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Let

A={AeC:1/R<|A|<R} (R>1),
and let ¢4, ¢y denote the Carathéodory distance and the inner Carathéodory
distance for the annulus A, respectively (cf. [3]). It is known that ¢4 # ¢4 (cf.
[2; 4])—more precisely, for any X, \”€ A, the following equivalence is true:

ca(N,\")y=c4(XN,X") if and onlyif X and A’ lie on the same radius,
i.e., argA’=arg)” (cf.[4]). ()
Recall (cf. [1]) that
ch(X, X"y =inf{L, (a): a:[0,1] >4
is a piecewise C!-curve with «(0) =X, a(1)=X"}, (2)

where L, () denotes the v4-length of o given by the formula

1
L (@)= | va(@; @) dd 3

In (3), v4: AXC— R, denotes the Carathéodory-Reiffen metric for A.
It is known (cf. [6]) that

TS SRy IS B TY :
YAk ) = bz (157, =) TIGAL 1) @
for Ain 4 and X in C, where
f(s,A)=(1—§)-n<s,A) 5)

and

IS (1= (A/s)R™4) (1 — (s/A)R™4m)
Iy_(1—AsR—4n+2)(1 —(1/As)R—4n+2)
forl/R<s< R and Ae A.

The aim of this note is to provide effective formulas for c,—more pre-
cisely, for any X', A”€ A, we will find an effective description of the shortest

II(s, M) = (6)
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curve for ()\’, A”), that is, a curve «: [0, 1] = 4 with «(0) =X, a(1) = A", and
L, (@) = ch(X,X").

REMARK. Since ¢} is invariant under conformal automorphisms of A, we
need only consider c/y(a, be’) for 1/R<a=<1, 1/R<b<R, and 0<B=<m
(the case 3 =0 is covered by (1)). Moreover, if a=1 then one can assume
that l=b<R.

Define 6(s) by

0(s)=v4(s;s) when 1/R<s<R.

Using (4), (5), and (6), one can prove that

6(1/s)=46(s) and 6'(s)>0 when 1<s<R. (7)
In particular, the function é has the global minimum at s =1. Define

7' =@ lam) s
B, ={(C,u)e(0,6(a)) X(a,R): 1°if C=6(1)thenu<1,
2°if §(1) < C< &(a) then u <86~YC)},

“ ds
a sV82(s)—C2
B_={(C,u)e(0,6(a)] X(1/R,a):if a=1then C <é(1)},
a ds
u sV82(s)—C?

Note that if =1 then B, =(0, 6(1)) X (1, R) and B_ = (0, 6(1)) X (1/R, 1).
If 1/R< a< 1 then we put

¥, (C,u)=C S for (C, u)in B

Y_(C,u)=C S for (C,u)in B_.

o (u)=¥,(6(u),u) for a<u<li,
o_(uy=v_(6(a),u) for 1/R<u<a;
By={(C,u) e (5(1), 8(a)Ix(1/R,1): u<8"1(C)};

1C)  po7NC) ds .
Vo(C,u)=C S +§ ) or (C, u) in By.
o(C, 1) ( )T = frGwinBy

Note that o (u) = ¥y(6(u), u) when a<u <1 and that o_(u) =¥y(6(a),u)
when 1/R< u < a. Also,

lim o,()=0,  lim o, (u)=+oo,
u-—a+ u—1-—

lim o_(u)=0, lim o_(u)<+oo.
u—-a— u—1/R+

Let v, denote the graph of o,. Let D, denote the part of the domain
D= (0, +)X(1/R, R)

that lies over ., let D_ denote the part under y_, and let D, denote the
middle part. ¢
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If a=1 then we set v, =(0,+x)x {1}, D, =(0,+)%x(1,1/R), D_=
(0, + ) X (1/R, 1), and Dy=0. Now we can formulate our main resuit.

THEOREM 1. (a) For any 0< B =<, the shortest curve for (1,e") is the
curve t —e" for 0 <t <@ and, consequently,

ch(l, ey =v,(1; B).
(b) For 1< b < Rand 0 < B <, the shortest curve for (1, be’) is the curve
tou(t)e for 0<t=<pB, (8)

where the function u=u(t) (u(0)=a,u(B)=>b) and the constant C=
C.(B, b) €(0, 6(1)) are uniquely determined by the equations

Y, (C,uy=t and VY, (C,b)=p.

Moreover,
: . b §2(s)ds
ck(1, be'® =g where C=C_(8,b).
AL be?) = | s +(8,b)

(c) For 1/R<a<1,1/R<b<R,and 0<B=m, if be® € D, U, then the
shortest curve for (a, be’®) is of the form (8), where the function u=u(t)
and the constant C= C.(8, b) are uniquely determined by the system

VY. (C,u)=t and Y, (C,b)=8.
Moreover,
b §%(s)ds
2 SV62(s)—C?
(d) For1/R<a<1,1/R<b<R,and 0< B <, ifbe’ € v, UDyU~_ then

the shortest curve for (a, be’) is of the form (8), where the function u = u(t)
and the constant C = Cy(B, b) are uniquely determined by the system

Yo(C,u)=t and Y,(C,b)=25.

ci(a, be™®) = iS where C=C, (8, b).

