Wavelets in Subspaces

XINGDE DAl & SHIJIE LU

This work is on the connection between wavelet theory and operator theory.
One can view this as a sequel to [4]. We parameterize the set of all multi-
resolution analyses by a set of unitary operators that satisfy certain local
commutation relations (Theorem 3.5). We characterize the reducing sub-
spaces of dilation and translation operators (Proposition 4.3). We prove
that such a subspace always has an orthogonal wavelet (Theorem 4.4). Fi-
nally, we give examples of subspaces that are not reducing subspaces having
orthogonal wavelets with regularity properties. Some other connections are
provided, including parameterizing wavelets in subspaces.

1. Preliminaries

We use JC for L2(R) (= L*(R, m), where m is the Lebesgue measure). Let X
be a nonzero closed subspace of L2(R). An orthogonal wavelet for X is a
unit vector ¥ (¢) in X such that {27/2y(2"t—1): n, l € Z} constitutes an ortho-
normal basis for X.
Let T and D be the translation and dilation (unitary) operators on L2(R)
defined by
(TA)t) =f(t=1) and (Df) =V2f(21).

We have DT? = TD. A function y is an orthogonal wavelet for X if {D"T'y:
n,le Z} is an orthonormal basis for X. Let £2(Z) be the Hilbert space with
orthonormal basis {e,: n e Z}. Let Z be the unitary operator on ¢%(Z) de-
fined by Ze,, =e,,, neZ.

DErFINITION 1.1. Let X be a closed subspace of L?([R). A multiresolution
analysis (MRA) in X is a set {V,;: n e Z} of closed subspaces in X that satis-
fies the following properties:

(i) V,CV,,,, for every integer n;
(il) VneZ Vn = X;
(iii) M,,ez Vo= {0}
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(iv) TV, =Vy;

(V) DnVO = Vn;

(vi) There exists an isomorphism ¥ from V, onto £2(Z) such that Z¥ =
VT |y,

A scaling function related to the above MRA in X is a function ¢ € X such
that {T"¢: ne Z} is an orthonormal basis for V.

Let N ={V,: neZ} be an MRA. Let ¢ be a scaling function related to
I and let ¢ be a wavelet from this MRA. Then V, =35pan{T'¢: /e Z}. Let
W, :=3span{D"T"y: le Z}. Then (cf. [5; 2]) we have

W, ®V, =V, ne’Z,
and

-1 o L
V0=®Wn=<6'>own) .
—c0 n=

The wavelet ¢ is in the translation space W,. Let P, be the orthogonal pro-
jection onto the space Vy. Then Pyy =0 and P;-y = y.
Let 8 be a set of operators in B(3C) and let x € JC. We define (see [4])

C(8):={Ae@B(3C): (AS—SA)x =0, SeS8}.

We call this the local commutant of 8 at x. Let ¢ be a scaling function for
some MRA and let ¥ be an orthogonal wavelet. We will use the following
notation:

Cy(D,T) = Cy({D"T": n,l€ Z));
Cy(T) = C,({T": 1€ Z)).

For a set & of operators we use ‘U(E) to denote the subset of all unitary oper-
ators in &. For disjoint sets £ and F we will use “EJF” for the union of E
and F. We will use the similar notation “(J;72”.

We will use & for the Fourier-Plancherel transform on L?(R) (cf. [8, Vol.
1, Chap. 3)); this is a unitary operator. If fe L'(R)N L3(R) then

(S1)(s) = \/;_w fR e~Sf (1) dt == f(s).

For an operator S € ®(3C) we write S = FSF .. S is called the Fourier trans-
form of S. It is easy to verify that 7 = M,-:s, the multiplication operator
by e, and that D = D™\, For a set B < L%([R) we will write B for the set
{f: fe B)}. For a set $e€®(JC) we will use 8 to denote the commutant of S,
the set of all operators in B(JC) that commute with all elements in 8. For a
set £ C R, xg will be the characteristic function of E.

2. Basic Facts

In this section, we will use operator theory to describe some basic known
results in the theory of orthogonal wavelets. The following lemma is based
on a known result in operator theory.
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LEMMA 2.1. Let V, be a closed subspace of L*(R) with the property that
TV, =V,. Assume that there exists an isomorphism ¥ from V, onto £%(Z2)
such that 2% = YT |y, where Z is a bilateral shift of multiplicity 1in %(2).
Then there is a function ¢ in V, such that {T"¢: ne Z} is an orthonormal
basis for V.

