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Introduction

Here we obtain a complete isomorphic classification of the Cartesian prod-
ucts of the kind Ey(a) X E(b), where Ey(a) is a finite power series space and
E.(b) is an infinite power series space. In the case where at least one of the
Cartesian factors is a Schwartz space, such a classification is known by the
results of the third author obtained in [10; 12] by using the theory of Fred-
holm operators (see in [12] the modification of Douady’s lemma and Theo-
rem 1).

If both Cartesian factors are non-Schwartz spaces then the approach used
in [10; 12] is not applicable (at least in the form developed there). We used in
this case the method of generalized linear topological invariants developed
in [11; 13; 14] as a generalization of the classical invariants [1; 3; 4; 8] (and
initiated by [5; 6]—see the survey [15] for more details). The method of gen-
eralized linear topological invariants is always applicable—see Theorem 1,
where we obtain necessary conditions for the isomorphism of Cartesian
products of power series spaces. However, in the case when both the Car-
tesian factors are Schwartz spaces, it turns out that the methods developed
in [10; 12] give stronger results; for details see [9], where the two methods
are compared in this case. We used the same invariant characteristics that
were considered in [9]. Our results are announced without proofs in [2].

Preliminaries

Recall that if A =(a;,);cr, pen is @ matrix of real numbers such that 0 <gq;, <
a; p+1 for each p and for each index i in the countable set 7, then the Kéthe
space K(A), defined by the matrix A, is the Fréchet space of all sequences
x = (x;) of scalars such that |x|, := X, /|x;|a;, < %, p € N, with the topology
generated by the system of seminorms |- | p: P € N}. The Cartesian product
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K(A)x K(B) of the Kothe spaces K(A) and K(B), where A = (q;,) and B=
(bip) (i, p€ N), is naturally isomorphic to the space K(C) and where C=
(Cip)s With ¢;, = ay, if i =2k—1 and ¢;, = by, if i =2k. For any sequence
a = (a;) of positive real numbers, the Kothe spaces

Eo(a)=K(exp(——;15ak)) and E,(a)=K(exp(pay))

are called, respectively, finite and infinite power series spaces. They are
Schwartz spaces if and only if a; — co. The sequences a, @ of positive num-
bers are called weakly equivalent (we write a; X G;) if

aC > 0: —(l?a,- < a; < Ca,.

For any set B we denote by | B| the number of elements in B if it is finite and
the symbol oo if B is infinite.

Suppose X = K(a;,);c; and Y = K(b;,,) ;s are K6the spaces. An operator
T: X —Y is called quasidiagonal if there exist a function ¢: I— J and con-
stants r;, i € I, such that

Te-=r,-é¢(,-,, iGI,

where (¢;) and (&; ) are the canonical bases in the spaces X and Y. We denote
respectively by X LYandXELYa quasidiagonal isomorphic imbedding and
a quasidiagonal isomorphism.

The next statement is well known (see e.g. [12]).

LeMMA 1. If for Kothe spaces X and Y there are quasidiagonal imbed-
dinngﬂf Yand Y'Y X, then X%y,

Proof. If the quasidiagonal imbeddings X &Y and Y X are defined re-
spectively by (r;), ¢: I— J, and (p;), ¥: J— I, then by the theorem of Kantor
and Bernstein there exist complementary subsets /,, I, C Iand J;, J, C Jsuch
that ¢(1;) = J, and ¥(J,) = I,. Putting Te; = 7i€y(i), where v;=r;and g(i) =
@(i) for i e I} and where v; = p¢, 1y and g(i)y =y~ (i) for I e I,, we obtain a
quasidiagonal isomorphism 7" between X and Y. ]

LEMMA 2. If a=(a;) and a = (a;) are sequences of positive numbers
satisfying

IM, vi=7, |tkit<sa<t}|<|{k:7/M=<a, <Mt )]
then there exists an injection ¢: N — N such that
A}2 ay < A, <M?a;, vkeN. 2

This statement is proved in [6] by using the Hall-K&6nig theorem. An alter-
native direct proof is given in the survey [15].
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CoroLLARY. If a=(a;) and a=(a,) are sequences of positive numbers
satisfying (1), then Ey(a) can be imbedded quasidiagonally into Ey(a) and
E.(a) can be imbedded quasidiagonally into E.(a).

In the case where a is a bounded sequence, the situation is trivial. Namely,
we have the following lemma.

