A Harmonic Quadrature Formula
Characterizing Bi-Infinite Cylinders

MYRON GOLDSTEIN, WERNER HAUSSMANN,
& LOTHAR ROGGE

1. Introduction and Results

In the following let K, = {xeR™:|x| < r} be an open ball of radius r >0
centered at the origin. |-| always denotes the Euclidean norm and A,, the
m-dimensional Lebesgue measure. Here m and (later on) n will be natural
numbers. '

We are concerned with harmonic quadrature formulas. The prototype is
Gauss’s well-known mean value formula:

For every harmonic and integrable function h: K, — R, the following
mean value property holds:

f hd\,, = A, (K,)-h(0).
K,

For a (14 n)-dimensional strip (—r, r) X R", the following quadrature for-
mula is true for harmonic and integrable functions A: (—r,r) X R" - R:

f RdAiyn=M(K)- | 10,8 dA, (%)
(—r,r)xR" R”

(see [2] or [7]).

Now consider m = 2. For an (m + n)-dimensional bi-infinite cylinder
K. xR"C R™*" we shall prove a similar quadrature formula in Section 2,
as follows.

THEOREM 1. Let h: K, XR" - R be harmonic and integrable on K, xR".
Then

[ hahmn=AnE)- [ 1,6 dAE).
K. xR" R"

Open balls and open strips can even be characterized by harmonic quadra-
ture. Indeed, Kuran [11] gave a simple proof of the following result:
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Let D be an open subset of R™ such that 0 € D and A,,(D) < «. If, for
every integrable and harmonic function h on D,

[ hary=rn(D)-h0O),
D

then D is an open ball centered at 0.

A corresponding result characterizing open strips is due to Armitage and
Nelson [2] and, under somewhat stronger assumptions, attributable to the
authors [7].

Let D be an open subset of R'*" such that {0}xR"C D and D is a
subset of some (arbitrarily large) strip. If for every positive integrable
harmonic function h on D the equation

f RdAyen=MK,) [ h(0,8)dA, ()
D R”

holds true, then
D= (-r,r)xR".

Our main result shows that a bi-infinite cylinder also can be characterized
by harmonic quadrature. More precisely, we have the following result.

THEOREM 2. Let D be a regular open subset of R™*" such that
{0,...,0)}xR"CD

and D is a subset of some (arbitrarily large) cylinder. If for every positive
integrable harmonic function h on D we have

f hd)\m.q..n:Am(Kr)' h(O,E)d/\n(E),
D RrR"

then
D =K, xR".

Note that a regular open set D C R™*" is defined by (D)° = D.

The proof of Theorem 2 will be given in Section 4. It is based on two aux-
iliary results which will be proved in Section 3.

Throughout the paper we shall use the following notation. Let m = 2 and
n = 1. A typical point of R™*” will be denoted by

X=(X8)=(X15eees Xpns &15 -5 Ep)-

By B,(X,) we mean the (m+ n)-dimensional open ball of radius r > 0 cen-
tered at X, € R™*". Open balls in R™ are denoted by K,(x,), where x,€ R™
and r > 0. Hence, in particular,

K, = K,(0).
For an (m+ n)-dimensional bi-infinite cylinder of radius » > 0 centered at

0 we also use the notation Z,; that is, Z, = K, X R". The volume of the d-
dimensional unit ball is called w,. Note that w; = 27%2/(d-T\(d/2)).
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For any open set D C R™*”, let H(D) be the set of all harmonic functions
on D; for EC R™*" we use C(E) for the set of all continuous functions on
E. By xr we denote the characteristic function of a set F C R™+",
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2. Proof of Theorem 1

In order to prove Theorem 1, we first show a proposition that follows easily
from the work of Gardiner [4].

ProposITION 3.  Let h: K, X R" — R be harmonic and A,, .. ,-integrable. Then

M(h;x) = h(x,&)dA, (&) is harmonicon K,. 2.1)
Rﬂ

Proof. We have
M0 = | |hCeDldhE)el0, ),

and by Fubini’s theorem

fM(|h|;x)d)\m(x)=f (7] dA s < . 2.2)
K, K, xR"

According to (2.2), the function M(|A|; x) belongs to Gardiner’s class F(K,)
(see [4, bottom of p. 343]). As |A]is subharmonic on K, x R", it follows from
Theorem 1 of Gardiner [4] that M(|Ah|; x) is subharmonic on K, and hence
locally bounded. Applying Gardiner’s Theorem 1 again, now to 4 and —A,
one obtains that M(h; x) and M(—h; x) are subharmonic on X, ; this means
that M(h; x) is harmonic there. O