Proof. Operators T |y, and Z are unitary operators on V, and 02(Z), re-
spectively. By assumption they are similar. By Putnam’s theorem (cf. [3,
Cor. 6.11]), the above operators are unitarily equivalent. Hence there is a
unitary operator U from V, onto ¢%(Z) such that Z2U = UT lv,- Let eg be an
element in ¢2(Z) such that {Z"e,: n € Z} is an orthonormal basis for ¢%(Z).
Let ¢ := Uey. Then {T"¢: ne Z} is an orthonormal basis for V. O

REMARKS. Lemma 2.1 proves a known result [10] that an MRA yields a
scaling function. This was also observed in {6]. Lemma 2.1 also works for
an MRA in a subspace. Thus item (vi) in Definition 1.1 can be replaced by:

(vi’) there exists a scaling function ¢ € V.
If ¢ is a function in V, such that {T"¢q: ne€ Z} is a Schaulder basis (not
necessarily a Riesz basis or, equivalently, an unconditional basis) for V¥, by
Lemma 2.1 there is a ¢ € ¥, such that ¢ is a scaling function.

Let 9, be an MRA for L?(R). Let Z be as in Lemma 2.1 and let U({Z}’)
be the set of unitary operators in B(f 2(Z)) that commute with Z.

LEMMA 2.2. Let 9y be a given MRA in X, and let § be the set of all scaling
functions corresponding to M, (in Vy). Let U be as in the proof of Lemma
2.1. Then

8 = U*U((Z}))ep.

Proof. Let V be a unitary operator in {Z}’ and let U be as in the proof of
Lemma 2.1. Then VZV* =2, so we have

T=U*2U=U*VZV*U=V*UY*Z(V*U).
By the proof of Lemma 2.1, U*Ve, = (V*U )%, is a scaling function.
Conversely, let ¢, be another scaling function. Then {T"¢,: ne Z} is an
orthonormal basis for V. Let R: T"¢ — T"¢,. For n =1, we have R¢ = ¢,.

The map R extends to a unitary operator from V; onto V,. By definition of
R we have RT |y, =T |y, R. Letting V' = URU™, we have

VZ =URU*UTU*=URTU*=UTRU*=UTU*URU* = ZV.
Hence Ve {Z} and U*Vey, = U*URU*ey = Ro = ¢,. O

COROLLARY 2.3. For a given MRA I, the set of corresponding scaling
Junctions is norm path connected.

Proof. The mapping V — (VU )*¢, is one-to-one and obviously continuous.
The set {Z}', the set of Laurent operators, is a von Neumann algebra. Recall
that the unitary group of a von Neumann algebra is norm path connected,
and the conclusion follows. O
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It is known (cf. [10; 11]) that an MRA yields an orthogonal wavelet. In Prop-
osition 2.4, we will provide an operator-theoretic construction for this.
Let ¢%(Z), {e,: neZ}, and Z be as defined in Section 1. Let

x=3 Ae,ct*2).
neZ
Define a mapping C on £%(Z) by
Cx:= 3 (=1)"Aep 1= 3 (-D"A_,_je,.

neZ neZ
It is easy to verify that:
(i) Cis a conjugate linear isometry on £?(Z) and C? = —1I,;
(ii) <x,Cx)=Z,ezAn (—1)"*'A_,_; =0; and
(iii) (ZC)? =1

ProrosITION 2.4. Let M be an MRA in X and let U be a unitary opera-
tor from Vy onto {*(Z) such that ZU = UT |y,. Let ¢ = U%ey and let Y=
DU*CUD™'¢. Then y is an orthogonal wavelet for X.

Proof. By (i)-(iii) and (v) in the definition of an MRA, X is a direct sum of
subspaces {V,,OV,: ne Z} = {D"W,: ne Z}. It therefore suffices to prove
that {T'y: /e Z} is an orthonormal basis for W,

Let f := UD"'¢. We will show that {Z?/Cf: I € Z} is an orthonormal basis
of UV,@QUV._,. If this is true, then {U*Z?'Cf: e Z} is an orthonormal basis
for V,©V_, and therefore {DU*Z2'Cf: 1€ Z} is an orthonormal basis of
W, =V,0V,. We have

{DU*Z?'Cf:1eZ} = {DT*'U*CUD '¢: 1€ Z}
= {T'DU*CUD™'¢: e Z}
={T'y:1eZ).
Hence ¥ will be an orthogonal wavelet for X.

We have 22/f = 22'UD™'¢ = UT?*D™'¢ = UD™'T'¢. Therefore, {Z%/f:

/e Z) is an orthonormal basis of UV_;. We need to prove that the set
(Z22'f:1e ZYyU(Z?CSf: e Z}

is an orthonormal basis of £2(Z) = UV,. We use @& to denote this union.

First we prove that the set @ is an orthonormal set. Let £ # / be arbi-
trary integers. Since (ZC)?> =1 and C? = —I, we have ZC = —CZ™! and so
Z"C =(-1)"CZ™". We have

ZZka — Zk+lzk—le — (—l)l_kzk-HCZ,—kf.

By property (ii) of the operator C we have zl=kr1cz!'*f = —zk-Icf, so
Z!=kf 1 2*~!Cf. Since Zk+!is a unitary operator we have

ZZl:f — Zk”Z’—ka. Zk+lzk—lcf — ZZka;
Z2r1 2%*kcf.