LeEMMA 3. If a sequence a of positive numbers is bounded, then

Eja@)21', E (@)X

Invariant Characteristics

We give a short description of the invariants used here. For more details con-
cerning the general theory of linear topological invariants we refer to [15].

Suppose E is a linear space, U and V are absolutely convex sets in E, and
&y is the set of all finite-dimensional subspaces of E that are spanned on
elements of V. We set

B, U)=sup{dimL:Le&,, LNUCV}.
It is obvious that
vev,ucU = B(V,0)=B(V,U);
of course, if T is an injective linear operator defined on E then
B(T(V), T(U)) =BV, U).

Let £ be a Kothe space and let A4 be the set of all sequences with positive
terms. For any a, b € A we set

a-b=(a;b), a*=(af), anb=(min(a;d;)), avb=(max(a;,?b;)).
Also, for any x = (x;) € E and a € A we put
Ixlle=21xila;,  By={xeE:|x|,<1}.
{

It is easy to see that

Bavb - Ba an C 2'Bavbs BaAb = ConV(BaUBb)~ (3)

LEmMMA 4. Ifa,be A then
B(B,, Bp) =|{i: a;/b; < 1}].

Proof. Set
J=lita;= b}, Px=73 xe,
ieJ
and let M be the linear span of the vectors {e;, i€ J}. Then for xe M it is
obvious that ||x||, < [|x]|5, hence MN B, C B, and B(B,, B) = dim M = |J|.
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Conversely, suppose L is a finite-dimensional subspace in X satisfying
LNB,C B, (i.e., ||x||, =< ||x||s for all xe L). If dim L > |J| then there exists
an element x e L, x # 0, such that Px = 0. But then x; =0 for ie J and g; >
b; for i ¢ J, yielding ||x||, > ||x||», @ contradiction. Hence B(B,, B,) = |/|.

For convenience we put BYB} ™% = B,ap1—«. It is well known that sets of
the kind BB}~ have a natural interpolation property. We formulate this
property in an appropriate form in the next lemma.

LEMMA 5. Suppose E and E are Kéthe spaces, (e;) and (e ;) are their canon-
ical bases, and T: E — E is a linear operator. If a, b, a, b e A and

T(B,)CB; and T(Bp)C B,
then for any o € (0, 1) we have
T(B2B}™*) C B¢B ™.

Proof. Set
Te, = Etijéj’ i= 1,2, aery
J

then, since ||7x||; < ||x||, and || Tx||5 < || x||s, for any i we have
| Teilla=ZNt1a<llello=an | Teills = 2|16; =< |leills = bi-
j j

By the Holder inequality it follows that

o l—-a
| Te|aepr-= = Z|tila7bj > < (2_|tij|f’}') (thijlbj) =<af'bj ™",
J J J
hence
| Tx]|geg1-= = D)xil| Teillaast-= =< Zixi|afbi = = ||x||gapr--. O
] i

If E=K(a;,) is a Kothe space and U, = {xe E: |x|, = Z|x|a;, <1}, p=
1,2, ..., are the corresponding unit balls, then U, B where a, = (a;p).
Moreover, we write UsU,; " instead of B"‘B] @,

Main Results

THEOREM 1. IfEy(a) X E.(b) = Ey(a) X E_(b), then the following relations
hold:

IM, 70> 0: |{i:T<a<t}<s|li:7/M=a;<Mt}, 7=1; 4)

aIM, 70> 0: |{irT<b=t}|<|li:T/M<b;=Mt}, 7=1,. (%)
Proof. The Cartesian products Eg(a) X Eo(b) and Ey(a) x E(b) are natur-
ally isomorphic to the Kdthe spaces X = K(c;,) and Y = K(d,,), where

C_ exp(—a,/p), i=2k—1, d = exp(—tzk/p), i=2k—-1,
P | exp(pby),  i=2k; P | exp(pby),  i=2k.
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Suppose now that X and Y are isomorphic and that 7: X > Y is an iso-
morphism. Let (U,) and (V) be respectively the systems of unit balls in X
and Y. For convenience we write V< W if ¥V C const W. We choose indices

D<P<DI<@<g<q<nNn<r<<n<s;<s<s, 2p<qy 2q,<nr;
such that
Vo, >T(Up)>Vp, >V, >T(Up) >V, >V, >T(U) >V, >V, >T(U)) > V.