Proof of Theorem 1. The mean value property of harmonic functions ap-
plied to M(4; x) leads to

M(h;0) = 1

Am(K;)
Using Fubini’s theorem, we obtain

[ hpdinaen = ( h(x,s)dAn(s))dAmm (Fubini)
K, xR" KA\YR"

f M(h; x)dA,,(x). 2.3)
K,

= fK M(h; x) dAp(x) (by (2.1))

= Am(K,) M(h; 0) (by (2.3))

= Am(K;) f h(0, £) dA, (). (by (2.1))
Rﬂ

This completes the proof of Theorem 1. O
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3. Auxiliary Results

In this section we prove two auxiliary results which are also of independent
interest.

LEMMA 4. Suppose that 8 # D C R is an open set, where d = 2. Assume
that the function he C(D)N H(D)N L®(D) satisfies
() h=00naD,
and assume also that
(8) Ay(DNB,(0)) =o(r9) asr— .
Then h =0 on D.

Proof. Define the function S on R? by putting S = || on D and S=0 on
R\ D. Then, by the continuity of # and by (), S is continuous. For any
X € [R? there exists an R = R(X) > 0 such that

S(X)s—l-—-—— S(Y)dA;(Y) forall r with 0<r<R.

Aa(B(X)) Jp (x)

Indeed, for X € D choose R > 0 such that Bg(X) C D, and for X ¢ D choose
any R > 0. Thus S is continuous on R and satisfies the sub-mean value
property; hence S is subharmonic.

Since h € L*(D), we have S e L*(D). Thus

0<S<M onR?

for some bound M > 0.
Hence, if XeR? and r > 0, then

1
0<=SX)s ————— SdA
X) =373, By ¢

s—[  Mma
wal'™ JB(x)ND

M
—Aa(Bix|+,(0)N D) >0
wgl

for r — oo by (8), so that S =0 and hence # =0. ]

<

For the rest of this section we assume that s >0, m>=2,and n=1.

THEOREM 5. Denote by G the Green function of K, X R" and by g the Green
Sfunction of K. Then, for fixed x, y € K; with x # y and arbitrary n € R", we
have

| 6@ 5.0 an® = e s,

where
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d(d—2)wy
27
Cmn = dd—2)wy
m(m—2)w,,

for m=2

Jor m=3

withd = m+n.

ReMARkK. For m =2 and n =1, this result can be found in Lévy [12] with
C2,l =2,

Proof. Let Ye K, xR" be fixed. Since G is the Green function of K, x R”", it
has the following properties:

(1) K, xR"3 X - G(X,Y) is harmonic in (K, X R")\{Y'};
(2) G(X,Y)—-0as X—> X,e oK, xR"; and
(3) G(X,Y)—1/|X—Y|?"? is harmonic for X =Y.

It is sufficient to show that

h(x,y) = - G((x,8), (y,m) dA, (%) (3.1)

has the properties (1’), (2’) and (3'):
(1) K;3x+~ h(x,y)is harmonic in K\{y};
(2) h(x,y)—0asx—xyedK;; and

log|x—y| for m=2
3" ‘h(x, y)+ 1 is harmonic for x = y.
o, 1 ———— for m=3
|x—y|™

By a standard argument (dominate G by a Green function of a half-space),
the integral (3.1) exists for x # y (see Nualtaranee {13]). Note that the integral
in (3.1) does not depend on 7, since G((x, £), (), n)) = G((x, £E—1n), (¥, 0)).

Now consider 2 = K\{y}. By Gardiner [4, Thm. 1] applied to G(X,Y)
and —G(X,Y), we see that # and —A are subharmonic in @ and hence har-
monic. (Note that G and —G belong to the class F of Gardiner [4] by his
sufficiency criterion on the bottom of p. 343). Hence 4 satisfies (1').

