Equivariant Elliptic Homology
and Finite Groups

JOrRGE A. DEvoTO

1. Introduction

The elliptic homology X — Ell,(X) is the generalized homology theory de-
fined by the equality

Ell,(X) = MSO.(X) ®uso, Z[5118, ¢, (8> —€)*e) '], (1.1
where M SO.(X) denotes the oriented bordism of the space X,
MSO, = MSO.(pt),

and & and ¢ are two indeterminates of degree 4 and 8, respectively. The ring
Ell, = Z[$][5, ¢, ((6°—¢)?e) '] (1.2)

in (1.1) is considered as a graded algebra over M SO, via a ring homomor-
phism ®g;: M SO, — Ell, called the universal elliptic genus. The dual coho-
mology theory, elliptic cohomology, is defined using the Spanier-Whitehead
duality operator. If X is a finite CW complex, then the elliptic cohomology
Ell*(X) of X is naturally isomorphic [11, Thm. 1] to

ElI*(X) = MSO*(X) Qusor EII%, 1.3)

where MSO*(X) denotes the oriented cobordism ring of the space X,
MSO* = MSO_y, and ElI* = Ell_,.

When X is a compact and closed spin manifold, ®g;([X']) has a natural
interpretation in terms of nonlinear sigma models. Let £X ={f:§ X\ f
is smooth} be the space of smooth free loops on X. The group S Facts on
£X by rotation of loops. The theory of nonlinear sigma models predicts the
existence of a S'-equivariant differential operator D on £X called the Dirac-
Ramond operator. One can then consider, at least in a formal way, the S L
equivariant index of D. This can be done in two ways. The first uses the
index formula of Atiyah and Singer and the second uses path integrals. In
each case one obtains a formal power series ®p(X) =X ,502,9", a,€Z.
This power series is [29] the Laurent expansion of a modular form for the
group

To(2) = {(? 5) € SL(2,2), e is even} (1.4)

Received April 27, 1993. Final revision received July 10, 1995.
Michigan Math. J. 43 (1996).



4 JORGE A. DEvVOTO

at the cusp ico. The ring of modular forms for the group I'y(2), whose power
series expansions at ico have coefficients in Z[3], is isomorphic to Z[3][9, €.
The isomorphism ev is given [19] by

5> —1_3 SIS dlg”, -3 T d*lq™
8 nzl[ d|n ] nzl[ d|n ]
dodd n/d odd
Witten showed in [29] that the formal series ®,(X) is the Laurent expansion
at ico of the modular form ev(Pg;({ X 1)).

The relation between sigma models and elliptic homology provides some
reason to believe that elliptic cohomology has a geometric model related
either to conformal field theories or to Virasoro equivariant vector bundles
on loop spaces [5; 24].

In this paper we will define, for each finite group G of order |G| = 2s+1,
a G-equivariant generalization ElI§;(-) of Ell*(-) ®z Z[1/|G|]. The first step
will be to define a ring homomorphism ®5: M SO, — Ellg, called the homot-
opy theoretic twisted elliptic genus, from MSOg;, the equivariant oriented
cobordism ring of [8], to a ring EIlIf; that is related to the moduli of G-cover-
ings over Jacobi quartics

y2=1-2ex2+6x* (1.5)

DErFINITION 1.6. The equivariant elliptic cohomology Ellg(X) of a finite
G-CW complex X is the graded tensor product

Ell5(X) = MSO%5(X) Qusos, Ell, 1.7)

where ElI}; is considered as a graded algebra over MSO¢ via the twisted
elliptic genus.

We can now state our main result.

THEOREM 1.8. The functor X — ENl5(X) from finite G-CW complexes to
graded rings is a stable G-equivariant cohomology theory.

The study of the image of the twisted elliptic genus leads naturally to the
consideration of modular problems of higher level. The formalism of Jacobi
quartics is inadequate to deal with moduli problems of even order because,
among other reasons, the functions that parameterize (1.5) have double points
at the points of order 2 of the curve (the restriction to moduli problems of
odd order also appears in the fundamental work of Igusa on the relation
between Jacobi quartics and the transformation theory of elliptic curves
[14]). This is the main reason why we impose the condition that |G| be odd.
The second reason concerns the orientability of fixed point sets. It is possi-
ble that this hypothesis can be removed by a careful analysis of orbifold
sigma models. We could also use another version of elliptic cohomology—
related, for example, to Weierstrass cubics—but then we would lose the in-
sight given by the use of loop spaces. The second condition, that |G| be
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invertible in the coefficient ring, is due to the fact that it is not known if there
is an equivariant version of Landweber’s exact functor theorem. The exact
functor theorem is used to prove the exactness of functors like (1.1). Our
hypothesis about |G| allows us to show that the functor (1.7) is exact by
using localization along fixed points.

The idea behind the definition of the twisted elliptic genus comes from
the geometry of loop spaces. Let X be a closed, compact, Riemannian spin
manifold of dimension 2k. Suppose that G-acts on X by isometries in a
way compatible with the spin structure. Then, for each g, € G, we define the
twisted loop space

={f:R- X|f(t+1) =g, f(¢) and f is smoothj}. (1.9)

Two groups act on £, X in a compatible way. The first group is St =
(R/|g;|Z which, since g, has finite order, acts on £, X by rotation of twisted
loops. The action is induced by the action of R on itself by translation. The
second group, C, (G), is the centralizer of g, in G. The action is in this case
induced by the actlon of G on X. We can formally consider the S'xC 5, (G)-
equivariant index of the Dirac-Ramond operator D on £, X. In this way we
obtain a formal power series ®G(X) = 3,20 R,q" 4! w1th R, a character of

C,,(G). For g,€C, (G) and 7eh = {ze€ C|imz > 0}, we define ®5(g), &2, 7)
as the evaluation of ®5;(G) at g, and g = exp(2xi7). The formal power series
(X)) (g1, g2, 7) satisfies

ar+b
er+d

where (z 3) €Ty(2). Let TG be {(g,22) € GXG| g8, = g>81}. The ring Ell;
is, roughly, the ring of functions #: TG x ) — C that satisfy (1.10).

As an application of the theory Ellg; we shall study a conjecture of Atiyah
and Segal about equivariant Euler numbers. In [2] they proved that if G isa
finite group that acts smoothly on the compact manifold X, then the Euler
characteristic of the equivariant K-theory of X is given by

1
> x(XE&E&2),
|Gl (e, 677G

(I)G(X)((gl g2!g gZ)s >=(eT+d)k¢G(X)(gl’g2s T)’ (1'10)

xx(X) = rankz K(x)—rankz Kg'(X) =

where X882 s the set of points fixed by g, and g, and x(Z), for a space Z,
denotes the usual Euler characteristic of Z. In [2] it was conjectured that
the number

! T x(XEseay, (1.11)

xen(X) = G
1G] (g1, 82, 5meTTG

where the sum is now being taken over
TTG ={(£1,82,8€GXGXG|gigi=gjgvV1=<i,j=<3]

and X 8182:83 js now the space of common fixed points of g;, g,, g3, might be
related to elliptic cohomology.
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Let [F* denote the graded field of fractions of Ell* (see Section 6 for an
explanation of the use of graded fields and the modular interpretation of
F*). If X is a compact G-manifold, then the initial term in Segal’s spectral
sequence—which is deduced from [22, Prop. 5.1] applies to the case of a G-
covering (see also [23, Prop. 5.3] for the case of K-theory), H*(X/G, §%) =
Ell(X), where &F is the sheaf over X/G associated to the presheaf U—
Ellf;(w~(U))—is a finitely generated module over Ell% and therefore the
same is true for ElI3(X) and EINY®(X). Thus the graded F* modules
ENYY(X) @ F* and EIIY(X) ®gy+ F* have a well-defined rank over [F*,

THEOREM 1.12. If X is a compact G-manifold, then
xein(X) = rankg[EIIE(X) @ F*] —rankg-[EIQY(X) @F*].  (1.13)

REMARK 1.14. We shall denote also by x(Ell;(X)) the right-hand side of
(1.13).

We wish to express our gratitude to Peter Braam, Eduard Loojienga, Dave
Benson, Domingo Toledo, and Herb Clemens for their suggestions. Part of
this paper was written at the Max Planck Institute for Mathematics, a warm
and friendly working environment. We wish also to express our gratitude to
the referee, whose comments were particularly helpful in improving the ex-
position of the original manuscript.

