The Inner Carathéodory Distance for the Annulus II

MAREK JARNICKI & PETER PFLUG

Let

$$A = \{\lambda \in \mathbb{C} : 1/R < |\lambda| < R\} \quad (R > 1),$$

and let c_A , c_A^i denote the Carathéodory distance and the inner Carathéodory distance for the annulus A, respectively (cf. [3]). It is known that $c_A \neq c_A^i$ (cf. [2; 4])—more precisely, for any λ' , $\lambda'' \in A$, the following equivalence is true:

$$c_A(\lambda', \lambda'') = c_A^i(\lambda', \lambda'')$$
 if and only if λ' and λ'' lie on the same radius,
i.e., $\arg \lambda' = \arg \lambda''$ (cf. [4]). (1)

Recall (cf. [1]) that

$$c_A^i(\lambda', \lambda'') = \inf\{L_{\gamma_A}(\alpha) : \alpha : [0, 1] \to A$$

is a piecewise C^1 -curve with $\alpha(0) = \lambda', \alpha(1) = \lambda''\}, (2)$

where $L_{\gamma_A}(\alpha)$ denotes the γ_A -length of α given by the formula

$$L_{\gamma_A}(\alpha) = \int_0^1 \gamma_A(\alpha(\vartheta); \alpha'(\vartheta)) \, d\vartheta. \tag{3}$$

In (3), $\gamma_A: A \times \mathbb{C} \to \mathbb{R}_+$ denotes the Carathéodory-Reiffen metric for A. It is known (cf. [6]) that

$$\gamma_A(\lambda; X) = \frac{1}{R|\lambda|^2} \cdot f\left(\frac{1}{|\lambda|}, -|\lambda|\right) \cdot \Pi(|\lambda|, |\lambda|) \cdot |X| \tag{4}$$

for λ in A and X in C, where

$$f(s,\lambda) = \left(1 - \frac{\lambda}{s}\right) \cdot \Pi(s,\lambda) \tag{5}$$

and

$$\Pi(s,\lambda) = \frac{\prod_{n=1}^{\infty} (1 - (\lambda/s)R^{-4n})(1 - (s/\lambda)R^{-4n})}{\prod_{n=1}^{\infty} (1 - \lambda sR^{-4n+2})(1 - (1/\lambda s)R^{-4n+2})}$$
(6)

for 1/R < s < R and $\lambda \in A$.

The aim of this note is to provide effective formulas for c_A^i —more precisely, for any $\lambda', \lambda'' \in A$, we will find an effective description of the shortest

Received October 8, 1991. Revision received November 8, 1992. Michigan Math. J. 40 (1993).

curve for (λ', λ'') , that is, a curve $\alpha : [0, 1] \to A$ with $\alpha(0) = \lambda'$, $\alpha(1) = \lambda''$, and $L_{\gamma_A}(\alpha) = c_A^i(\lambda', \lambda'')$.

REMARK. Since c_A^i is invariant under conformal automorphisms of A, we need only consider $c_A^i(a,be^{i\beta})$ for $1/R < a \le 1$, 1/R < b < R, and $0 < \beta \le \pi$ (the case $\beta = 0$ is covered by (1)). Moreover, if a = 1 then one can assume that $1 \le b < R$.

Define $\delta(s)$ by

$$\delta(s) = \gamma_A(s; s)$$
 when $1/R < s < R$.

Using (4), (5), and (6), one can prove that

$$\delta(1/s) = \delta(s)$$
 and $\delta'(s) > 0$ when $1 < s < R$. (7)

In particular, the function δ has the global minimum at s=1. Define

$$\delta^{-1} = (\delta \mid_{(1/R,1]})^{-1};$$

$$B_{+} = \{(C, u) \in (0, \delta(a)) \times (a, R) : 1^{\circ} \text{ if } C = \delta(1) \text{ then } u < 1,$$

$$2^{\circ} \text{ if } \delta(1) < C < \delta(a) \text{ then } u \le \delta^{-1}(C)\},$$

$$\Psi_{+}(C, u) = C \int_{a}^{u} \frac{ds}{s\sqrt{\delta^{2}(s) - C^{2}}} \text{ for } (C, u) \text{ in } B_{+};$$

$$B_{-} = \{(C, u) \in (0, \delta(a)] \times (1/R, a) : \text{ if } a = 1 \text{ then } C < \delta(1)\},$$

$$\Psi_{-}(C, u) = C \int_{u}^{a} \frac{ds}{s\sqrt{\delta^{2}(s) - C^{2}}} \text{ for } (C, u) \text{ in } B_{-}.$$