Let us now prove (2’) for h. Let Y = (y, 1) € K; X R" be fixed and let x, -
Xo € dK; for p— . We have G((xp, &), (¥,1)) — 0 for p— o by (2). Hence
the dominated convergence theorem of Lebesgue gives

lim h(x,,y) = [}im G((xp,£), (¥, 1) dA,(£) =0

p—® — o Jpn
if there exists, for sufficiently large p, a A,-integrable function F with
G((xp, &), (n,n) <= F(¢) forall £eR”. (3.2)

F will be defined with the aid of the Green function G4 of some half-space
H, which is given by



180 MYRON GOLDSTEIN, WERNER HAUSSMANN, & LoTHAR ROGGE

1 1

GH(Xa Y) = IX_YId_z - |X_Y*|d_2,

where Y* is the mirror image of Y with respect to dH.

For the construction of H, first let a half-space H, of R™ be chosen as fol-
lows. Take a ball Kz(y) of radius R > 0 centered at y such that K, C Kz(}).
Take a tangent hyperplane P in R™ to Kz(y) orthogonal to the line connect-
ing x and y, such that the mirror image y* of y with respect to P satisfies

|xo—y*| <|y—»"| (3.3)
and such that dHy = P and H,, contains Kz(y). Finally, put
H = Hox Rn.

Then for Y = (y, n) we have Y* = (y*, ). Because of inequality (3.3) we can
choose o > 0 so small that, for each xe K,(xy) N K and for a fixed wye
K, (y) CK,, wy#y, we have

[wo—y|<|x—y| and |x—y*|<|wo—y*|.
These inequalities extend to
|W-Y|<|X-Y| and |X-Y*|<|W-Y*|, (3.4)
where X =(x,£), Y=(y,n), Y*= ("% 1), and W= (wy, ) for x e K,(x,) N K|
with arbitrary £, n € R”. Now (3.4) yields

1 1 1 1
| X—Y[d-2 | X-Y*d-2 " |W-Y|?-2 |[W-Y*[d-2

thatis, Gy ((x, £), (¥, 1)) < Gu((wo, £), (¥, n)) for all x € K, (xp) N K, with wy
as before and for arbitrary £, n € R”.

Since K, XR"C H = HyxR", for all £,7 e R” and sufficiently large p we
have

G((xp: E)’ (y’ 77)) = GH((xp’ E)y (.y, 71)) = GH((WO’ E), (.ys 71))‘

Hence F(§) = Gy ((wg, ), (3, 1)) satisfies (3.2) since it is a A,-integrable func-
tion by Nualtaranee [13].

For (3’), we now examine the singularity of A(x, y) for x = y. Take again
the Green function Gy of a half-space H containing the cylinder X x [R”.
Then Gy — G is harmonic in K X R”. Define

hi(x,y) = . Gu((x,£), (», m) dA,(§).

By Gardiner [4, Thm. 1] applied to +(Gg— G), we have that

fRn(GH((xs g), (y! 1’)) - G((x’ E), (ys 7}'))) dAn(‘E) = hl(xa y) —h(x’ y)
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is harmonic. Hence 4 and h; have the same singularity at x = y. In order to
show (3’) it is sufficient to prove that the singularity of (1/c,, ,)-hi(x, y) is

—log|x—y| for m=2,
1/|x—y|™* for m=3.

Case 1: First let m = 3. Since Y* = (y*, 1) does not belong to the half-
space H, the function

1
— dA
* ‘[R" I(xsg)_(y*’ ’7)|m+"-2 H(S)

is finite and hence harmonic according to Gardiner [4]. Thus it is sufficient
to prove, forallneN,

1 1
=Cyn+——— forall m=3. (3.5
fRn I(x, E)—(y, 1,’)|m+n—2 dAn(E) Cm,n |x—y|m—2 orall m= ( )

We prove (3.5) by induction with respect to n, so let at first n = 1; we start
with d = m+n even. Then

[='<] 1 _ [ <] dg
f_w (B O W)= I (% =)+ G—mD) @

= o (@2 Fp)d2-1 (3.6)

where a2 = 3¢5!(x;—y;)% By Grébner and Hofreiter [8, p. 14, formula 9],
the last integral in (3.6) can be expressed as

fw d¢ s 2922 7(1/2+d/2-2)-1 1
o (@24 2)d2-1 7T 2dI2-LT(1/2)(d/2-2)! @973

1 (d=2)-w"Y%(d/2-3/2)-T(d/2-3/2)

ad-3 (d—3)-(d/2—-1)!
_ 1 d(d—2)wd
a9 (d-1)(d-3)wg_,
— Ca—1,1

|x =yl

where we have used wy = 27%%/(d-TI'(d/2)). This shows (3.5) for n =1 and
d = m+n even.