2. The Twisted Elliptic Genus

Witten’s Twisted Class

The K-theoretical version of Witten’s characteristic class 6 [19] is a stable
exponential characteristic class 8: KO*(X) — K*(X)[[q]], where KO*(X)
denotes the real K-theory of the space X and K*(X')[[q]] denotes the ring of
formal power series with coefficients in the complex K-theory of X. Witten’s
characteristic class of a real vector bundle E — X is explicitly given by

0(E) = QN _g2n-1(EQTC)®[S,2-(EQC)],
n=1

where AL (ERQC)=X,.0a"N"(EQRQC) and S(ERC)=X,-0a"S(ERQC).
Let G be a finite group of odd order. Then a G-equivariant analog of the
functor K*(X)[[q]] appropriate for the theory of orbifold sigma models is
the functor X;: G-spaces — rings, given by

X-oX5(X)= @ (K (X*5)@zR(eMlg"#], 2.1

(21,82)€TG

where K *(X 8"#2) denotes the complex K-theory of the fixed point set X182
and R({g,)) is the complex representation ring of the group {g,) generated
by &.

PRrRoOPOSITION 2.2. The functor X —» X5(X) defines a G-equivariant co-
homology theory.
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Proof. Since a direct sum of exact sequences is exact, it suffices to prove
(2.2) for each one of the summands in (2.1). In this case the result follows
from two basic facts. The first fact is that, since R({g,)) is flat over Z, the
functor Y — {K*(Y)® R({ g,)}[[¢g"/181] is a cohomology theory. The second
fact is that if H is any subgroup of G and E* is any generalized cohomology
theory, then the functor X —» EX(X*), where X = {(xe X |hx =x Vvhe H},
is a G-equivariant cohomology theory. This result can be proved by check-
ing the axioms in [28, Def. 6.7]. O

Let X be a compact G space and let £— X be a G-equivariant complex
vector bundle. Then, for each pair (g, g;) € TG, the restriction E | yz,.2, —
X882 gdmits a decomposition

E IXg..gz = (2.3)

{ g
—lail/2<i<|ail/2\ —|g2l/2<k <|g2]|/2
where the (g, g;)-equivariant complex vector bundles Fj;, are characterized
by the fact that g; acts fiberwise as exp{2«ij/|g|} and g, as exp{2wik/|g,|}.
We define

0 (E | xers.) = Q) (Apy2rrer—g2s-1[ Fig])

—lail/2<j<|g]/2 [521

2y ®(S[w2k/f’][qZS][ij])]- (2.4)
s=0

In (2.4) we are taking ¢ =|g;|, s = (nc+j)/c with ne Z, and R(g,) = Z[w].
If E is a real G-equivariant vector bundle, then we define

0G(E | xa.s:) = O6(EQRCT) | xa122)- (2.5)

The conventions used in the decomposition of (EQC)| ye.¢, are the usual
ones in index theory (see [3]).

DEFINITION 2.6. Witten’s twisted class 0g: KO; — X, evaluated in the G-
equivariant real vector bundle E — X, is the class whose (g;, g,) component
iS OG(E |Xg|-gz).

The class 65(E) depends only on the G-equivariant isomorphism class [ E] of
E and satisfies 0g(E@F) = 05(E) 6, (F). We shall see later (see Remark 4.9)
that if E is of the form M X X, where M is a real G-module, then 5([E]) is
invertible. These two properties imply that ; has a unique extension as an
exponential characteristic class, 0g: KO — X .

The Twisted Elliptic Genus

Let X be a closed, oriented, compact, Riemannian manifold of dimension
2k, where G acts by orientation-preserving isometries. We shall always sup-
pose, just to simplify the formulas, that each X®"°82 js connected. This is a
minor assumption that can easily be removed. As the order |G| of G is odd,
the orientation on X induces an orientation on each of the submanifolds
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X882 {3 p. 584]. Recall that, since BSpin and BSO are homotopically
equivalent at odd primes [27, p. 336], orientable manifolds are orientable
for (K*(-)®Z[3])-theory. Therefore, for each pair (g, g,) € TG, there ex-
ists a Gysin map wf82: K*( X8 82)®Z[3] - K*(pt)®Z[ 5] induced by the
projection w: X482 — pt. The family of maps w42 induces a Gysin map
m: KG(X) - K.

DEFINITION 2.7. The geometric twisted elliptic genus ®; is defined by the
equality

$6(X) = Wz(

0c([TX]) )
- = d(XE82) e Kg(pt),
GG([dlm(TX)]) (g,,g?):e TG Gt

where [dim(7°X )] is the element of X ;(X') obtained by replacing all the bun-
dles Fj; in formula (2.3) by topologically trivial bundles T}, where dim¢ T, =
dimg L j; and where g; and g; at in the same way as in Fj.

It is easy to show that ®; induces a ring homomorphism QF — Xs(p?),
where QF is the geometric equivariant bordism of [6]. However, since we are
interested in cohomology, we shall consider that it is defined on Q% = QF,.

Modular Properties of the Twisted Elliptic Genus

Pick 7€ and let g = exp{2wi7}. We define ®5(X)(g, &2, 7) € CU as the
evaluation of (x4 %2) at g, and 7. The evaluation at g, is performed via
the identification between representations and characters. We shall show
that, for each (gi, g;) € TG, the function 7— ®5(g, g5, 7) is an entire func-
tion and therefore &5(g;, g5, 7) € C for all 7€}.

It is easier to study the properties of the twisted genus using cohomology.
The Chern character ch: K*(-) - H*(-, Q) induces, for any (g, g,) € TG, a
homomorphism

[K*(X&8)QR(KgN][g1#l]]
Do, [HH(X52, Q) @0 QR RKgIIgV4]].  (2.8)

Using this homomorphism together with the standard techniques of index
theory, we obtain the cohomological form of the elliptic genus:

B (X) (g1, &2, 7) = eCA(X 8 82) ch, (B (X8 82)}, [XE-82]),  (2.9)

where [ X8 22] denotes the orientation class in cohomology of X482 and the
factor e = +1 depends on the choice of orientation of the bundles involved
(see [3] for an explanation of the cohomological form of the index theorem
and of the terms involved). Let

[TX®C] | xous: = [TXW@@]@[@ K,-k®1?,-,~] (2.10)
ij

be the decomposition of the restriction of the complexified tangent bundle of
X under the action of g; and g, (see (2.3)), and let x, and z;, be formal vari-
ables such that p(TX#-82) =11 (1 — (2wix,)*) and c(Kj;) =TL(1+ (2mizjs)),
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where p(TX%"€2) (resp. c(Kj)) denotes the total Pontrjagin (resp. Chern)
class of the bundle 7X%%2 (resp. Kj;). Then the twisted elliptic genus (X))
can be written in terms of these variables as

®6(X)(81, 82, 7)
=e( I <7fixr?9(o,1/2)(xn7))< I jse, 112+ k/c)Zjkss T) >’[Xgl,g2]>,

rik s\ Basz, 12X 7) Fas2+ /e, 172+ ki (Zjkss T)

(2.11)

where c=|gy|, ¢’=|g,|, and, for m, ne Q, the theta function ¢,, ,): Cxh—C
is defined by

S,y 7) = 3 explmil(k+m)*7+2(k+m)(z+n)]}.
keN
[21, p. 10]. The transformation rule (1.10) of the twisted elliptic genus can
be derived from the equality

z ar+b 2rwiez?
0(m""')<e'r+d ’ er+d) —# CXP{ er+d }(er-i-d)”zﬂ(m,,,)(z, ™,

where (m’, n’) = (dm—en,an—bm)+3(ed, ab) and y is a phase factor that
depends only on (g z).

We can rewrite the twisted elliptic genus using the function s(u, 7) that
parameterizes the Jacobi quartic curve (1.5). This function is related to the

theta functions with characteristics via

d0,1/2)(U, 7)
das2,1/2)(U, T)

The twisted elliptic genus does not change if we take j' = jc’, k' = kc, and
¢” = cc’, so we do not lose any generality if we suppose |g,| =|g,| = c. Let us

call
Sk (7) =s<41ri<JT +5,T),T). (2.13)

(s(u, ) ' =yY(u,7) = 2.12)

c c
The functions sy (7) are the x-coordinate functions of the torsion points of
order ¢ of the Jacobi quartic parameterized by s.

LEMMA 2.14. Let (g, 8;) € TG with |g|| = |g,| = c. Then the twisted genus
$(X)(g1, &2, 7) belongs to the ring Z[$116,¢, A, si ), j,k=1,...,c—1.

Proof. Let sj,(7) be the y-coordinate functions of the points of order ¢ of
“the Jacobi quartic parameterized by the function s defined in (2.12). The
group structure of the Jacobi quartic (1.5) induces the identity [18]
s(u)s’(v)+s(v)s’'(u)
1 —es2(u)s2(v)

This identity can also be written in terms of (). In this case it is given by

s(u+v) = (2.15)
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¥2(u) —es?(v)
Y(u)s'(v) — ¥’ (u)s(v)

The denominator of the last expression can be formally expanded as

W (u)s'(v) =y () s()) ' = 3 [1—y(u)s'(v) + ¢ (u) s(v)]".

n=0

Y(u+v) =

If we substitute # = 2mizy; and v =4wi(j7/c+k/c) in the last expression,
then we can see that the contribution of z; to the twisted elliptic genus is

ik
2\[/(27rizjks+ 4m'(’—c7 + ?))