Hence ® is an orthonormal set.
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Finally, we show that the span of ® is £2(Z). Let P be the projection
onto the span of ®. An element x is in the span if and only if || Px| = ||x||.
Therefore, the set ® is a basis if and only if ||Pe,|=1forall ne Z. Let f =
> nez Anen. Then we have

ZZkf= E An€ny2k = 2 An—2k€n

neZ neZ

(e, Z2%FY = Ag_ap;
Z2*Cf = 3 (—D"VA_ienyia= 2 (D)X _ie,,

neZ neZ
Ces, ZKCfy = (=1 "2+ 1ny )
As a result,
"Pesllz E |As—2k|2+ 2 |)‘2k 1- sl

=3 |Mf*= IIfIIZ=|I¢II2=1-
keZ

This proves that ® is an orthonormal basis of £2(Z). Proposition 2.4 is
proven. ]

REMARK. We have the following diagram:
02(2) L5 Vo L2 UV, S 1(Z) UV 25 V0V,

EXAMPLE 2.5. Let ¢, =X n+1) (=T "¢¢) and let Vy=[¢,: ne Z]. Then [V
neZ}={D"Vy:neZ}is an MRA in X = L%*(R) [5]. Define U: V0—>t’ (Z)
by U¢,, = e, and extend linearly. Then U is unitary and UTU* = Z, where Z
is the bilateral shift on £2(Z) mapping e, into e, . for each n € Z. The func-
tion ¢y = Ue, is a scaling function. We have

1 1 1
UD 'U*y=UD"¢y=—U = —U(pg+¢;) = —(ey+ey),
1 1
CUD 'U*y=C|—=(ey+e )=—-— e_j—e_,),
0 (ﬁ( 0 l) \/5( 1 2)
* _— * * 1
Yy =DU*CUD lu 0=DU [_ﬁ(e—l—e—z)]=X[—1/2,0)—X[—1,—1/2)-

Since ¢ is a wavelet, Y = —T is also a wavelet. This ¥ is the Haar wavelet.

3. Multiresolution Analysis

The main purpose of this section is to parameterize all MRAs in L2(R). Let
N be an MRA in L?(R) and let ¢ and y be the related scaling function and
orthogonal wavelet, respectively. We call (I, ¢, ¥) an MSW-triple (MRA-
scaling-wavelet triple) in L?(R). Let “W(D, T) be the set of all orthogonal
wavelets in L2([R).



86 XINGDE DaAr & SHIJIE Lu

LemMMA 3.1 [4, Lemma 3.1(i)]. Lef ¢ be an element in “W(D,T). Then
W(D, T)=U(Cy (D, T)¥y.

The mapping 0: W(C, (D, T))—»W(D,T) given by 6(U) = Uy is one-to-
one and onto.

For wavelets in subspace X we have the following lemma.

LemMA 3.2.  Let Y, be an orthogonal wavelet for 3¢ = L*(R). Let X be a
closed subspace of 3C and let Py be the projection from 3C onto X. Assume
that X has an orthogonal wavelet . Then there is a unique isometry V in
Cy,(D,T) such that VV* = Px and V= y. Every orthogonal wavelet (in
a subspace) can be obtained in this way.

Proof. Let ¢ be a wavelet in X. Then {D"T'Y: n,leZ} is an orthonormal
basis for X. Define a mapping V: D"T'yy— D"T'y. The map V extends
to an isometry ¥V from 3C onto X that maps y, into y. We therefore have
VD"T'Yg=D"T'y =D"T'Vy, so Ve Cy (D,T).
Assume that

VeCy (D,T)
is an isometry with final space X. Then V{D"T'yy: n,l€ Z} is an orthonor-
mal basis for X. Let ¢ = V. Then we have

V{D"T"o:n,leZ) ={D"T'Vi{y: n,le Z)
={D"T!y:n,leZ).

Hence ¢ is an orthogonal wavelet for X. L
COROLLARY 3.3. Let ¢ be an orthogonal wavelet for L%*(R). Let U, be the
set of all unitary operators or isometries in C, (D, T). Let "W, be the set

of all orthogonal wavelets (for L*(R) or for some subspaces). Then “W,=
WU Yyp.

The following lemma and remarks show that, by the same method of Lemma
3.1, one can obtain only a proper subset of all scaling functions.

LEMMA 3.4. Let ¢ be a scaling function for an MRA in L*(R). Let
Cy(D,T) =C4({D"T": n,l€ Z}). Then

@4(D,T) = {D,TY.