A similar calculation shows that (3.5) is also true forn =1andd=m+n
odd. Here we use Grobner and Hofreiter [8, p. 35, formula 2a for m = 0].
Note that the symbol (u; §; ») in Grobner and Hofreiter is defined as

8T (u/6+v)
T(u/8)

(p;0;v) =

see [8, p. 1].
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Now assume that (3.5) holds for some n = 1. Let m be fixed and put x=

(x]: -'-sxm)a y= (.y]a sney ym)’ E(n) = (En’ -..’El)’ and T’(n) = (nn’ seey 711)- NOte
that £+ D = (&,.1, £™) and "D = (9,41, n). With this notation we derive

dAn+l(E(n+l))
fRnH I(x,E(n+]))_(y,n(n+l))|m+(rl+l)-2
(" d, (£ N
-—J-—co(fR” (x,f,,+1,f(”))—-(y,nnﬂ,n(n))](m+1)+n—2)dAl(EnH) (Fubini)
w d/\l(gn+l)
Bhast by (3.5
L f—oo [0, En ) = (s )| 12 (by (3.9))
1

(by (3.9))

=Cm+1,n"Cm,1" _lx—_;ian

A straightforward calculation shows that

Cn+1,n'Cm,1 = Cm,n+1-

Hence we have proved (3.5) for (n+1). By induction, (3.5) is valid for all
neNaslong as m = 3.

Case 2: Now we consider the case m1 = 2 and n = 1. Here it is sufficient to

show that
© 1 1
I = — dA
f_w<|(x,£)—(y,n)l I(x,E)—(y*,n)l) 1)

= —2-log|x—y|+2-log|x—y*|.
This follows with

al=(x—y)2+(x;—y2)* and (a*)?=(x;—y})*+(x,—»3)?
from

oo 1 1
I= -
f_oo(\/az+§‘2 V(a*)z—fz)dr
= lim 2-[log(x +vx2+a?) —log(x +Vx%+(@*)?)1}

. b+b2+a? ) a]
= lim 2-]lo —log —
bosoo [ g<b+\/b2+(a"")2 s

= —2-log|x—y|+2-log|x—y*|.

Case 3: In the remaining case, m =2 and n = 2, it is sufficient to show
that the singularity of

1 1
- - dA
¥ fw(l(x,é)—(y, n" |(x, &) — (%, n)l") n(8)

is equal to —c; ,-log|x—y|. This follows by an argument similar to that
used in Case 1 and in Case 2. ]
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Table 1 displays some of the constants ¢, , for2=m=<S5andl1=n=<4.

Table 1
n=1\{n=2\n=3|n=4
m=2 2 27 47 | 2mw?
m=3 T 27 72 :;'.7,-2
m=4 2 ™ 37 172
m=5| 37 | 37 | 7% | &w?

4. Proof of Theorem 2

The proof of Theorem 2 uses several lemmas. Throughout this section, let
d=m+n where m=2 and n=1, and let Z, = K, xR"C R™*" for some
r>0.

LEMMA 6. Let 8 # D C Z; be an open set, and let G be the Green function
of Z; for some s > 0. Then the function u defined by

u(Y) =fD G(X,Y)dA, ., (X) for YeZ,

has the following properties:
(v) ueCZy);
(8) ue C*D); and
(¢) Au=d(2—d)wyzonD.

ReEMARK. Theintegrability of G is guaranteed by an estimate in Nualtaranee
[13, Lemma 1], since G is dominated by the Green function of a half-space
H containing Z..

Proof. (v) Let Ype Z, and & > 0 with B = By(Yp) C Z. We show that u e
C!(B). Consider

uV)=| G(X,Y)dA,  (X)+ G(X,Y)dM,,.(X) for YeB.
D\B BND (4 1)

Now we want to apply Helms [10, Thm. 6.6]. To this end we define a mea-
sure u on the Borel field B(Z,) by

u(C) = fm xc(X) dAmsn(X) for Ce®(Z,).

Then u(B) =0, and B is open. Hence, according to Helms [10, Thm. 6.6},
the function
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B3Y+~ G(X,Y)dA,, . ,(X) is harmonic in B. (4.2)
D\B

The second term on the right-hand side of (4.1) can be written as

_ 1 A n(X)
LQD(G(X’ Y) lX_YId_z) d/\m+n(X)+ BAD IX_Yld__Z . (4'3)

Now, in order to apply Lemma 6.7 of Helms [10], put U= DNB and V = B.
Then, for each fixed Y e ¥, the function X~ G(X,Y)—1/|X-Y|?~2is con-
tinuous on U (condition (i) of Helms). Furthermore, for each fixed X eU,
the function Y~ G(X,Y)—1/|X~Y|?~%is harmonic in V (condition (ii) of
Helms). Finally, since G is dominated by the Green function GRe(X,Y) =
1/|X—Y|?"2 we obtain

1

LX—_Wd_—-Z- <0 on ZSXZS.