= [Wemizg —es*(ami( L+ )| S u-v@rizsH
"0 v @iz s

From this formula we can conclude that ®5(X)(g;, g2, 7) has a formal ex-
pansion ®6(X)(g, 82, 7) =2y s, st<x’z,-s,:*, [X#-82]), where I = {ij, ..., i},
and Sy = {s(Jk)y, ..., s(jk),} are multi indices, each P;S is a polynomial in
the functions sj(7) and s} (7), and x/ = x! ) 2 ,;"‘ =z5{ Mz Tt
follows that @G(X)(gl,gz, 7)€ Z[5][5, €, sjk(r),s,k(f)] Usmg (2. 12) and the
results about the localization of the zeroes of theta functions of [21, Lemma
4.1], we can see that the functions ¢/ (7) are holomorphic on §. From the
power series expansion

1 di  dk
(1) = - 2ril mdr+ 2 4 &5
(T = S RGO+ 2ai K]y, &P { 7”(’" et ZC)}
dodd
—dj  —dk
—mygzlexp{21ri(md'r+ 26" T+ o )},
d odd

of the functions s at ico, we can conclude that the power series expansions
at ico of the functions 1/s;(7) have coefficients in Z[1/2, 1/c, exp(27i/|g,|)].
Using these facts and the identity (1 —es*(#))s(2u) = 2s(u)s’(1), which can
be derived from (2.15), we see that the functions sj;(7) can be written in
terms of the functions sj. ]

3. The Coefficient Ring Ell;

Basic Definitions
The group I'y(2) X G acts on the left on 7G X} by

_; ar+b
(5 Z),g)x(gl,gz,f)ﬂ(g(gf’gf, glede™), e:+d).

This action induces, for each ke {0}JUN, an action p; of I'((2) XG on the
holomorphic functions ¢#: 7G X — C. The action p, is defined by

3.])
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o (¢ 2),8)9(81,82:7) = (er+d)” kﬂ(g(glgz,g ’es)g ™, ‘”H’)

+d

It is easy to prove, using’th,e cocycle condition (eA"r +d)(e't+dY=(e"T+d")
withA=(25), 4=(%"5), and A"=AA'=(% 1), that p; is well-defined.

DEfFINITION 3.2. We define ElIg** as the abelian group of holomorphic
functions J: TG x ) — C satisfying the following conditions:

M) pe((25), g)9 =0 forall (¢5), ) eTo(2)XG;
(2) for each (g;, g,) € TG, the function #(g, g2, +): h — C has a power se-

ries expansion at ico of the form (g, 82, 7) = Sp=x @nq "8, where
KeZ, q =exp{2nit}, and a,€ Z[1/2,1/|G|, exp{27i/|g82]}];

(3) if n and |C,(G)| are coprime, and if o, is the automorphism of
Z(1/|G|, ¥1, where ¥ = exp{27i/|C, |}, defined by a,(¢) = ¢", then

0n(a,n(81, 82)) = Ay (81, 83)-

REMARK 3.3. The conditions (1) and (2) in definition 3.2 are slightly redun-
dant. For example, using the argument of [20, Chap. 6, Sec. 2], we can see
that a function &: TG x § — C that satisfies condition (1) has a power series
expansion of the form 9(gj, g5, 7) = 3,z @,q 18! at ico. From the theory
of level structures and the theory of the curve of Tate, it follows that the
minimal ring (see [15, p. 80, (Ka-12)]) containing the coefficients of these
expansions is Z[1/2,1/|G|, exp{27i/|g,]|}].

REMARK 3.4. The third condition in Definition 3.2 corresponds to the usual
Galois action of the group (Z/|C,,(G)|)* on modular forms of higher level
[20, Chap. 6, Sec. 3]. It implies that a,(g), -) € R(C, (G)) ®Q [12, Prop. 1.5].
Using the second condition and the usual scalar product of class functions
on G [25, Part 1, Sec. 2.3], we can see that a,(g,, -) € R(C, (G))[1/|G]].

REMARK 3.5. If § e Elig3¥ and 0’e Ellg%', then 08’e Ellg2*+X), Hence the
direct sum EIl;; = @kzo EllZ** has a natural structure of a graded ring.

The Mackey Functor Structure of G — Ellg

Mackey functors are intimately related to equivariant cohomology theories
(see [28], which will be our main reference). Let G be the category whose
objects are subgroups of G, and whose morphisms are generated by in-
clusions H C K of subgroups and conjugations ¢,: H — g 'Hg = H? by ele-
ments g of G.

DEerFINITION 3.6. Let R be a unital ring. A Mackey functor M: G — R-
modules is a family of R-modules M(H) for H e objects G, together with
R-linear homomorphisms; for K C H and ge G,

M1: restd: M(H)— M(K) (restriction),
M2: ind? : M(K)— M(H) (transfer or induction),
M3: c,: M(H) — M(H?) (conjugation).
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These morphisms must satisfy the following conditions:

M4: if L C K C H, then restf rest? = rest! and ind¥ ind¥ = ind#;
MS5: restfy = indf = idpy ) and cgp, = CxC;
Mé6: if he H, then c¢;,: M(H) —» M(H) is the identity;
M7: if KC H, then ¢, rest¥ = rest{: ¢, and ¢, indf = ind¥s, where H&=
cg(H) and K¢ = ¢ (K);
MS8: (Mackey’s axiom) If L, K C H then
restind?= 3 ind% g restin g .
H\G/L

If the functor M takes values in the category of R-algebras, and if the fol-
lowing conditions are satisfied:

G1: the restriction and conjugation morphisms are R-algebra homomor-
phisms mapping 1 to 1;
G2: if KCH, ae M(K), and be M(H), then

ind4(a.rf (b)) =ind¥(a).b, and ind¥(F(b).a) = b.ind¥(a),

then we shall say that M is a Green functor.

THEOREM 3.7. Let G be a finite group. Then the functor H — Ell}; admits
the structure of a Green functor.

Proof. If K is a subgroup of H, then the restriction map rest¥: Ell}; — Ellk
is induced by the restriction of functions to the subset TK xXh) C TH X. If
g € G and K is a subgroup of G, then the conjugation homomorphism ¢,-1:
K& - K induces a map TKéxh— TK x}h. The homomorphism c,: Ellx —»
Ellk: is defined as the composition & — #c,-1. We still need to define an in-
duction map ind¥: Ell% — Ell%;. The group H acts on the right on K\ H by
multiplication and on the left on TH by g X (g, 8,) — (8212, gg,8 ). To
each element (g, g,) € TH we can associate «: Z2 — H defined by a(m, n) =
gl'g". We define (K\ H)"™* = {Kge K\ H | vk eim o, Kgk = Kg}. If 6 e Ell},
and (g;, &,) € TH, then we define

(indf0)(g,82,7)= X O(ggg ™, 88287, 7). (3.8)
Kge(K\H)'"m=

Of course, one must check that this is well-defined and that it satisfies the

axioms of Green functor. This can be done copying the techniques used in

representation theory (see [25, Part 2, Sec. 7), which we shall leave to the

reader. O

The Ring EIN; as a Module over the Burnside Ring

Among the Green functors there is a universal object G — A(G) called the
Burnside ring. The ring A(G) is the Grothendieck ring of the semiring of
isomorphism classes of finite G-sets. Owing to the universal properties of
A(G), any Green functor has a structure of a module over the Burnside ring.
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Let us describe the prime ideals of A(G). A subgroup H of G induces a
homomorphism y: A(G) — Z, defined on a G-set S by S— #{S*'}, where
S is the set of H fixed elements of S. Let p be a prime or zero. Then we can
associate to H and p the ideal g(H, p) = ¢7'(pZ). All the prime ideals of
A(G) are of this form. The product ¥ = 1], ¥ defines a homomorphism
¥: A(G) = I1 ) Z, where the product is over the set of conjugacy classes of
subgroups of G. Proposition 1.2.3 of {28] implies that, after tensoring every-
thing with Z{1/|G|], the homomorphism ¥ becomes an isomorphism. This
result implies that the unit 1 of A(G) can be written as an orthogonal sum of
idempotents ey, one for each conjugacy class in G. Using these idempotents,
we obtain a direct decomposition

M= @(H) eHM (3'9)
on each A(G)-module.

LeEMMA 3.10. Let ey e A(G) be an idempotent corresponding to a subgroup
HCG. Then eyEllg =0 unless H =g, g,) for some pair of commuting
elements g, 2, TG.