By Lemma 5 and the elementary properties of 8 it then follows that, for
some constant ¢ > 0,

B(U, Ne'Us, conv(U,VU,*U}* Ve ™U,))

< B(cV,,Ne'V,,, conv(V, UV,/2V,2UeV, )); (6)
B(UY2U*Ne'U,NU,, conv(U,Ue™U;))

< B(cV,p 2V, Ne'V, NV, conv(V, Ue™V,)). (7

Estimating the left-hand sides of (6) and (7) from below and the right-hand

sides from above by using (3), Lemma 4, and the elementary properties of
3, we obtain

‘ [i' max(ciq, € ~'cis) - l} ‘

min(c;,, c,.‘lj’-c,-‘,’ 2 e77¢c;,)

[.. max(diq,, e"d,-52) . @)

it — 2
min(d;g,, d,.},/lzd,-l,f 2,e77d;,)

172 172 —t
l{i, max(Cip"Cir " € Cirs Cig) _ 1}

min(c;g, €77Cy) B

< ZC}

1/2 31/2 _—¢
- l {i, max(dip, dir,", € 'Cir,; Cig,)

- <4c
min(d;,,, e ~"djs,) }

. 9

It follows that

—~t
C C; e C;
‘[z’: <1, —1— <1, 5 < 1}
cip Cir e TC,', Ciq
d; d; e 'd;
‘e gz 9> is2 .
= {I-WSZC, — SZC, <2c ’ (10)
ipl l'l'l e irl lql
172 ,1/2 —t
Cip C; Ci e C;
Hi: P T <1, 4 <y, T < 1}
Ciq e Tcis ciq
/2 41/2 —t
. diprd; d; e”'d;
=< {1:—%540,%54& 72 < 4ct|. (1)
iq e disl di‘h

Namely, the left-hand side of (10) (respectively (11)) is equal to the left-hand
side of (8) (respectively (9)), while the right-hand sides of (10) and (11) are
respectively greater than or equal to the right-hand sides of (8) and (9).
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Further, we show that (10) implies the relation (5). The first inequality
in the left-hand side of (10) is ¢;, < c}/%c)/%. For the odd indices i =2k —1
this is equivalent to the inequality (—1/g+1/2p+1/2r)a;, <0, which is
impossible because g > 2p. For the even indices i/ = 2k it is equivalent to
(2g—p—r)b; <0, which is always true because r > 2q. Therefore the lefi-
hand side of (10) equals

Hk: r:q <b, < S_tq”. (12)

Let us consider now the right-hand side of (10). The first inequality there

is d;,, < 2cdjy*d)/*. For the odd indices i =2k —1 this is equivalent to the
inequality
- log 2¢
ar=7):= .
—1/q,+1/2p+1/2r,

In this case the other two inequalities imply

7—log 2c t+log2c

— <@ <——",
Ugr—1/r; ~ %= 1g—1/s,

Hence, for 7> 7,:=1,(1/q,—1/r;)+log 2¢, the triple of inequalities in the
right-hand side of (10) does not hold for odd indices.

For the even indices i = 2k, the first inequality in the right-hand side of (10)
is equivalent to the inequality (2q,— p; — ;) b < log 2¢, which is true always
because r; > 2¢g, (we can assume without loss of generality that ¢ > 1). Thus
for 7 > 7, the right-hand side of (10) equals the expression

[k: T—log2c b < t+log 2(:} .
rn—4q, S2—q)

Since for 7 > 7, the expression (12) is less than the expression (13), there exist
a constant M > 0 and a 75 > 7, such that the relation (5) holds. In an analo-
gous way, (11) implies (4). O

IA

13)

Analyzing the relations (4) and (5) in the non-Schwartz case and using the
results of {12], we obtain the following theorem.