Since, in addition, the integral

G(X,Y)-

1
LnD<G(X’ Y)— m) dAm1n(X)

is finite for Y € V, we obtain by Helms [10, Thm. 6.7] that
1

T)‘(‘_—Ylg_—z) AdAm+n(X)

is harmonic in B. Applying [5, Lemma 4.1] to

A 4 n(X)
Bnp |X=Y[172
with Q@ = B and f = xgnp, we obtain that the function defined in (4.4) is in
C!(B). Hence also the function in (4.3) is in C!(B). Thus, by (4.1) and (4.2),

we see that u € C1(B).
(6) and (e) Let Yye D and r > 0 be chosen such that

BaYHf

(G(X, Y)—-
BND

BaY+~ 4.4)

B =B.(Y,) CD.
Then, according to the proof of (), it is sufficient to show that the function
dA (X)
Y — m+n Y B
g(Y) 5 X—Y[i2 (YeB)

is in C%(B) with Ag = d(2 —d)w,.
To prove this, we apply Lemma 4.2 of Gilbarg and Trudinger [5] to f = xp.
This yields g e C?(B) and Ag = d(2—d)w, in B. O

REMARK. In applying [5, Lemma 4.2], note that Gilbarg and Trudinger
consider (1/d(2—d)wg)(1/|X—Y|97?) as a Newtonian kernel, whereas we
consider 1/[X—Y 772,
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LEMMA 7. Let D C R™*" be a regular open set containing {(0, ..., 0)} x R".
Assume that D C Z;_, for some s > 1, and let

| repdhnnn =2k [ nODAE® @)

Sor all positive, integrable and harmonic functions on D. Let G be the Green
Junction of Z; for some s > 1, and let

w(Y) = fD G(X,Y)dA,, (X) for YeZ,.

Then, for Y =(y,n) € Z\ D, we have

log(s/|y]) for m=2

() u(Y)=Cm,n'wm'{1/|y|m-2_1/s'"-2 SJor m=3

and

—(/|yPH(»,0) for m=2,

(m)  eradu(Y) =Cmr”'w’"°{((2—m)/|yl’”)(y, 0) for m=3.

Proof. () Denote by g the Green function of the m-dimensional ball K
with center 0 and radius s > 1. Then, by Theorem 5,

- G((x,8), 0, M) dAn (&) = Cim,n8(X, ¥). (4.6)

By Helms [10, p. 77],
log(s/AyZ+y3) for m=2,
g(0,y) =

V/|y|""2=1/s™"2% for m=3.

for y = (y1, ..., ym) € KN(O, ..., O).
Let Ye Z\D be fixed. Then hy(X) = G(X, Y) is positive, harmonic, and
integrable on D. By our assumption we obtain

4.7)

u(Y) = fD By (X) Ay n(X)
=an [y (©,0aA®) (by (4.5))

=m | G((0,8), (¥, m) dA,(§)

= Com.n* W+ £(0, ) (by (4.6))
. {log(s/\/y12+y22) for m=2,
=Cm,n"Wm*

V|y|™""2=1/s™"2 for m=3. (by (+.7)

(1) Let at first Y€ Z\ D. This set is open, and hence we obtain (7) by dif-
ferentiating ({). By Lemma 6(v), ue C!(Z,), and so (3) holds also for all
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points that belong to the closure of Z\D in Z;, that is, for all points ye

Z\(D)°. But this means y € Z\D, since D is a regular open set. |
LEMMA 8. With the same assumptions as in Lemma 7, for Y = (¥, ..., Ym»
Ny --+5 M) We have
du = .
() —Y)=0 for YeD, 1<j=<n,
d(d—-2 _
(x) grad u(Y) = ——S———%(y, 0) for YeD.