Proof. Let SeCy(D,T) and let ne N. By definition of C4(D,T’), we have
SDD"T’qS = SD"+\T!¢ =Dn+1TIS¢
= DSD"T'¢;
STD"T'¢ = SD"T*"+'¢ = D"T*"*'S¢
=TD"T'S¢ = TSD"T'¢.
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Since {D"T'!¢: I € Z} is an orthonormal basis for V,, STx = TSx and SDx =
DSx for xeV,. Since U,cnV, is dense in L2(R) we have Se{D,T}’, and
Cy(D,T)<S {D,TY}. The “2” part is trivial. O

REMARKS. Let V be a unitary operator in {D,T}. It is clear that V¢ is a
scaling function. By Theorem 3.5 in [4] (see Lemma 4.2 below), the Fourier
transform of V, the operator V= FVF! ) is a multlphcatlon operator M,
by a function g with |g(#)| =1. Hence |qu(t)| = |g(t)¢(t)| = |¢(t)| in par-
ticular, V¢ and ¢ have the same support. Since there are scaling functions
with different support sets [5], the set W({D, T} )¢ is not the set of all scaling
functions.

Let C be as defined in Proposition 2.4. Let = DU*CUD'¢. By Propo-
sition 2.4, ¥ is an orthogonal wavelet. Using property (i) of the operator C,
we have (DU*CUD™")? = —I, or (equivalently) ¢ = —DU*CUD™"}. Based
on this and Lemma 3.1, one might expect to obtain a parameterization of
the set of all scaling functions. However, there exists an orthogonal wavelet
¥ that has no corresponding scaling function [10]. This can happen because
the unitary operator U does not exist in this case.

Let (Mg, g, ¥o) be an MSW-triple in L2(R). Let us define

C(My, do, Yo) := Cy (TYN{B(IC) Py, +W(Cy (D, T)) Pst)
and
WU(Mg, Do, Yo) := W(C(Ny, ¢y, ¥o))-

It is clear that the set of unitary operators in {D, T}’ is a subset of U(IMN,,
o, Yo). Let V be a unitary operator. We will write

(mz, ¢9 ‘lb) = V<9n0’ ¢0! \bO),

where
¢ :=Vo,, V=V,
Vo:=VV,, V,:=D"Vj,ne”Z,
={V,:neZj.

The new triple (9N, ¢, ¥) is not necessarily an MSW-triple.

THEOREM 3.5. Let (M, o, ¥o) be an MSW-triple in L*(R) and let Ve
WU(My, D9, ¥o). Then (M, ¢, Y> =V{My, dg, ¥o) is also an MSW-triple in
LY R). If (M, ¢, V) is an arbitrary MSW-triple in L*(R) then there is a
unique unitary operator Ve W(My, ¢¢, ¥o) such that

(mls ¢’ ¢> = V<9n;03 ¢Os lpO)-

Proof. Let <sz, b0, Yo» be an MSW-triple and let V'€ W(My, ¢g, ¥o). Then
V=WP, +V'P, for some unitary V’e Cy (D,T) and some operator We
@ (3C). Since %GVO, we have VYo =V"y,. Let Yy =Vy,. By Lemma 3.1,
Y =V, is an orthogonal wavelet; the wavelet basis is {D"T'y: n,le Z}.
We write
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Vi =3span{D"T'y:n<0,leZ}.

We have VD"T'Yo=V'D"T"\y = D"T'V'Yo=D"T'Viyo = D"T'y for n=
0, so
Vit =V V&

Since V is unitary we must have Vj=V'V,. Since D is unitary we have
(DV§)* = D(Vgh)
=span{D"T"Y:n=1,leZ)}
Cspan{D"T'y:n=0,leZ)

= V4t
Thus DV{ D V4. So, for arbitrary n € Z, we have D"V C D"V} or (equiva-
lently) V, C V, 4.
Let f be a function in N,z D"V{. Then fL1(D"V{)* for each neZ.
Because (D"V4)* =span{D"T'y:m=n and leZ}, we have fL D"TY,
n,leZ. Since {D"T'y: n,l e Z} is an orthonormal basis, we have S =0.This

proves that
M D"V; = (0}.
neZ

We must show that {T'¢:/eZ} is an orthonormal basis for V. Since
{T'¢,D"T'Y:n=0,leZ}and (D"T'Y: n, € Z} are two orthonormal bases
for 3C = L%(R), we have span{T'¢: le Z} =span{D"T'y:n<0,/e Z} = V}.
Therefore, ¢ is a scaling function and so (I, ¢, Y) is an MSW-triple in
LY(R).

Let (M, ¢, ¥) be an arbitrary given MSW-triple in L?(R). Define a map-
ping V from the set {T/¢q, D"T'Yo: n =0, I € Z} onto the set {T'¢p, D"T'y:
n=0,leZ} by

VT '9o=T¢, leZ
and
VD"T!'Yo=D"T'y, n=0,leZ.

This V extends to a unitary operator, which is also denoted by V. It is clear
that Ve €, (T). Since ¥y and ¥ are orthogonal wavelets, by Lemma 3.1 there
is a unique operator V'€ Uy (D,T) such that Vo= and V’D"T'y,=
D"T'V"o=D"T"}. For n =0 and / € Z we have

VD"T!'Yo=D"T'Vyy=D"T'y
=D"T'V'y=V'D"T"Y,.
Hence V and V' “coincide” on V. Therefore
VP = VP
for Ve ®(IC) Py, +U(Cy (D, T))P4.. Theorem 3.5 is proven. a
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LEMMA 3.6.  Let {My, do, ¥o) be an MSW-triple for L*(R). Then:
(i) C(My, ¢g, o) = (T} N{B(3C) Py +U(Cy (D, T)) Py}

(i1) C(Mo, o, ¥o) € {D}'; and
(iii) C(My, ¢o, Y0)NCy (D, T) < {D,TY.

