f®|) = o(i). (3.17)
|yl |yl

This can be done by a straightforward calculation:

é(lf;(rjl) = IyI™3I F@I + I F @B YI™)

=y ADF®) + Lial [y
=Y AD A @ + bial F @Iy
=0yl
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Here the final conclusion relies on the right-hand inequality in (3.12), which is
also used in the form

1LAG)| < 2|y,

and on the estimate
fl@) = o(y|**™

(recall that f; € A‘f\/ 2.
We eventually arrive at (3.17), which in turn implies, by virtue of (3.16) and the
subsequent remarks, that

dF(z) = O(|y|*Y), ze€ E;. (3.18)

Now that the three cases have been studied, a mere juxtaposition of (3.5), (3.9),
and (3.15) yields (2.3), whereas a similar juxtaposition of (3.6), (3.11), and (3.18)
yields (2.4). An application of Lemma 2 completes the proof of the Claim, as well
as that of the theorem. L]

4. Concluding Remarks

(1) In Theorem 1, one might as well deduce the implication (i) = (iv) from
Lemma 1(1). In fact, we see that condition (2.1), with f outer, is equivalent to the
seemingly weaker condition where the integrand is replaced by | f(#)] — | f(z)].

(2) This paper deals with outer functions only, but the interplay of inner and
outer factors of A% functions has also been studied. In this connection, we refer
to [D1], [D2], [D3], and [S, Chap. I].

3)Givena > 1, o € N, set

A*E(f e C(R) N LO(R) : fID g p*~led

(here [«] is the integral part of «), and let the spaces A% and Lip oz(([_l+) be intro-
duced in a similar fashion. We remark that the (obvious) implication (i) = (ii)
in Theorem 1 becomes obviously false when « > 1. For example, the function
f(2) = z/(z+i)isin H® N C®(C..), whereas | f(x)| is nondifferentiable at the
origin, and so | f(z)| fails to belong to any Lip o(C,.) with @ > 1. This feature
(i.e., the failure of our criterion for higher-order smoothness classes) distinguishes
our approach from Shirokov’s [S]. On the other hand, it might be still possible
to modify condition (iii) and/or (iv) of Theorem 1 so as to provide the requested
characterization in the case « > 1, @ ¢ N.

(4) In the near future, the author is planning to extend the current results to the
Lipschitz-type spaces Lip w (generated by continuity moduli w other than w(¢) =
t*) and to spaces of functions that are “smooth in the mean” (e.g. Besov and
Sobolev spaces).

(5) The membership criterion given by Theorem 1 seems to be fairly manage-
able and efficient. For instance, it can be used to derive the Havin—Shamoyan—
Carleson—Jacobs theorem saying that ¢ € A% implies O, € Ai/ 2 (see Section 1).
This will be presented elsewhere.
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