Proof. We shall show that, for1 < j<n,
ou

— e C(D)NH(D), (4.8)
ou
— =0 on aD, (4.9)
du is bounded on D. (4.10)
Then Lemma 4 implies (). In order to show (4.8)-(4.10), we define
dd-2
v(Y) = u(Y)+-(—2’;lﬂ-(y%+ co4y2) for YeZ,. (4.11)

Then v e C*(D) according to Lemma 6(8). In addition,
Av=Au+d(d—2)w,; (by(4.11))

=0 onD. (by Lemma 6(¢)) (4.12)
From (4.11) and (4.12), we obtain that
du = v is harmonicon D for 1< j=<n. (4.13)
dn; O,
Since D C Z,, we obtain by Lemma 6(vy) that
M o) for1=j=n. (4.14)

Hence (4.8) is satisfied according to (4.13) and (4.14). Equation (4.9) is ful-
filled by Lemma 7(n) because dD C Z\ D. In order to complete the proof of
() it remains only to show (4.10).

Consider the half-space

H=(—s—1,0) xR,

and let Gy be the Green function of H. Since Z; C H implies G < Gy, we
have

Gu(X,Y)—G(X,Y)=0 on ZxZ,. (4.15)
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For Y € Z; we split u into two parts:

u(y) = fD G(X, Y) d g n(X) = —wi(¥) + wa(Y),

with
W(¥) = [ (GulX, 1) =G YD) dhyyin(X), (4.16)
wy(Y) = fD Gu(X,Y)dA, . n(X). (4.17)
In order to prove (4.10), we show that
2—‘:’3 and %—:}2 are bounded in D for 1< j=<n. (4.18)

To this end we use the following result (see Hayman and Kennedy [9, p. 37,
Example 1]):

Let h: B,(Yy) = R be a nonnegative harmonic function, then the partial
derivatives satisfy

o

4
r

=

(Yp)

‘h(Yy) for 1=j=n. (4.19)

The Green function of the half-space H is given by

GH = I/I—Vz (4.20)
with
1
nx,Y)= m 4.21)
and
1
VX Y) = g (4.22)

where Y* is the mirror image of Y with respect to dH = {(—s—1)} xR~ };
that is, for Y = (¥4, ..+, Yins 115 ---» Mn) WE have

Y*= (—y1—2s—2, Y2y eees Vs Ms ooes M)

Now we prove (4.18). According to (4.15) and (4.16), we have w; =0 on
Z; w is also harmonic in Z; by Helms {10, Lemma 6.7]. For any Yy Z,_;
and 1< j=<n,

d
S (Y| = — 2 wi(Y) (by (4.19))
nj

s—(s—1)

< d-f G(X, Yo) dAy s n(X) <
D
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<d-| G12(X, Yo) Ay n(X)
—s+1,s—1] xRI-!

~d- | Gr(X, (5,0, ..., 00 dAp n(X)  (4.23)
—s+1,s—1] xR4-!
by an appropriate change of variables. The function

(~s+1,s=112y0 Gr(X, (90,0, ..., 0)) dAyp (X)
[-s+1,5—1] xRI-!
is continuous, and hence bounded. Thus (4.23) implies (4.18) for w;.
Now we consider (4.18) for w,. Let Yy Z,_,. Then, by (4.17) and (4.20)
with B = B;(y,), we have

wyr) = |

Vi=Va) (X, Y) dA g n(X) + f V= Vo)(X, Y) Ay s n(X).
D\B

BND

Since the function
BoYr hy(Y) = fD\B(Vl —V)(X, Y) dApy 4 n(X)

is harmonic and nonnegative (by (4.21) and (4.22)), we conclude from (4.19)
with r =1 for 1 < j < n that

l—(Yo) = d-h(Yp)

<d- f Gu(X, (¥2,0,...,00) dA,, 4 n(X). 4.24)
~s+1,5~-1] xR4-1

Similarly #,(Y) = [gnp Va(X,Y)dA,,,,(X) is harmonic and nonnegative
on B. Hence, by (4.19), we obtain
oh;

—=(Y,
6771( 0)

<d-hy(Yy) < d- f Va(X, Yo) A s n(X)
B

<d-C-Ay(B) for l=<j=<n, (4.25)

where C is an upper bound of V; 0n Z, X Z,.
Finally, by [5, Lemma 4.1], we obtain

[ R A (X)
37?j BND Y=Y,
< aiVl(X,Y) dApon(X)  (by[5, Lemma 4.1])
BND| 07 Y=Y,
<@-2 [ Lzl 1 g (X))
snp | X—Yold = "
dA (X) dA (X)
<(d-2 Lsf Bmentt) oy (426
( ) snp |[X=Yo|?7! T Jp [X[9! (#:26)