THEOREM 2. If X = Ey(a)X Eo(b) and Y = Ey(@) X E.(b), then the fol-
lowing conditions are equivalent:
(i) X=Y;
(i) XLv;
(iii) either X,Y are Schwartz spaces and there exists an integer s and per-
mutations of indices o,v such that

QA X Ay + 55 b X byky—s; (14)

or X,Y are non-Schwartz spaces and the relations (4) and (5) to-
gether with the sym~metric relations (obtained by interchanging the
roles of a, b and a, b) hold.
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Proof. 1t is trivial that (ii) = (i). Let us show that (i) implies (iii). f X =Y
and X, Y are Schwartz spaces, then of course Ey(a), Ey(a), E.(b), E_(b)
are also Schwartz spaces (hence each of the sequences a, b, @, b tends to o).
In this case, by [12, Thm. 1] there is an integer s such that

Eo(d) = Eg(a)*) and EL(b) = E(b)™,

where Ey(a)® denotes when s > 0 an arbitrary subspace of codimension s
and when s < 0 an arbitrary space of the kind Ey(a) X L, dim L = —s. Since

Eg(a)® = Eg((ag+5)i=1) and E (b)) = E ((br_s)F=1)
(where a_y, ..., a_s| or b_y, ..., b_|s| are arbitrary numbers), we obtain

Ey(@) = Eg((ak+5)K=1)» Eo(b) = E((by_5)F=1)

Let us assume for a moment that the sequences a, b, @, b are increasing.
Then by [4, Prop. 18] it follows that

Ay X Qg 45, by X by _;.

In the general case we rearrange a, b, @, b in increasing order and obtain
(14) by the same argument.

If X, Y are non-Schwartz spaces then (i) implies (iii) by Theorem 1.

We now prove that (iii) = (ii). If X and Y are Schwartz spaces then the
relations (14) hold. Suppose s > 0 (the case s < 0 can be treated in an analo-
gous way). Then

Eo(a) X Eo(b) £ Eo((agiy+5)) X Eol(byx)) X L,
where dim L = s. On the other hand, by (14) we have
Eo(@ L Eg(@yty45))s  EwlB)E E((byy)) X L,

hence X £ Y.

If X and Y are non-Schwartz spaces then (iii) means that the relations (4)
and (5) (together with the corresponding symmetric relations) hold. We sup-
pose that the constant M in the relations (4) and (5) is the same and denote
by a’, a’, b’, b”, @', @", b’, b” the sequernces, consisting of the terms of the
sequences a, b, @, b that satisfy respectively

a4 >70, x=7o, by>7, by=r1o,
a,>19/M, a,=<r1y/M, 5k>7'0/M, EkSTO/M.

Since Y is a non-Schwartz space, we can assume without loss of generality
that at least one of the sequences @”, b” is infinite (in the opposite case one
can take a greater 73). Then we have

XL Eya’)yX Eo(b’)X Eg(a”) X Eo(b");
YL Eg(@') X Eo(B') X Eo(@”) X Eo(B").
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By (4) and (5) and Lemma 2, there exist quasidiagonal imbeddings
En(a') S Eg(@’),  Eo(b')E Eo(b).

On the other hand, by Lemma 3 the space Eg(d@”) X E(b”) is quasidiag-
onally isomorphic to /!, while the space Eg(a”) X E.(b") is either quasidiag-
onally isomorphic to /! or is finite-dimensional. Hence there exists a quasi-
diagonal imbedding

Ep(a”)X Eo(b") & Eg(@”) X E(b").

The relations (4) and (5) therefore imply the existence of a quasidiagonal
imbedding X 2y. Analogously, the relations symmetric to (4) and (5) imply
the existence of a quasidiagonal imbedding Y& X, so by Lemma 1 it follows
that X £ Y. This proves the theorem. O

Note that if X and Y are Schwartz spaces then we can obtain by Theorem 1
only the following weaker result (cf. [9]):

X=Y = sy, 8, € Z: ﬁk R (k) +5, bk X bu(k)+52'

The condition s;+5, = 0 was obtained in [12] by using Riesz theory. In the
non-Schwartz case the necessary conditions obtained in Theorem 1 turn out
to be sufficient, so in that case the relations (4) and (5) together with the
symmetric relations give us a criterion for isomorphism (cf. the criterion of
Mityagin [6; 7] for isomorphism of power series spaces).

In particular, we have the following result.

THEORE}(I 3. IfEya)XE.(b)= Eo(@) X E(b) and each of the sequences
a, b, a, b does not tend to infinity, then Ey(a) = Ey(a@) and E(b) = E(D).

It seems that in this case it is not possible to apply the method developed in
[12]. In connection with these remarks the following questions arise.

QUuEsTION 1. Is it possible to modify the method from (12] in order to
derive thereby the result of Theorem 3?

QuEesTION 2. Is it possible to consider stronger linear topological invari-
ants and obtain the condition s;+s, = 0 without using Riesz theory?
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