Proof. The idempotents ey of the Burnside ring have been explicitly com-
puted by Yoshida [30] and Araki [1]. They are given by the formula

1 G
°H |NG(H)| D?H]DIM(D’H)[D]’
where the sum is over the set of subgroups D of H, N;(H) is the normal-
izer of H in G, p is the Mobius function of the lattice of subgroups of
Ng(H), and [G/D] is the class of G/D as a G-space. Recall that, for a par-
tially ordered set (L, <), one defines inductively the Mébius function u by:
p(s,s)=1; p(s,t) =—2s<y<, n(s,u) if s<t; and u(s,t) =0 if s« ¢. The
product [G/H ]9 is, as a consequence of [28, Prop. 6.2.3], given by

G _ -
['ﬁ] 6(gla g2, T) = 2 0(gglg ls 8828 la T) = K(H, glag2)0(gls 82, T)a
Hge(H\G)%52

where k(D, g,, g,) = #{Hg € (H\G)¢82)}. Then

1
ING(H)l DcNEG(H)IDlu(D, H)K(D’ gl: gZ)l?(gls 82, T)'
Suppose that H is not conjugate to {g;, g,) for any pair (g, g&,) € TG. Then
there are two possibilities. First, if (D, g;,g,) =0 for all DC H, then
ey ElI; = 0. Therefore let us suppose that there exists D ¢ H such that n =
k(D, g, 82) #0. In this case, (U, g,,g,) =n’=n for any subgroup D <
U< H. Then

IDIJU‘(DsH)K(D’gl’gZ)_l— % |U|#(UsH)K(U!gl’g2)
DCUCH

=|D|u(D, H)x(D, g1, 8)+ X |D|u(U, H)x(D, g,g)+K, (3.11)
DSUSH

end(81, 8, 7) =
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where K has no contribution from D. The inductive definition of the Mobius
function g implies that

IDIM(DsH)K(Dsgl’gZ)_*- E IDlnu'(U’H)K(Dsglng)zo
DU H

Hence the contribution of D to ey 9(g;, &5, 7) disappears. Working induc-
tively, in this way we can show that ey d(g, g5, 7) = 0. Finally, if the only
subgroup D of H for which (D, g, g,) # 0 is H itself, then H is conjugate

to (g, &2)- O

The next proposition is a reformulation of Lemma 3.10.

ProposITION 3.12. If 3G denotes the category whose objects are the sub-
groups {g,, &,) generated by elements of TG and whose morphisms are gen-
erated by inclusions and conjugation by elements of G, then:

(1) the restrictions restly . ,: BUS —Ellf, .y induce an isomorphism

EHE = Lir_n<8h32> Ell?gngz); (3.13)

(2) the family of induction maps induce an epimorphism

li—n>1(g|.gz) Ell?gl-gz) - Ellz?’ (314)
and
(3) if C(TG) is a set of representatives of conjugacy classes in 3G then
Ellf ~ @yecaa BN, (3.15)

where W(H) is the Weyl group of H.

REMARK 3.16. Formula (3.13) follows directly from Lemma 3.10 and, by
[28, Thm. 6.3.3], implies (3.14). Finally, the last formula follows from our
Lemma 3.10 and the exact sequence (6.1.4), Proposition 6.1.6, and (6.1.3)
of [28] (see [28, Cor. 7.7.10] for a similar formula for the representation
ring).

REMARK 3.17. One should in principle take the localization of Elly at the
set S(H) = q(H, 0), but the elements Sz, are units (they correspond to the
functions s (7)) in Ell; so we do not need to localize.

The Structure and Geometry of Ellg;
Our aim in this section is to find generators for Ellg; and to establish a flat-
ness condition for Ellg.

ProposITION 3.18. The ring Ell is a flat EIl module.

Using (3.15) and the fact that, since |G| is invertible, we can obtain the
W(H )-invariant elements using a projector, we see that it suffices to con-
sider the case G = {g;, g,). We can also suppose, by the structure theorem
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of finite Abelian groups, that |g;|||g>|. In this case C, (G) = G and the ac-
tions of (Z/|G|Z)* and I'y(2) X G on TG combine in the usual way, sending
neZ/|G|Z to the matrix (’5 ?), into an action of GL(2,(Z/|G|))xG (by
the exact sequence of [20, p. 62]).

Choosing a fixed representative [g;, g,] in each orbit (g;, g,) of the action
of GL(2,(Z/|G|Z)) X G on TG, we obtain a ring homomorphism

A:Ell,&h[’]—) @ Ell*(r([glng]))’ A(ﬂ)'_— E 0([glag2]:')a

[gl,gZ] [g11g2]

where I'([g), &,]) is the isotropy group of [g,g,] in I'y(2), and where
Ell=2%(I'({g,, g,1)) is the group of holomorphic functions &: § — C such that:

M o(z: 3)=(e7+d>’<ﬂ(r> for all (° %) eT((g g2));

(2) ¢ has a power series expansion at /o of the form

; . 1 1 2wi
37) = a,q¥ /18l with a eZ[——,—, ex —]

We define EII*(T'([g), £2]) = @y =0 EI2X(T([ 21, £21).

PRroOPOSITION 3.19. The morphism A is an isomorphism.

Proof. It is obvious that A is injective. It is also an epimorphism. This fol-
lows from the minimality conditions on the ring on coefficients and the re-
sults of [9, Chap. VII]. The morphism A gives the values of a function ¢ at
the elements [g;, g,]. Then, using the power series expansions of the mod-
ular form d([g, &2], *) at the other cusps of h/T'([g;, g>]) and the transfor-
mation formula (1) of Definition 3.2, we can compute the values of the func-
tion ¢ at the other elements of the orbit, under the action of I'y(2) X G, of
[g1, £>5]). The results of [9, Chap. VII, esp. Cor. 3.13] show that the coeffi-
cients of these expansions have the right properties. Finally, using the Galois
action of (Z/|G|Z)* in the theory of modular forms, we can extend the
definition to the rest of the elements of 7G. 0O

Using A, we can reduce our study of the structure ElIf; to the study of the
structure of the factors EII*(I'([g, g21)). The subgroups I'([ g;, g>]) are always
congruence subgroups. The choice of [g;, g;] defines a homomorphism of
groups ZxX Z — G, given by (n, m) — g{'g4"; this homomorphism defines an
exact sequence of abelian groups 0 — L — Z2 - {g;, g,) — 0, where {g,, g,) is
the subgroup of G generated by {g;, g,}. The isotropy group is equal to the
subgroup of I'y(2) that preserves L.

Condition (2) of Definition 3.2 implies (see the introduction to [9]) that
we must work in the setting of algebraic geometry. Our references for this
section are [9] and [16].

DEFINITIONS AND FACTs 3.20. Let S and S’ be schemes over Z[1/2].
(1) An elliptic curve E 2,8 over S (see [9, Def. 1.0]) is a proper and
flat morphism of relative dimension at most 1 and constant Euler-Poincaré
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characteristic 0, together with a section s: S — E. An elliptic curve admits
a unique structure of a group scheme.

(2) The sheaf wg|s— S is defined as wg|s = p«(Qg|s), where QEIS'E_*E is
the invertible sheaf of relative differentials.

(3) Let [n]: E—-E, neN, be the map induced by multiplication by # in
the group scheme structure on the elliptic curve. Then, if 7 is invertible in §,
the map [n] is étale. We shall let E[n] = ker[n].

(4) An elliptic curve E— S is universal if, given any other elliptic curve
F — §’, there exists a commutative diagram

F = E

b

st s

such that « induces an isomorphism F— E X S".

(5) Let A be an abelian group. An A-structure on an elliptic curve E— S
is a morphism of abstract groups ¢: A — E such that the effective Cartier
divisor D, of degree #A4 defined by D, = >, 4[#(a)] is a subgroup of E|S.

(6) A modular form f of level A and weight k is a rule that assigns to
each triple (£ | spec(R), ¢, w) formed by an elliptic curve E | spec(R) over the
spectrum of a ring R together with an A-structure ¢ on E and a basis w of
WE|spec(r) an element of R in such a way that:

(i) the element f(E |spec(R), ¢, w) depends only on the R-isomorphism
class of the triple (E |spec(R), ¢, w);
(ii) f is homogeneous of degree —k in the third variable; and
(iii) the formation of f commutes with arbitrary extensions of scalars.

ExampPLE 3.21. We shall be interested in five types of level structures as
follows.

(1) T’'(n)-structures are defined by a group homomorphism Z/nZ X ZnZ 2,
E[n] that is an A-structure in the sense that E[n] = X{é(i, j)].

(2) Ty(n)-structures are defined by an isogeny «: E — E’ of degree n such
that locally f.f.f.p. (faithfully flat of finite presentation) ker o admits
a generator.

(3) T'y(n)-structures are A-structures for the cyclic group Z/nZ.

(4) Jacobi structures M ;(E|S) is the set of pairs (a, w) with a a I'y(2)-
structure on E | S and  an Og-basis of wg .

(5) <&, gy)-structures are A-structures for the abelian group (g, g2). The
moduli problem 9 is closely related to Jacobi quartics.