Hence, by (4.24), (4.25), and (4.26), we have (4.18) for w,, and this proves ().
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Let us now turn to assertion («). As in (4.11), set

d(d—2)wy
2m

By Lemma 7(n), for 1 =i < m and y € 3D we have

(YY) = (Y4 YRy +u(Y) for YeZ,.

v d(d—2)w, /|y for m=2,
e =T Ty e, 4.27
ay,-(Y) m Vi Cmyn® Om {(m—2)y,~/|y|”’ for m=3. (4.27)
For 1 <i, kK <m we define
av ov
gix(Y) =}’ka‘;};(y) —)’iE(Y) on Z.
Then, according to Lemma 6(y), g;x € C(Z,) with
gix(Y)=0 for YeaD. (by (4.27)) (4.28)
With Lemma 6(e) we see that v is harmonic in D, and we have
9% (¥)=0 for 1<j<n and YeD
aT]j
by Lemma 8(¢#). Hence we obtain
%k _o onD (4.29)
6nj
and, by a straightforward calculation,
gir isharmonicon D for 1 <i,k=<m. (4.30)

By the same argument as in [2], we can see that D is connected. For a posi-
tive, integrable and harmonic function # on D, consider the functions 4, =
hxp,+mhxp\p,, m =1,2, where Dy is the connected component of D con-
taining {(0, ..., 0)} X R”. Since (4.5) is true for both 4; and A,, it follows that
D\DO = ﬂ.

In addition, g;; is real analytic on D. Hence we obtain by (4.29) that the
gix do not depend on 7,75, ..., ,. Since g;; is continuous on Z,_; (which
follows from Lemma 6(v)), this implies that g;; is bounded on D. Hence,
from (4.28) and (4.30) we conclude that

gx=0onD forl<ik=m,
by Lemma 4. Now, using the wedge product (see Avci {3]), we have

av Jv
ay; 7 Oy
=0 onD.

(grad, v,0)A(»,0) =( »0, .0, O)A(yl, vees VYm0, ..., 0)

Hence (grad, v, 0) and (y, 0) are linearly dependent; that is,

v av
s eees ,0,...,0)= s eees (V15 eees Vs 0, ..., O
(ayl ., )B(yl Ym) (N Y )
on D\{(0, 7): Te R"}.
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A similar calculation as in Avci [3] shows that

m —m/2
B(yly'--:ym):"Y(Eyiz) on D\{(O,T):TER”},
i=1
where + is a constant (note that D is connected). Thus

Y
grad,v=——-y.
Y Iylm

Since grad, v e C(D), this can be true only if y = 0 (let | y| - 0).
By the definition of v in (4.11), we see that

gradu(Y) = _w .

(»,0)
for Ye D and, by continuity, for Y e D. Hence (k) is proved.

Now we are ready to give the proof of Theorem 2.

Proof of Theorem 2. Without loss of generality, let » = 1. Let s > 1 be chosen

such that D C Z,_,. 1t is sufficient to show that
aD C dZ,.

(4.31)

Since D C Z,_,, (4.31) implies D = Z,, and since D is a regular open set,

D = Zl‘
Let G(X,Y) be the Green function of Z;. We define

u(Y)=f G(X,Y)dM,,,(X) for YeZ,.
D

Since r = 1, the assumptions of Lemmas 7 and 8 are fulfilled. According to

Lemma 8(k), we have

(»,0) for YeD.

gradu(Y) = —-——-———d(d;z)wd

Lemma 7(7n) yields

gradu(Y) = ¢y po ooy {
forYe Z\D.
Now let /m = 3. Then, from (4.32) and (4.33), we have
d(d—2)wy _ Cm,n'wm'(z_m)
m |y|m

—(/(YE+yIN (31, y2,0) for m=2
(2—m)/|y|™)(»,0) for m=3

for any boundary point Y = (y, n) € dD. This gives
Iy|m = dd—2)-wg m(m—2)w,
I mm—2)a,, dd-2)o;

that is, Y e dZ,.
In the case m = 2 we have, for all Y = (y, n) € 0D,

_ d(d—Z)wd — Cr g—2°W3
2 |2

(4.32)

(4.33)
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Hence
=T dd=2)w,;
that is, Y e dZ,, too. Thus, in either case D = Z,. O
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