Proof. (i) Since €, (T') 2 (T}, the “2” part is obvious. For the reverse in-
clusion, it suffices to show that C(My, ¢¢, ¥o) € {T}. Let V be an operator
in C(My, ¢, ¥o). We have

VI(T'$g) =VT"*'$g=T"*'Voo=TV(T ")
forneZ. Let n = 0. Then
VID"T'g=VD"T* *'yy=D"T**'Vy,
=TD"T'Viyo=TVD"T 'Y,
= TVD"T"Y,.

Hence V and T commute at the orthonormal basis {T/¢y, D"T'Yo: n =0,
leZ}andso VelTY}.
(ii) Assume that C(9My, ¢y, ¥o) < {D}". By the first part we have

C(My, ¢, ¥o) € (D, TV

By the remark after Lemma 3.4 this is impossible; a contradiction.
(iii) This is a direct consequence of (i) and €y (D, T) < {D}’ (cf. [4, Lem-
ma 3.1(iii)]). O

4. Reducing Subspaces of D and T

In this section we will describe the reducing subspaces of dilation and trans-
lation operators. We will show that in each nonzero reducing subspace, the
wavelet set is nonempty.

Let S e ®(3C) and let P be a (orthogonal) projection in B(3C). We say that
the subspace X = PJC reduces S if X and X' are invariant under S. This oc-
curs if and only if X is invariant under both S and S*, if and only if Pe{S},
the commutant of S. We say that a subspace X is a reducing subspace of
{D, T} if X reduces both operators D and T simultaneously.

LEMMA 4.1. Let X be a closed subspace of L*(R) having a multiresolution
analysis. Then X is a reducing subspace of {D,T}.

Proof. By Lemma 2.1 and Proposition 2.4, X has an MSW-triple (I, ¢, ).
Hence ®,:= {T'¢: 1€ Z}U{D"T'Y: n = 0 and / € Z} is an orthonormal basis
for X. We have T®, = [T'*'¢:1e ZJU[D"T*'*'Yy:n=0 and /e Z} = ®,.
Therefore, 7X = X. Since T is unitary, 7*X = X. Thus X reduces 7. Let
®, be the wavelet basis {D"T'y: n, /e Z} for X. We have D®, = D{D"T'y:
n,leZ)={D"*'T"Y:n,le Z} = ®,. By the same reasoning as for 7, X re-
duces D. O
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LEMMA 4.2 (cf. [4, Thm. 3.5]).
F{D,TYF ! = {M,: ge L°(R) and g(s) = g(2s) a.e.}.

Let X be a reducing subspace of {D, T} and let P be the projection onto X.
Then P=FPF ' is a projection in F(D,T)'F .. Let P=M,. Then P is a
projection if and only if g2 = g for some real-valued function g if and only
if g = xq, where xq is a characteristic function of some measurable set Q. By
Lemma 4.2, g must satisfy the relation g(¢) = g(2¢), so the set @ must satisfy
the relation 22 = Q. This proves the following result.

PROPOSITION 4.3. A closed subspace X of L*(R) is a reducing subspace of
{D, T} if and only if there is a measurable set ) < R with Q = 2Q such that

X =L*R)-xq.

Next we will show that in each reducing subspace of {D, T} the set of wave-
lets is nonempty.

Let E be a subset of R. We write

E (mod27):= |J(EN[2n7,2nT+27)—2(n—1) 7).
neZ
It is clear that £ (mod2w) is a subset of [27, 47). A set E is said to be 2x-
congruent to [27,4x) if E (mod 27) = [27, 4n) and the sets {E,: ne Z} are
disjoint, where £, = EN[2n7, 2n7+27) —2(n—1)x. It is easy to verify that
E is 27-congruent to {27, 4w) if and only if £ (mod27) =[2x,4w) and
m(E) =2=.

Let Q C R satisfy the condition 2 =2Q. A set ECQ is said to be a 2-
dilation generator for  if Q is a disjoint union of the sets {2"F: ne Z}. Let
a and b be arbitrary positive numbers. The set {[—2b, —b)U[a,2a)}NQisa
2-dilation generator for 2. In particular, the set {{—4#, —27)U[27,47)}NQ
is a 2-dilation generator for .

Let E be a measurable set in R with positive Lebesgue measure. A point x
in R is called a Lebesgue density point of E if we have

. m(EN(x—p, x+p))
lim =
p—0 2p

It is known {12, p. 261] that almost all points in E are Lebesgue density points
of E.

1.