LEMMA 3.22. Let (E— S, ) be an elliptic curve with a T'y(2)-structure o
E — E’and let U— S be an étale open set U = spec A, where g« y admits ¢
Oy -basis w and where there is an element P e E[2] such that, over U, the iso-
geny o corresponds to E =~ E/{e, P} = E. In this case P = n(E[2]—{e, P})
is a point of order 2 in E. Then, if E | = Spf(A[[T]]) is the formal com-
pletion of E | along the zero section s, with T a local parameter adapted to
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w (see [16, p. 69]), then the~re are unique elements x € O(—(e+ P) + *(P)) ly
and y € O([2]*(P) —2(x*(P))) such that if 3: E|y— E |y is translation by
P then:

(1) xB8 =—xand x(—a) = —x;

(ii) yB=—yand y(—a) = y(a);
(iii) x ~ T(1+ higher terms) and y ~ (1+ higher terms);
(iv) there exist 8, ¢ € Og such that y* =1+ 8x%+ex*,

Proof. The result can be proved in the same way as Proposition 2 of [11].
The construction of [11] deals with the case S = spec k where £ is a field of
characteristic different from 2, but it can be easily modified (working as in
[16, Chap. 2]). O

COROLLARY 3.23. The moduli problem I ; is represented by the universal
Jacobi quartic

E; =spec(Z[11[6,¢, A X, Y]1/(Y2—1+4+28X%—eX?))
over M, = spec Z[1]16, ¢, A'], where A = 6(e —6%).

Modular forms of level A4 are related to the existence of a pair (E4 — 3,4, ¢)
that represents the moduli problem of A-structures. If such a pair exists, then
the ring of modular forms of level 4 can be defined as @5 o T'(M 4, 0®").

PROPOSITION 3.24. The simultaneous moduli problems (A-structure, M),
where A-structure is one of the structures of Example 3.21, are representable.

Proof. The existence of E,;— N4, for the simultaneous moduli problem
(A-structure, NT,), where A-structure is I'(n), I'1(n),Iy(n) and n =3 is an
odd natural number, is a consequence of [16, Lemma 3.2.3, result (4.3.4), &
Thm. 5.1.1]. If TI'(g,, g,) is the isotropy group of a pair (g;, g,) € TG, then
there exists n odd such that I'(n) C I'(g;, g,). The group I'(g,, g,) acts on the
moduli problem of I'(n) NTy(2)-structures. Using the theory of [16, Chap.
7], one can show that the moduli problem ({ g, g,)-structures, N,) is repre-
sentable by a curve Erg, .y, 7= Mg, ¢, 7 and that My, ;= My, g, 7 18
a I'(g, £2)/T'(n)-torsor.

REMARK 3.25. From the results of [16] (especially (4.3.4) and (5.1.1)), it fal-
lows that the Jacobi quartics corresponding to the universal curves Erg, g.), s
that represent the simultaneous moduli problem ({ g;, g,)-structures, 9 ) are
obtained from E; by change of basis; that is, Er(,, g,),7 = Es Xor, Mrg,, g,)-

Because we are including a choice of a basis w of wg s in the definition of
the moduli problem (I'(gy, g5), I ;), it follows by Definition 3.20(6) that the
ring of modular forms of level I is included in O(My, o,y s)- This ring is
equal to O(M)[6, €, A']. One can therefore reduce its study to that of the
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moduli 9Mp. Let us begin with the case of I'j(n)-structures. In this case the
moduli is a subscheme [16, Prop. 1.10.13] of E;[n], the set of n-torsion
points of the universal Jacobi quartic E£;. The ring O(E;[n]) is by Remark
3.25 (see also [14]) equal to

(M[X, YIAY?=14+26 X2+ ex* )T (X), YG(X)—FX(X)),
where the polynomials 7,, G,, F,, are defined by the equalities
[n]X = X" F (X ) FY(X), (3.26)
[n]Y = YG,(X)F,%(X), (3.27)
and T,(X) = X" F(X™).
PROPOSITION 3.28. The ring O(E,[n]) is isomorphic to

R, =Z[3118, ¢, AN X1/ T (X)).

Proof. The explicit description of the polynomials 7, and G, given in [14]
shows that they are coprime; hence G,([X]), where [ X ] is the equivalence
class of X, is a unit in R,. Putting Y = F>(X)G,!(X) yields the isomor-
phism. ]

The ring O(Mr, ;) is a quotient ring of O(E;[n]). Geometrically speaking,
O(E,[n]) represents the points of order < n while O(IMr,(,),) represents the
points of exact order n. The explicit description of O(Mr, (ny,) is

Z[3116, €, A7'1[x], (3.29)

where [x] is now a root of the polynomial ®,(X) defined in [14, p. 447]. This
polynomial divides 7,(X). Let us consider the analogy with nth roots of
unity. In this case the polynomial 7,,(X) corresponds to X" —1 and the poly-
nomial &,(X) to the cyclotomic polynomial. The coefficient functions of
the x-coordinates of the torsion points (i.e., the roots of 7,,) correspond in
the analytical setting to the functions s;; defined in (2.13). In particular they
are modular forms, so we see that the inclusion of the modular functions
in (Mg, ¢,),,) is an equality. Also we see that the root x in (3.29) can be
taken to be the function s;9(7). The moduli of T', structures is a subscheme
of E,;[n] Xgy, E;[n], and the coeflicient ring is a quotient of the tensor prod-
uct O(I'y(n)) g, O(T'1(n)) = Ryl x), x;]; more precisely, it is isomorphic to

Ro(510(7), 501(7)) (3.30)
or to any other pair s;;(7), S, (7) such that the mod » reductions

(i,J), (k,m)eZ,xZ,

form a basis of Z,, X Z,,.
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REMARK 3.31. Let us remark that the ring defined in (3.30) contains also
the functions s (7). This follows from the proof of Proposition 3.28. Using
(2.15), we see that the ring (3.30) contains also all the functions sj (7).

The final conclusion is that in any case we can generate the ring of modular
functions using the x-coordinates of the torsion points of the quartic.

Proof of Proposition 3.18. The moduli problems I'(g;, g,), J are flat (this is
due to the fact that the problem I'(n) is flat [16]). Therefore EI*(I'(gy, g5)) is
flat over Ell*. The proposition follows from Proposition 3.12 and the exis-
tence of the morphism A. O

Comparison between ENl; and ENI*(BG)

Let us suppose now that G = Z/pZ, where p is an odd prime, and let BG be
the classifying space. In this case an element of 6 € Ell; is completely deter-
mined by its values on the classes ([0], [0]), ([0], [1]) e GX G = TG. There-
fore, by the isomorphism A,

Ellg ~ EF@EN*(Ty(p)) ~ EI*@EN* (X 1/@,(X) ~ EII*[ X1/ T,(X).
On the other hand, it is known [13] that
Ell*(BG) ~ EII*[[X]1)/[ p]1X.

This ring is different from EIll§;. For example, it is not a finitely generated
Ell*-module. However, one can see that it can be obtained using an I-adic
completion of Ellj; [10]. The situation is analogous to the relation between
the rings R(G) ~ Z[X]/XP?—1 and K(BG) = Z[[ X 1/(X—-1)?-1.

4. The Homotopy-Theoretic Twisted Elliptic Genus

In this section we shall extend the domain of definition of the geometric
twisted elliptic genus ®; to the homotopy-theoretic equivariant bordism ring
MSOY¢. The ring MSOY is the coefficient ring of a stable G-equivariant
homology theory [8] MSOY(X) which we shall now describe. Let (X, A) be
a pair formed by a G-CW complex X and a G-CW subcomplex A. Then,
for each real orthogonal representation V of G of dimension |V|, there exists
a suspension homomorphism

a(V): Q(X, A) = Q7 Ly (D(V) X X, (D(V) X A)U(S(V) X X)), (4.1)

where D(V') (resp. S(V)) is the unit disk (resp. the unit sphere) in V. The sus-
pension o(V') is defined, for (M, M) — (X, A) a representative of a cycle, by

{(M, M) — (X, A)}
= {(MXDWV),d(MXxXD(V)) = (XXDIV),(DV)xA)U(SV) X X)).

In general, (V') is not an isomorphism (unless G acts trivially on V).
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Let U be an orthogonal representation of G that contains, an infinite
number of times, each finite-dimensional representation of G. We shall or-
der the set FU of finite-dimensional G subspaces of U by V < W if V is iso-
morphic to some G-submodule of W. Using this order and that s(VO® W)=
o(V)o(W), we can define a structure of a direct system in {QS(X xD(V),
(D(V) X A)U(S(V) x X))}.

DErINITION 4.2. The homotopy-theoretic equivariant bordism group [8,
p. 72] of the pair (X, A) is the graded group MSOY(X, A) defined by the
equality

MSOZ(X, A) = limycpq Q74| (DY) X X, DIV)XUS(V) X X).  (4.3)

REMARK 4.4. The way in which the theory MSOZ(X, A) has been defined
corresponds to the definition of [8] only when the order of the group is odd,
since then the universal equivariant orientation in the sense of [8] is deter-
mined by an orientation-preserving action of G (see e.g. [7, Sec. 6]).