Moréover,

. . L (S (o) 6%(s)ds
ci(a, be™ =(S +S ) where C= Cy(, D).
A ( ) . \ V52(5)—C2 o(8, b)

Proof of Theorem 1. The proof will be divided into two steps.

Step 1°: Reduction to a variational problem. Fix 1/R<a=<1, 1/R<b<
R, and 0< B <= (if a=1 then we take 1 <b < R). It is clear that in (2) the
infimum may be taken only over the class of all curves « of the form a(d) =
r(@)e*® for 0<¢ <1, where r:[0,1] - (1/R, R) and p:[0,1] - [0, 7] are
C!-functions with r(0) =a, r(1)=b, u(0)=0, and (1) =B. In view of (1),
if u(8) =pu(d,) for some 0 <¢; <, <1 then the y4-length of the segment
[a(D), a(F>)] is not larger than the vy,4-length of the curve oy, 4, This
implies that the class of “admissible” curves may be reduced to the class of
all curves of the form «a(f) = u(t)e” (0<t=<p), where u: [0, 8] = (1/R, R) is
a C'-function with u#(0) =a and u(8) = b.
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Thus, in order to characterize the shortest curve and to calculate c(a, be’®),
it suffices to minimize the following functional (cf. (3)):

B
u [ atuo; ZmTum) dt ©)
0
when u is in
D={u:[0,8]-1/R,R): uecC!, u(0)=a, u(B) = bl.

In view of (7), if u(t) = ug=u(t)) = u(t,) =1 for t; < t < t,, then the y4-length
of the curve |, ) is not larger than the y4-length of the arc £ — upe” when
ty <t =<t,. The same is true if u(f) <upg=u(f))=u(t;)<1for 1<t =t,.
As a direct consequence of these remarks, we obtain statement (a) of the
theorem.

Step 2°: Solution of the variational problem. We are going to minimize
(9) using a modification of the classical Weierstrass method (cf. [7]). Let

F(u,v)=vy4(u;Vu?+v?) forl/R<u<R and veR
and let

8(ut, 01, 02) = F(1t, 1) = F(t, 01) =S (11, 00) (0~ 0)

for 1/R <u < R with v; and v, in R be the Weierstrass function for F. First
observe that &(u, vy, v,) > 0 when v; # v,. Thus, the main problem is to cover
the domain D by a “sufficiently” regular family of stationary curves for (9).
More precisely, it suffices to find for each pair (#y, ©y) in D a unique solution
u(t) = u(ty, uy; t) of the Euler-Lagrange equation

oF v A OF ,
o (u(@),u'(t))= T (u(2), u’(1)) (10)
with #(0) = a and u(#;) = u, in such a way that the following function on D
d
(2o, ug) = P(2p, ug) = % (20, Ug; to)

is globally continuous and of class C! in each of the domains D,, Dy, and
D_ separately. In view of (7), the only constant solution of (10) is u=1.
Moreover, one can easily prove that in the class of nonconstant solutions,
equation (10) is equivalent to the following I-parameter family of equations:

S(u(t))u(t)=C~Nu2(t)+u'2(t), C>0. (11)

Note that there are constant solutions of (11) (e.g., ¥ =6"YC) #1) that are
not solutions of (10).

From now on we will assume that 1/R < a < 1; the case a =1 is analogous.
Fix (tp, up) in DU+, (resp. in v, UDgU+v_). In view of (11), it suffices to
prove that the system

‘I,:t(ca ll) =1, ‘I’;t(C’ U0)= to
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has exactly one solution u = u(¢) and C= C.(#, up) such that the function
(t,u)— C.(t,u) is continuous on D, Uy, and of class C! in D, (resp.,
the system ¥o(C, u) =t, ¥o(C, uy) =t, has exactly one solution u = u(t)
and C = Cy(?y, uy) such that the function (¢, u) — Cy(?, 1) is continuous on
v+ UDyU~_ and of class C!in D).
In the first case the situation is simple because
v, oY,

+ 3 >0 and —a—c_‘>0 in int(Bt)’

and therefore one can use the implicit function theorem. In the second case
the situation is more complicated; it is clear that d¥,/du <0, but the proof
that d¥,/dC < 0 in int(By) needs some work.

It suffices to prove that
oV
— <0, 12
3C 0 (12)

where
ds
62(s)—C?

8~1(C)
\I'(C,u)=CS for 1/R<u<8-YC)<1.
u S

Recall (cf. [4, 5]) that

5(e27i%) = % cn(28),

where cn denotes the cosinus amplitudinis with periods w;=1/2 and w,=
7/2 (e"""=1/R?), and k is the “Jacobi Modul” for the theta functions.
Hence, from standard properties of cn, sn, and dn, we get

2 7\2
[67(s)s]® = 4[62(s)—(i) Haz(s)+( k ) ]
27 2T

when 1/R <s < R and when k’=+1—k2. Using this identity, after elemen-
tary calculations we conclude that

P
862(u)

¥(C, u)=—~\%A( +Q, j; +Q), (13)

where

2

* dt
¢ V1 —12)(x—1)

Observe that (the idea is due to P. Tworzewski):

! x—£ dn
A = .
(& %) So\/l—[i'l'ﬂ(x—é)]z i

/\2
P=—-1~(k7]:>, 0=k>—k”, and

for —1<é<x<l.

A, =

Hence
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JA
—>0
ox

and consequently, in view of (13), we get (12). O
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