THEOREM 4.4. Every nonzero closed reducing subspace of {D,T} has an
orthogonal wavelet.

Proof. Let X be a nonzero closed reducing subspace of {D, T'}. By Proposi-
tion 4.3, A

X=L*R)-xq
where @ =,z 2"E for E = {{—4x, -27x)U{27,47)}NQ with m(E) > 0.
We will show that there is a subset S of 2 such that



Wavelets in Subspaces 91

(i) S is a 2-dilation generator of ( and
(ii) S is 2w-congruent to [27, 47).

Let Y be a function in L%(R) given by @0 = (1/27)x s. Then property
(ii) implies that {T/yy: /€ Z} = {e"*{yo(s): | € Z} is an orthonormal basis for
L?*(R)-xs. Then property (i) implies that {D”e"s\{y(s): n, I € Z} is an ortho-
normal basis for L?(R)-xq.

We have three cases:

(A) m(2N(—,0)) =0;
(B) m(2N(0, )) = 0;
(C) m(QN(—o0,0)) # 0 and m(2N(0, )) # 0.

Proof of Case (A). Since m(2N(—o0,0)) = 0, without loss of generality, we
can assume that 2 € [0, ).
The set E satisfies condition (i). If £ = [27, 47) (modulo a null set), then
it will satisfy condition (ii). In this case we take S = E and we are done.
Assume that Fy:=[27,47)\E is not a null set. Let {Z,: n € N} be disjoint
intervals in [2#, 47) with

U I,=[2n,47) and m(I,NE)>0 foreach neN.

neN
Take a Lebesgue density point x, from each 7, E such that x, is not an
endpoint of 7,,. Since x; is a Lebesgue density point that is not an endpoint
of I, we can select a strictly increasing sequence {n;} in N (using induction
if necessary) such that

. 2 2
(1) Jg:= (xk—z—,z,xk'*'z—gg)CIk;
... m(ENJ) 1 1
1——
R TVA) 2%k

The length of the enlarged interval 2”«J, is 47, so it contains an interval
[2(mg+ 1) 7w, 2(m+2)7) for some m; € N. (The number m, is uniquely de-
cided by Ji, since J; is open.) Thus we have

[27,47)+ 2myw C 2" J,, §))
n 1
m2"EN2"J.) > 47r—§ 2. (2)
Define
A :=2"EN(Fy+2m7);
1
Sl = ([lﬂE)\znl AI;
1

Fl = EETAIU {FO\(AI —2m17r)].

Assume that we have defined A,, S,, and F, for all ¢ < k. Define



92 XINGDE DAl & SHIIE Lu

Agi=2"EN(Fy_;+2mym);

1
Sk = (IknE)\ el
1
Fk = 27k AkU [Fk_;\(Ak—kaifr)}.
By definitions of A, J;, I; and (1), we have
Zf,k A SENJ,SI,NE for keN.

Hence we have

oo 0 1

E=<USk)U<L-J 7 Ak). 3)
j=1 j=1

Since n;, >1 and is strictly increasing, the intervals [2(m +1) 7, 2(my + 2)7),

keN, are disjoint. Since A, S [2(m+1) 7, 2(m;+2)7) for ke N, it fol-

lows that A, and A,, are disjoint for k # m. Since S; € [27,47) and A, S

{2(m,+ 1), 2(m,+2)7), A, and S; are disjoint for each pair (n, k). Define

s:=<gsk)u<gAk). 4)

We will prove that the set S is what we need in case (A).

Let @y =Ujez 2/(ItNE). It is clear that @ = J;2, ;. Note that

1
IkﬂE= Sku(ﬁAk)‘

The set I N E is a 2-dilation generator for Q, so the set S; WA, is also a 2-
dilation generator for Q. It is easy to verify that the set S =\J;Z (S UAy)
is a 2-dilation generator for .

Next, in Lemmas 4.5, 4.6 and 4.7, we will prove that the set S is 27-con-
gruent to [27, 47).

LEMMA 4.5.

(1) The collection {Sy, (Ay—2myx): ke N} is a family of mutually dis-
Jjoint subsets in [2x, 47).
(ii) m(F,) < (1/2"%)-27+(1/2%)-27.

Proof. (i) It is clear that {S;: ke N] is a family of mutually disjoint sets.
We will prove that

(a) Sinf{A,—2m,w} =0 fort,keNand

(b) {A,—2m,m}N{A,—2mym} =0 for t # k.

Let t, ke N, t < k. By definition of A, and F}, we have

-1
i=1 &'

n.
iz 27

k—1
Ak—2mk1r§Fk_1§F,U(U 1 A,'). (6)
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(@) Let J, y =S¢ N{A,—2m, 7}, t, ke N. By (5) we have

—2m,7r§F0U(U lnA>
Jj= 1 2%

Since Sy S E and ENFy =0, we have J, , SU;Z(1/2")A;. Let s€ J, . Then
xe (1/2")A; for some je N. Because Sy N(1/2")A, =0 for keN, x¢
(1/2") Ag. If J # k then the set (1/2%)A; € I; N E is disjoint from I; N E,
which contains S;. Hence J, , = 0.