Let us suppose that G =(g, h) and gh = hg. Let (g,2,) € TG. From (4.3)
we see that, in order to extend the domain of definition of ®; to MSOg, it
suffices to define, for each Ve FU, a morphism

8%: 0, 1y(E(V)) » ElIS,

where X(V) =D({V')/S(V), in a way compatible with the suspension maps
4.1).

Let (M, M) — (D(V), S(V)) be a representative of a class in QE(D(V),
S(V)). In the definition of ‘I%(M , 0M)(g;, &2, T) we must consider two cases.

Case 1: Suppose that G = (g, g,) and let V =V,®V; be the orthogonal
decomposition of V given by V, = {veV|gv = v Vge G} and V; = V. Then
a(Vp): QC(D(V)), S(V})) = QC(D(V), S(V)) is an isomorphism. Suppose that
(N, dN) -2+ (D(V}, S(V})) represents the class of a~!( Vo)(M, dM), and let
V= @,} n;;V;; be the decomposition of V' into irreducible factors. By hy-
pothesis, D(V;)%82 =0 so N¥'82C p~}(0). Let TNys.e: = TF®NF be the
decomposition into the part TF tangent to the fiber of p: N— D(V') and the
normal part NF of the restriction of the tangent bundle of N to Né%2, Then
we define

(M, M) (g1, 82,7) =11 s,-}”'f(r)< 217D
ij

®([dim 7F])

The conventions in (4.5) are the same as in Definition 2.7, and the functions
s;;(7) are those defined in (2.13).

Case 2: Suppose now that H = (g, g,) # G, and let V" and (M’, dM’) be
the representation V and the manifold M with the H action. Then we define

®E(M, IM ) (g), 82, T) = B[ (M, M ’)(g), 82, T)s (4.6)

where the right-hand side is defined as in Case 1.

; [Ngl'gz]>. (4.5)

We can now handle the general case.
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ProrosiTioN 4.7. Suppose that, for any H € objects 3G (see Proposition
3.12), there exists an extension ®y: M SO - ENlY of the geometric twisted
elliptic genus ®y. Suppose also that if K= H is a morphism in 3G then
apn®y = P apso, Where the morphisms agy and oo are the morphisms
induced by restriction or conjugation morphisms defined by the Mackey
functor structures of ENI¢ and MSOE. Then there exists a unique extension
of &g compatible with the restriction and conjugation morphisms of the
Mackey functor structures of MSOC and ElI°.

Proof. By hypothesis, an extension of the geometric twisted genus $; must
fit into a commutative diagram
%,
rest | rest | (4.8)
limeg, g,y MSOEvE? — limg, ¢,) Eli{8r82),
where the limits are taken over the category 3G and the bottom row is ob-

tained from the extensions of ®;. The result follows because, by Proposi-
tion 3.12, the restriction in the right-hand column is an isomorphism. 0

REMARK 4.9. The functions o;;(7) are what we obtain in Witten’s twisted
class if we take E to be the trivial vector bundle V;; X X — X. Since they are
units, Witten’s twisted class is well-defined.

PRroOPOSITION 4.10. If V and W are two elements of FU such that VUW =
0, then ®LBYe(W) = BL.

Proof. 1t clearly suffices to consider the case G = (g, g,) and to check that
both sides give the same result when we evaluate them in (g;, g5, 7). In this
case, the result follows immediately from the defintion. O

Let
Apso = [HP?([CP?1*>~[HP?])?e MSO, C MSOC.

Then (A ss50) = (A) € ElIS. Since A is invertible in EllG, the twisted elliptic
genus admits a factorization
Mso¢ 2o En¢

| ||

MSOC[1/Ays0] &> EIIC.

The same is true, of course, for cobordism and Ellg. By standard arguments
of change of rings we have the equality

1
MSO

We can therefore use MSOG[1/A 350](X) instead of MSOF(X) in our com-
putations.

MSOG(X) ®umso, Ellg = MSO*G[A ](X) @MSOg[1/aps0] ENG-
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ProposITION 4.11.  For each finite G-CW complex X, the functor

H—>MSO£’[——1——](X) (resp. H—»Msoy,[ ! ](X))
Amso Apmso

has the structure of a Mackey (resp. Green) functor such that the natural
transformations

1
MSO

1
MSO

MSOf(X)—»MSOf[A ](X) and Mso;,,(X)—»Mso;,[A ](X)

are transformations of Mackey (resp. Green) functors.

The proof is easy and is left to the reader. From now on, for any subgroup
H of G let msof;(X) = MSO}(X)[Axsol®Z[1/|G|], and let mso*(X) =
MSO*(X)[A31s0®Z[1/|G|]. Because |G| is a unit in Ellf, it follows that
EllG(X) = msog(X) ®uusor, ENIG.

It is not difficult to show that the geometric twisted elliptic genus $5: QF —
Ellg is a natural transformation of Green functors. The stabilization proce-
dure used in order to pass from Q¢ to MSOY is compatible with the Mackey
functor structure. It is also easy to see that each one of the homomorphisms
@{/g,, ¢,y 1S compatible with the Mackey functor structure in the sense that
rest(@8) = &5 and ind$(®};) = 29Y; a similar formula holds for the
conjugation. The restriction and induction on the “representation variable”
V correspond to the restriction and induction on representation theory.

ProrosiTiION 4.12. The homotopy-theoretic twisted elliptic genus ®;:
msog; — BN, is a natural transformation of Mackey functors.

PRoPOSITION 4.13. The homotopy-theoretic twisted elliptic genus ®g:
msog; — Ellg is an epimorphism.

Proof. Using Proposition 4.12 and Proposition 3.12, we see that it suffices
to consider the case G = (gj, g,>. In this case it suffices to prove, using the
isomorphism A, that if (g;, g,) = G then, for all 8 € EII*(I'(g;, g,)), there
exists [M] € msog such that ¢5([M]) = 6.

By the structure theorem for Abelian groups we can suppose that G =
Z/cZxZ/c’Z where ¢’|c. Let us suppose first that ¢’ = c. In this case

Ell*(Ty(c) UTp(2)) = Ell*[sj(7)], (4.14)

where s (7) are the functions defined in (2.13). The result follows from the
fact that the functions s;,(7) can be obtained by applying the homotopy
twisted elliptic genus to the Euler class of the irreducible representation Vj
of weight (j,k) of Z. X Z..

We can now consider the general case. In this case

I'(g, ) ={(25)eTo@)(?5) =(, ) modc},
where j =1, -, ¢/c’. The ring EIl*(I'(g;, g>)) is in this case equal to
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ElI*(T'(c) NTo(2) 7, (4.15)

where H =T1'(g, g,)/T(c)NT,(2). The morphism (‘; Z) — b induces an iso-
morphism H ~ Z/(c/c’)}Z. On the other hand,

R(Z/cZXZ/c'Z) =R(Z/cZXZ/c'Z)",

where the action of H is induced by its action on G. The result follows from
the previous case and the fact that the homotopy-theoretic elliptic genus is
H equivariant. O]

Let us record now two auxiliary results that we will need in the next section.

PROPOSITION 4.16. Let H be a subgroup of G, and let Iy be the kernel of
the homotopy-theoretic twisted elliptic genus ®;: msoy; — Ell};. Then Iy =
rest%(Ig)mso};.

Proof. The inclusion rest$(Ig)mso}; C I;; follows from Proposition 4.12.
We shall prove the other inclusion by induction on H. If H is the trivial sub-
group, then the result is obvious. Suppose then that the result is true for any
proper subgroup of H. Let Ny(G) be the normalizer of H in G and let Py =
(1/|[Ny(G)|) Zgen,, ) Ce- Then Py msof — msojis a projector, and apply-
ing it to I; we obtain a direct sum decomposition Iy = I} + Iy with I} =
Py(Iy) and I} = (1—P)Iy. Let [M] = [M]1+[M,le I[}}’ + I},;. Then

restG indG([M 1) = rest indG([M,]) +rest$ ind§([M,]). (4.17)

Since the homotopy-theoretic twisted elliptic genus is a transformation of
Green functors, the left-hand side of this formula is in rest$(I;). Let us
study now the right-hand side. Recall that the induction and the conju-
gation homomorphisms commute and therefore 0 =ind%(Py([M,])) =
PH(ind,G.,([MZ])]; however, since Ny C G, Py acts on msog as the identity.
This implies that rest$ ind%[(M,]) = 0. By the Mackey axiom,
restGindG (M) = X indfnpyerestin ge c ([M)]).
ge H\G/H

There are two possibilities: either A% = H (in which case ge H \ Ny(G)/H);
or HN H¥ is properly contained in H. We can therefore write

rest$ indG([M;]) = Wi+ W,

where
— s H H?
Wl = E 1ndHan restynpge Cg([Ml])

ge H\Ny(G)/H
and

— LY ; | H¢

WZ"‘ E ll'ldHan restgn me Cg([Ml]).
ge H\G/H
Hez=H

As [My] e I}YY, W, = k[M,] where k is a number that divides |G|. On the other
hand, by the inductive hypothesis each one of the terms rest¥f ;¢ co([M)]
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in the sum that defines W, is in rest$n ¢ (Ig)mso};n = and, by Proposition
4.12 combined with condition G2 of Definition 3.6, it follows that ¥, is in
rest$ (1) mso};. ad

COROLLARY 4.18. The isomorphism «k: msof(X)— mso5(G/HXX) ir-
duces, for any finite G-CW complex X, an isomorphism «:Ell;(X) -
Ell;(G/H x X).