Note that if a = 1 then $B_+ = (0, \delta(1)) \times (1, R)$ and $B_- = (0, \delta(1)) \times (1/R, 1)$. If 1/R < a < 1 then we put

$$\sigma_{+}(u) = \Psi_{+}(\delta(u), u) \quad \text{for } a < u < 1,$$

$$\sigma_{-}(u) = \Psi_{-}(\delta(a), u) \quad \text{for } 1/R < u < a;$$

$$B_{0} = \{(C, u) \in (\delta(1), \delta(a)] \times (1/R, 1) : u \le \delta^{-1}(C)\};$$

$$\Psi_{0}(C, u) = C \left(\int_{a}^{\delta^{-1}(C)} + \int_{u}^{\delta^{-1}(C)} \right) \frac{ds}{s\sqrt{\delta^{2}(s) - C^{2}}} \quad \text{for } (C, u) \text{ in } B_{0}.$$

Note that $\sigma_+(u) = \Psi_0(\delta(u), u)$ when a < u < 1 and that $\sigma_-(u) = \Psi_0(\delta(a), u)$ when 1/R < u < a. Also,

$$\lim_{u \to a+} \sigma_{+}(u) = 0, \qquad \lim_{u \to 1-} \sigma_{+}(u) = +\infty,$$

$$\lim_{u \to a-} \sigma_{-}(u) = 0, \qquad \lim_{u \to 1/R+} \sigma_{-}(u) < +\infty.$$

Let γ_{\pm} denote the graph of σ_{\pm} . Let D_{+} denote the part of the domain

$$D = (0, +\infty) \times (1/R, R)$$

that lies over γ_+ , let D_- denote the part under γ_- , and let D_0 denote the middle part.

If a=1 then we set $\gamma_{\pm}=(0,+\infty)\times\{1\}$, $D_{+}=(0,+\infty)\times(1,1/R)$, $D_{-}=(0,+\infty)\times(1/R,1)$, and $D_{0}=\emptyset$. Now we can formulate our main result.

THEOREM 1. (a) For any $0 < \beta \le \pi$, the shortest curve for $(1, e^{i\beta})$ is the curve $t \to e^{it}$ for $0 \le t \le \beta$ and, consequently,

$$c_A^i(1,e^{i\beta}) = \gamma_A(1;\beta).$$

(b) For 1 < b < R and $0 < \beta \le \pi$, the shortest curve for $(1, be^{i\beta})$ is the curve

$$t \to u(t)e^{it}$$
 for $0 \le t \le \beta$, (8)

where the function u = u(t) $(u(0) = a, u(\beta) = b)$ and the constant $C = C_{+}(\beta, b) \in (0, \delta(1))$ are uniquely determined by the equations

$$\Psi_+(C, u) = t$$
 and $\Psi_+(C, b) = \beta$.

Moreover,

$$c_A^i(1,be^{i\beta}) = \int_1^b \frac{\delta^2(s) \, ds}{s\sqrt{\delta^2(s) - C^2}}$$
 where $C = C_+(\beta,b)$.

(c) For 1/R < a < 1, 1/R < b < R, and $0 < \beta \le \pi$, if $be^{i\beta} \in D_{\pm} \cup \gamma_{\pm}$ then the shortest curve for $(a, be^{i\beta})$ is of the form (8), where the function u = u(t) and the constant $C = C_{\pm}(\beta, b)$ are uniquely determined by the system

$$\Psi_{\pm}(C, u) = t$$
 and $\Psi_{\pm}(C, b) = \beta$.

Moreover,

$$c_A^i(a,be^{i\beta}) = \pm \int_a^b \frac{\delta^2(s) ds}{s\sqrt{\delta^2(s)-C^2}}$$
 where $C = C_\pm(\beta,b)$.

(d) For 1/R < a < 1, 1/R < b < R, and $0 < \beta \le \pi$, if $be^{i\beta} \in \gamma_+ \cup D_0 \cup \gamma_-$ then the shortest curve for $(a, be^{i\beta})$ is of the form (8), where the function u = u(t) and the constant $C = C_0(\beta, b)$ are uniquely determined by the system

$$\Psi_0(C, u) = t$$
 and $\Psi_0(C, b) = \beta$.