(b) Let /I, 4 ={A,—2m,w} N {A,—2my ). Since (1/2")A, C I, NE for ke
N, and since FoNE =0, {F,, (1/2™)A;: i e N} is a family of disjoint sets. By
(5) and (6), the only possible common elements of A, —2m, 7 and A;—2mn
would be in F,. Thus we have

c{a,— 2m,1r}ﬂ( ~AU{F,_\MA, — 2m,7r}})

c A, - 2m,1rm( ! A)

Since A, € F,_;+2m,w, we have I, , € F,_N(1/2")A,. By (5) we have

I xS (FOU(:Lji 21,, A))ﬂ%
This is an empty set.
(ii) It is clear that {Fy_,+2mw} S [27, 47) +2m,w S 2" J,. We have
2mym+F _\{Ay—2my 7} = (Fp_1+2mw)\ Ay
= (Fp_1+2mm)\2"*"EN(Fy_,+2my; )}

c 2% I\(2" EN2"xJ},).
By (2), we have

m(F_\Ap—2mg}) = mQ™*J\2™“EN2KJ))
< m(2"J,) —m((2"EN2*J,))

1
<—2—k‘ 2.

Hence m(Fy_\{A, —2m7}) < (1/2%)-2x. Since
Ay S [2(my+1) 7, 2(mg+2)7),

1 1
(an Ak) 2"k '27!'.

we have

We therefore have
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1
m(Fk) = m(znk AkU(Fk_}\{Ak—ka’lr}))
! 2 L 2
<2—k' 7F+ﬂ‘ . D
LEMMA 4.6.
m m
qu( U Sk>U( U(Ak—kavr))U( U (IknE)) = [2, 47).
k=1 k=1 k>m

Proof. We prove this formula by induction on m. By definition we have A, =
2" EN(F,_;+2my 7). Hence we have Ay —2m« € Fj,_, or (equivalently)

Fie1 = Fr - MAg—2my m)§ U (A —2my ). (7)
Because (1/2")A, € EN I, we have
1 1
IknE:(znkAk)U((IknE)\znkAk) (8)

As a result,

(27, 47) =F0UE=F0U(IIﬂE)U( U IkﬂE)
k>1

= (—2-1,-1-]-A1)U(F0\(A1 —2my))

U(A1—2m17r)U((11ﬂE)\—lelAl)U<U IknE>

k>1

= F]US]U(A]"‘Z”?]W)U( U IkﬂE).
k>1
Hence the formula is true for m = 1. Using (7) and (8) and by similar com-
putation, we can prove the formula by induction. We leave the details to the
reader. ]

LEMMA 4.7. S is 2w-congruent to [27,47).

Proof. We need to show that {S;, A;—2m;«:ieN}is a partition of [27, 47)
(modulo null sets). By Lemma 4.5(i), the above sets are mutually disjoint
and 32, m(S;) +32, m(A;—2m;w) < 2x. It suffices to show that the equal-
ity actually holds.

By Lemma 4.5(ii) we have lim, _, , m(F;) = 0. It is clear that we also have
limy_, o Zic k1 m(L;NE)=0. By Lemma 4.6 we have

<]

k k

Let &k — o. Then
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S m(S)+ S m(A;—2m;w) = 2.
i=1 =

i=l1

Lemma 4.7 is proven. ]

Proof of Theorem 4.4 (continuation). Case (B) is similar to Case (A).
Case (C). Let E_:=QN[—27, —w) and E, := QN [7, 27). As in Case (A),
we can construct sets S_ and S, with the following properties.
(i) S_ is a 2-dilation generator for QN (—co, 0), and is 27-congruent to
[—27, —7) 4+ 47 (modulo null sets).
(ii) S, is a 2-dilation generator for 2MN(0,c0), and is 2#-congruent to
[7,27) 4+ 27 (modulo null sets).

The set S:=S_US, is a 2-dilation generator for { and is 2x-congruent to
[27,47). We leave the details to the reader. Theorem 4.4 is now proven. [

5. Examples

In this last section we will give examples of closed subspaces which are not
reducing subspaces of D and T and which have orthogonal wavelets with
regularity properties.

The following lemma is a weak version of Lemma 4.1 in [4].

LemMmA 5.1. Let f be in L*(R) with support K,. Assume that K, is a 2-
dilation generator for some set Q with 20 = Q. Let X be a closed subspace
of L*(R) such that X = L*(R)-xq. Assume there is a measurable subset
Iy © K with positive measure such that Iy+2nyw S K, for some noge Z.
Then the function $~'f is not an orthogonal wavelet for X.