As an application of the theory of Green functors let us establish a flatness
lemma for oriented equivariant cobordism. The technique can, in principle,
also be used for any stable equivariant cohomology theory.

PROPOSITION 4.19. The ring rsog is a flat mso* module.

Proof. We shall prove the proposition by induction on |G|. The case |G| =11s
trivial. Let us suppose then that the result is true for any group H such that
|H|<|G|. The decomposition A(G)RZ[1/|G|] =D ex(A(G)RZ[1/|G|])
induces a decomposition msog = @) exymsog. It is not difficult to show
that this decomposition is a decomposition of mso* modules, so it suffices
to show that each one of the factors is a flat mso* module. By Lemma 2.2 of
[13], the restriction rest$ induces an isomorphism egmsof; = ep{mso};}" 7.
The mso* module ey {mso};}?"* is a direct summand of mso};, since it can
be obtained applying the projectors ey and (1/| Ny (G)|) Z,e Ny(G) Cg- There-
fore, if H is a proper subgroup of G, then by the inductive hypothesis the
mso* module ey {mso};}" is flat. Let us consider now the factor egmso.
By Theorems (3.6) and (4.7) of [1], there is an isomorphism egmsog =
mso®*. (In [1] it is shown only that it is an isomorphism of A(G) modules,
but this isomorphism is obtained as a composition of a restriction with a
“restriction to fixed point spectrum” and is therefore also an mso*-modules
homomorphism.) Therefore, the theorem is also true in this case. O

5. Statement and Proofs of the Main Results
In this section we shall prove Theorem 1.8.

PRoPOSITION 5.1. Let X be a finite G-CW complex. Then the functor H —
Ell};(X) has a natural structure of Green functor.

Proof. Because the homotopy-theoretic twisted elliptic genus is an epimor-
phism, Ell§(X) is isomorphic to msog(X)/Ismso;(X), where I; C msog
is the kernel of the homotopy-theoretic twisted elliptic genus. We want to
show that the Green functor structure of H — msof(X) induces a Green
functor structure on X — Ell};(X). For this it suffices to show that the re-
striction, conjugation, and induction homomorphisms of the Green functor
structure of msog preserve the ideals I5msog5(X ). The result for restriction
and induction is an immediate consequence of Proposition 4.12 and the fact
that they are morphisms of algebras.
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We need to show that also the induction morphisms ind¥ pass to the quo-
tient. This result follows from Proposition 4.16 and condition G2 in Defini-
tion 3.6 of a Green functor. a

COROLLARY 5.2. Let X be a finite G-CW complex. Then the natural trans-
Sformation

msog(X) — EllG(X)

is a natural transformation of Green functors.

THEOREM 5.3. There exists a natural equivalence of functors

Ellg(X)» @ [EI*(X5 %) @y Elif,, g, )50 ,
(81,82)€CC

where the sum is taken over a complete set CC of representatives of conju-
gation classes of subgroups of the form (g, g,), W&, &2)) is the Weyl
group of {g, &2, and the localization is with respect to the set S({g;, &2)),
which is the image of the ideal q({g, g5),0) C A(G) under the natural ho-
morphism A(G) — ElN§. Both functors are functors from finite G-CW com-
plexes to graded rings.

ProrosiTION 5.4. The functor

X-> @  UEIX®5) @prEllly, g8 (5.9)
(81,82)€TG/G

is an equivariant cohomology theory.

The proof of this result follows from an argument entirely similar to the
argument used to prove Propostion 2.2. The key point is the flatness of
Ell, ¢,)» Which was established in Proposition 3.18.

Clearly, Theorem 1.8 is an immediate consequence of these results.

Let

Ellg(X)= @ eyEllE(X) (5.6)
HeG
be the decomposition of Ell;(X) induced by the Burnside ring module struc-
ture of equivariant elliptic cohomology (see (3.9)).

ProrosITION 5.7. There is a canonical isomorphism

eH(mso*G(X) 6] Ell’{;)z eg(msog(X)) X eyElE.

msog e msog

The proof is straightforward given that multiplication by elements of the
Burnside ring commutes with multiplication by elements in msog;.

The action of the Burnside ring on EIl; has been described in Proposition
3.12, so let us now describe the “topological” part.
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PRroposITION 5.8. Let i: A(G) —» mso5(X) be the natural ring homomor-
phism defined by the Green functor structure of msog(C). Let (H) be a
conjugacy class of subgroups of G and let H be a fixed representative in
(H). Then there exists a natural isomorphism of functors

ep(msog (X)) = {(mso*(X™) ®psor msok) scrpl” s

where S(H) = i(q(H,0)) and mso*(X*H) R msor MSOFysrry IS the localiza-
tion of the A(G) module mso*(X ) ®,,sor mso%; at S(H).

Proof. We shall prove the proposition in two steps.

Step I: By Lemma 2.2 of {13] and the isomorphism «:mso}(X)—
mso;(G/H X X), there is an isomorphism

ey msog(X) = eymsos(G/H x X yWH
= ey msoi (X H)WH,

By Lemma 4.7 of [17], it follows that ez mso} (X )" = msoj (X )¢,

Step 2: Let X be a finite CW-complex with a trivial H action. We have
two natural homomorphisms / and p*. The first one,

i mso*(X) - Qi(X)®Z[1/|G|] » msok(X),

is the natural inclusion obtained by regarding a manifold M — X as a G-
manifold with the trivial action. The second one, p*: msof — msog(X),
corresponds to p: X — pt. These homomorphisms induce, by multiplication,
a group homomorphism r(X): mso*(X) ®z[1/|g|) MsoG — msog(X), where
(mso*(X) ®z(1/g|y Msog) has the graded tensor product structure. Since
msog(X) is graded commutative, r is a ring homomorphism. This homo-
morphism induces an homomorphism 7'(X): (mso5(X) &0 MSOG) —
msog(X). By Proposition 4.19, msog; is a flat mso* module, so the functor
X — (mso*(X) ®z msog) is an equivariant cohomology theory. The func-
tor X - msog(X) is also a generalized cohomology theory. It is easy to see
r’ is a natural transformation between both cohomology theories that is an
isomorphism when X = pt. The comparison theorem implies that r’ is an
isomorphism of cohomology theories. O

Combining all the previous propositions we obtain the following isomor-
phism. (For simplicity, from now on we shall omit from the formulas the
localization with respect to S({g;, £>)).)

ey ElG(X) = (mso*(X ™) @peor msof )" &) (EURYH. (5.9)

[msop )"

The set of WH-invariant elements of {mso*(X ) ®,,s.+ m50};} can be ob-
tained taking the average with respect to the WH action. It follows that

{mSO*(XH) Rmso* mso;{]WH = {mso*(XH)}WH@)mso‘ [mso?-l}WH- (5.10)
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Combining this isomorphism with the commutative diagram
mso* - {msoi}"H
@ l l @y
Ell* - (Elx"H,
where / are the obvious inclusions, we obtain from (5.10) an isomorphism
ey Ell5(X) = {EI*(X F)"H @y BN (5.11)

Repeating the same argument used to establish (5.10), we conclude that there
is a natural isomorphism of functors

(EI*(X “)"H @gy» B - (EIM(X ) @y ENEYYH.
Theorem 5.3 follows immediately.

COROLLARY 5.12. If G acts trivially on X, then Ellg(X ) =EI*(X) @ EllG.

6. Equivariant Euler Characteristics

Graded Fields

A graded field F = @); F; is a graded ring in which every nonzero homoge-
neous element is invertible.

PROPOSITION 6.1. Let [F be a graded field and let G be a finite group that
acts on [ via automorphisms of degree 0. Then:

(1) every graded F-module M is free; and
(2) if F¢ ={oeF|go = o Vg€ G}, then FC is a graded field and

rankge F =|G|.