Proof. The function §~'f is an orthogonal wavelet for X if and only
if (D"T'(F7f):n,leZ) is an orthonormal basis for X if and only
if {D™"(e~""f):n,leZ} is an orthonormal basis for X. By assumption,
supp(e’“f) = K,, so supp(D~"(e~*f)) = 2"K, for ne Z. Since K, is a 2-
dilation generator for Q, the sets 27K, n € Z, form a partition for Q. Hence
F~!f is an orthogonal wavelet for X if and only if {e~"f: /e Z} is an ortho-
normal basis for L>(R)-x k,- Assume that it is an orthonormal basis.
Let g be a function on R defined as follows:

-1 if sely,
g(s) = 1 if sely+2nym,
0 otherwise.
The function g-f is in L*(R)-x,. Then
g'f= 2 anems'f
neZ

for some («,) € ¢2(Z). Let h be the 27-periodic function given by the sum
ez ope S, where convergence is in L3[0, 2x] with 27-periodic extension
to R. It follows that
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g(s)-f(s) = h(s)-f(s) a.e. on R.
Since f(s) # 0 a.e. on K, we must have g(s) = h(s) a.e. on K. We have
~1=g(s) =h(s)=h(s+2ny7) =g(s+2ny7) =1

for se I, (a.e.), a contradiction to the definition of g. Lemma 5.1 is proven.
]

The Meyer’s wavelet y,,, is defined as follows

:/é;{eiz/zsm[ (—IEI— >] if 2_7r<|g|<__
Unte(£) =J | Y _ 4m <l|fl < 87
ﬁe cos[ (—IEI )] if 3 = HE R

0 otherwise.

|

Here » is'a C¥ or C* function satisfying

v(x)={0 }f x=<0,

1 if x=1,

with the additional property that
v(xX)+v(l—x)=1.

Let Ky =[—8n/3, —2n/3]U[27n/3, 8%/3]). The set K, is not a 2-dilation
generator for any set. It is clear that supp(tﬁMe) = K (modulo a null ser).
Let Jo = [—8%/3, —47n/3] C K, and let J, satisfy the condition Jy+ 47 C K.
This ¥, is an orthogonal wavelet for L?(R).

ExaMpLE 5.2. Define a function y,, by

Yamelf—27) if £=2m,
Varl8) =3 ¥aelE+27) if £ <27,
0 if £e(—2m,27).

The support of 1;2”(5) is Kog=[—14%/3, —-8%/3)U[87n/3,14%/3). Let K=
[—167/3, —87/3)U[8%/3,167/3). K is a 2-dilation generator for R. K, is a
proper subset of K and is a 2-dilation generator for the set Q@ :=J;Z, 2’K,.
Let X be the closed subspace such that X = L(R)- ‘Xq. By PI‘OpOSlthH 4.3,
X is a reducing subspace of {D,T]}.

Consider the set B; = {D"T'Y,.:n,leZ}. Let Y =5span{®;}. Let I,=
[—147/3, —10%/3). Then Iy C Ky and I+ 87 C K. By Lemma 5.1, 35 is not
an orthonormal basis for X, so Y is a proper subspace of X.

We will show that 35 is an orthonormal set. For /,/’e Z, we have

(TYars T'V2r) =T VY20, FT Y2,)
=(T"2ms T"¥22)
= (e_“slljzm e_ﬂ’s\azw)
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= fR e 15y, (s)-e "y, (s)ds

= | e ™ Yre(s—2m)-e " Jp(s—2m) ds
27

-2 er oA TR
+ f eI (s—2m)-e TGy (s—2m) ds

= fR e Y r10(8) €7 pre(s) ds

= " Vp1e(5), €Y pre(5))
= (T Wrter T Paged

=T Wnter T Yt

=0 .

Therefore {T'},,: /€ Z} is an orthonormal set. Since the operator D is uni-
tary, and since supports for the functions D~"e~5y, and D"'e~/,_are
disjoint for different n, n’e Z, the set {D"T'Y,.: n,l € Z} is an orthonormal
set. Hence y,, is an orthogonal wavelet for the space Y.

Because K is the support of i/, and is a 2-dilation generator for @, X is
the smallest reducing subspace of {D, T} containing ¢».. Thus, the space Y
is not a reducing subspace of {D, T’} that has an orthogonal wavelet .. By
Lemma 4.1, the space Y has no multiresolution analysis. It is left to the
reader to check that the function y,, satisfies the same regularity properties
as Meyer’s.

ExampLE 5.3. Define a function 5 by
71(5) 1= Paze(s—8).

The support of 4 is Ko =[16%/3, 22%/3)U[267/3, 32%/3), which is a proper
subset of K :=[167/3,32x/3). K is a 2-dilation generator for R, and K is a
2-dilation generator for @ =J72, 2/K,. Let X be a closed subspace such
that X = L*(R) -Xq- This X is a proper subspace of the Hardy space JC2. Let

Y =span{D"T'y: n,leZ}.

Then 7 is an orthogonal wavelet for Y and Y is not a reducing subspace of
{D,T}. The function 7 satisfies the same regularity properties as ¥y, does.
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