Proof. The first assertion is a standard fact of graded algebra. The key
points are that from any set of generators one can find a set of homogeneous
generators. It is then easy to show, using the same argument of linear alge-
bra, that a minimal set of homogeneous generators is a basis. The proof of
the second statement is similar to the proof of Theorem 3 of [4, Chap. §,
Sec. 7.5]. O

If T is a congruence subgroup of I'y(2), then we shall denote by F(I') the
graded field of fractions of EII*(I')®C. Let I'c =T'(|G|)NTy(2) and [F§ =
F*(T¢).

These graded fields are obtained by taking meromorphic modular forms
instead of holomorphic ones, and appear naturally in the theory of auto-
morphic forms [26, Def. 2.1]. We need to work with them since they capture

the action of ('(')1 _01), which cannot be seen if one works with fields of mod-
ular functions. For example, we see from condition (1) in Definition 3.2 that
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elements of degree O can not distinguish between (g;, g,) and (g}, g51). This
difference introduces a crucial factor of 2 and destroys the relation between
Ell§; and modular forms of high level.

Proof of Theorem 1.12. Let [F} =[F*(I'y(2)). There are two advantages in
tensoring by C. The first one is that we can use the classical theory of modu-
lar forms to compute the numbers involved. The other advantage is that we
can limit ourselves to the study of the I'y(2) X G action, since the Galois
symmetry disappears (cf. [20, Chap. 6]).

We shall consider first the case X = pt. In this case, since ElIZ4 =0, we
need only compute rankp:(Ellg @gy F7)"". Let us fix [g), g2]1€ TG repre-
senting a simultaneous conjugacy class (g;, g,), and let I'([ g, g,1) C I'y(2) be
the isotropy group of [g, g;]. Using the results of [9, Part VII], one can
prove that EII*(T'(g;, g,))7® = Ell*. It follows that F(I'(g;, g,))Fo® =,
and using Proposition 6.1 we find that

ranke (r(ig,, g, Fe(L'(181, 821)) = [T(2), I'([&1, £21)] = #[ &1, 821,

where #[&1, g2] is the cardinality of the set I'y(2)[g), g2]. If G, gz(G)_
(G)ﬂng(G), and if S is a set containing one representative [g;, g,] in
each orbit (g;, &) of Ty(2) XG on TG, then

rankg: EIF"®FF = > rankg EI*(T'[g), £2]) @en e

[g1,82]1€S8

1
—_— G)| = #TTG (6.2)
G115, 2o Coraal O = G770

THEOREM 6.3. There is a natural isomorphism

ElL(X) Qe F6 @ [EIF(XE8) Qe F5]CerelD),
[£1,8:1€TG/G

where the sum is over a set of representatives of simultaneous conjugacy
classes in TG and | -++]%-'?) denotes the C, ,,(G)-invariant part.

Proof. Let us choose a pair (g, g;) € 7G and let H C G be the subgroup
generated by g; and g,. Then we have a homomorphism

EllG (X) @ F5 LGB, Blis (X ) @ FE (6.4)
The inclusion X#°82 <+ X of H-spaces induces a homomorphism
Ell}(X) @g F - Ellj (X ™) @pn- FE. (6.5)

The space X 7 is a trivial H-space, so by Corollary 5.12 there exists a natural
isomorphism

Ell;; (X ") @i Fg = [EINX ) Qg+ F&] @i [EUE®Fg).  (6.6)
Composing (6.4), (6.5), and (6.6), we obtain a homomorphism
Ell5(X) Qg F& — [ENMX ) @gpe FE] @i (B (1) Qe FEL (6.7)
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Since we are taking restriction of elements in Ell;(X), it follows that (6.7)
factors through the C, , (G)-invariant elements. Evaluation on (g, g,) in-
duces a homomorphism Ell}; @gy F& — F&. Using this homomorphism, we
obtain from (6.7) a well-defined homomorphism

Ve, g, EIG(X) @y FS — (B (X ) Qg FE) Corre(, (6.8)

We define ¢ = G—)t//gh g,» Lhe same argument of Proposition 2.2 shows
that both sides of (6.8) are equivariant cohomology theories, and it is easy
to see that y is a transformation between them. For the case X = pt we
know that ¢ is an isomorphism. To check that this is true in the general case
we need only check [2] that this is true when X is of the form G/H, where
H is any subgroup of G. In this case, by Corollary 4.18,

EllG(G/H) gy FG = Elly(pt) Qg Fé- (6.9)

Because we are working with modules over a graded field, in order to show
that they are isomorphic it suffices to show that they have the same rank. The
rank of Ell};(pt)®F¢ as a F&-graded module is equal to (1/|H |)(#TTH).
The right-hand side of (6.8) is

@  [EIF(G/H)?"8) @y ] Cor ), (6.10)
[81,821€TG/G

If [g,g,]N(HXH) =8, then (G/H)%"%2 =@ so there is no contribution
of the class [g;, g,] to (6.10). If g, g,]N(H X H) # @, then we can choose
a representative (4, h,) € H X H of the conjugacy class [g;, g,], and then
(G/H)" "2 s the set of classes gH such that kg = gh{ and h,g = gh} for
some pair (4], h3) € TH. The rank of the submodule of C; . (G)-invariant
elements of EII'((G/H )®"#2) @[ is equal to #{(G/H)*"82/C, , (G)).

The function gH — (g ~'h,g, g 'h, g) induces a surjective map (G/H )& &2 3>
([g1, &82]NTH)/H, where H acts on (g, g2,]NTH by conjugation. One can
see that s(gH) = s(g’H) if and only if gH and g’H are in the same C,, ,,(G)
orbit; therefore, #{(G/H)*"%/C, . (G)} = #{([g),821NTH)/H.} Note that
TH is equal to the disjoint union of the sets ([g,, g,]NTH) and that the ac-
tion of H by simultaneous conjugation is compatible with the decomposi-
tion. Then we have

2 rankﬂ:&(EIl((G/H)gl' gz)Cgl- £,(G) X [Fz;)

[glv g2]
= S #(G/H)E#®/C, ,(G)) = #(TH/H) = —— (4TTH).
(81,82)€TG/G | H |
This completes the proof of Theorem 6.3. d

Since ElI*(X) ®gy F& and H*( X, [F) are complex oriented cohomology the-
ories, with the same coefficient ring over @ algebras there exists an isomor-
phism « between them. If we define HI(X, F%) = ®F_, H¥(X, C)®F4 ¥,
then « induces isomorphisms between the odd and even parts. We can
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therefore replace Ell*(X, F%) by H*(X, F&) in our computations. From the
Lefschetz fixed-point theorem, it follows that

1 2 X(Xghgzygs).

X(H* (X882, F§) Car O} =
1Ce1,6.(G)| grec g0

Then

G
x(Ellg(X)) = — > (|CI—| > X(Xg"g""g3))
2

1
G| 121,226 76/6\|Cr,2.(C)| g,
1

[
ITell > Y x(XEE2E) = yp(X). O
G (61, £20€ TG g3¢C,,,()

7. Added in Proof

Correction to the Description of the Rings of Modular Forms

It is our aim to make some corrections to the description of the moduli of
elliptic curves with level structures. We need to make these corrections be-
cause Proposition 3.28 is false.

The moduli of T',, structures is a subscheme of E;[n]Xgy, E;[n]. The co-
efficient ring O(I',) is a localization of the tensor product

MUS(E;[n])®g, MUZ(E,[n]) = Ro[x, yI®gr, RolX, y] = R[x1, X2, 11 2],

where x is a root of the polynomial 7,,(X) and y is a root of the polynomial
YG,,(X)—F,,Z(X). For each pair (a,b)e Z/nZ X Z/nZ such that (a, b) #0
we have an element

S(a, b) € O(N;(n))

defined by S, »)(P, Q) = x(aP+ bQ), where aP+ bQ € E,[n] is obtained us-
ing the group structure of E;[n] and x is the restriction of the X-coordinate
of the universal Jacobi quartic; the elements S, ,, correspond to the func-
tions s(;, ;) of (2.13). A pair (P, Q) is in M ;(n) if and only if S, (P, Q) # 0
for all the pairs (a, b); hence

O(M (1)) = Rolx1, X21{SG' by} (e, by 0, 0]

It is easy to see that Xy = S(I,O) and Xy = S(0,1)°

Using the addition law for the Jacobi quartic [20], one can obtain all the
elements y,, y, from the set of functions {S,, 5), S(‘a} p)}- The explicit formula
is:

b

1— 2¢4 1— 2S4
= l[( € S(1,0))S(2,0)] and y, = l[( € (0,1))3(0,2)]
2 S1,0 2 Sc0,1)

we therefore have the equality

O(IM (1)) = Rol[S(a, b)> Sz y]- (7.1)
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Correction to the Proof of Proposition 4.13

We need to show that also the inverses [sﬂ{(f)]‘1 are in the image of the
homotopic twisted genus. These inverses can be obtained by applying the
twisted genus to the elements represented by the cycles

(pt,0) = (D(Vii), SV)),

where Vj, is the irreducible representation of G =Z/nZxZ/nZ of weight
(J, k). O
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