Moréover,

$$c_A^i(a,be^{i\beta}) = \left(\int_a^{\delta^{-1}(C)} + \int_b^{\delta^{-1}(C)}\right) \frac{\delta^2(s) \, ds}{s\sqrt{\delta^2(s) - C^2}} \quad where \ C = C_0(\beta,b).$$

Proof of Theorem 1. The proof will be divided into two steps.

Step 1°: Reduction to a variational problem. Fix $1/R < a \le 1$, 1/R < b < R, and $0 < \beta \le \pi$ (if a = 1 then we take $1 \le b < R$). It is clear that in (2) the infimum may be taken only over the class of all curves α of the form $\alpha(\vartheta) = r(\vartheta)e^{i\mu(\vartheta)}$ for $0 \le \vartheta \le 1$, where $r: [0,1] \to (1/R,R)$ and $\mu: [0,1] \to [0,\pi]$ are C^1 -functions with r(0) = a, r(1) = b, $\mu(0) = 0$, and $\mu(1) = \beta$. In view of (1), if $\mu(\vartheta_1) = \mu(\vartheta_2)$ for some $0 \le \vartheta_1 < \vartheta_2 \le 1$ then the γ_A -length of the segment $[\alpha(\vartheta_1), \alpha(\vartheta_2)]$ is not larger than the γ_A -length of the curve $\alpha|_{[\vartheta_1, \vartheta_2]}$. This implies that the class of "admissible" curves may be reduced to the class of all curves of the form $\alpha(t) = u(t)e^{it}$ ($0 \le t \le \beta$), where $u: [0, \beta] \to (1/R, R)$ is a C^1 -function with u(0) = a and $u(\beta) = b$.

Thus, in order to characterize the shortest curve and to calculate $c_A^i(a, be^{i\beta})$, it suffices to minimize the following functional (cf. (3)):

$$u \to \int_0^\beta \gamma_A(u(t); \sqrt{u^2(t) + u'^2(t)}) dt \tag{9}$$

when u is in

$$\mathfrak{D} = \{u : [0, \beta] \to (1/R, R) : u \in C^1, u(0) = a, u(\beta) = b\}.$$

In view of (7), if $u(t) \ge u_0 = u(t_1) = u(t_2) \ge 1$ for $t_1 \le t \le t_2$, then the γ_A -length of the curve $\alpha|_{[t_1, t_2]}$ is not larger than the γ_A -length of the arc $t \to u_0 e^{it}$ when $t_1 \le t \le t_2$. The same is true if $u(t) \le u_0 = u(t_1) = u(t_2) \le 1$ for $t_1 \le t \le t_2$. As a direct consequence of these remarks, we obtain statement (a) of the theorem.

Step 2°: Solution of the variational problem. We are going to minimize (9) using a modification of the classical Weierstrass method (cf. [7]). Let

$$F(u, v) = \gamma_A(u; \sqrt{u^2 + v^2})$$
 for $1/R < u < R$ and $v \in \mathbb{R}$

and let

$$\mathcal{E}(u, v_1, v_2) = F(u, v_2) - F(u, v_1) - \frac{\partial F}{\partial v}(u, v_1) \cdot (v_2 - v_1)$$

for 1/R < u < R with v_1 and v_2 in **R** be the Weierstrass function for F. First observe that $\mathcal{E}(u, v_1, v_2) > 0$ when $v_1 \neq v_2$. Thus, the main problem is to cover the domain D by a "sufficiently" regular family of stationary curves for (9). More precisely, it suffices to find for each pair (t_0, u_0) in D a unique solution $u(t) = u(t_0, u_0; t)$ of the Euler-Lagrange equation

$$\frac{\partial F}{\partial u}(u(t), u'(t)) = \frac{d}{dt} \frac{\partial F}{\partial v}(u(t), u'(t)) \tag{10}$$

with u(0) = a and $u(t_0) = u_0$ in such a way that the following function on D

$$(t_0, u_0) \to \Phi(t_0, u_0) = \frac{\partial u}{\partial t} (t_0, u_0; t_0)$$

is globally continuous and of class C^1 in each of the domains D_+ , D_0 , and D_- separately. In view of (7), the only constant solution of (10) is u = 1. Moreover, one can easily prove that in the class of nonconstant solutions, equation (10) is equivalent to the following 1-parameter family of equations:

$$\delta(u(t))u(t) = C\sqrt{u^2(t) + u'^2(t)}, \quad C > 0.$$
(11)

Note that there are constant solutions of (11) (e.g., $u = \delta^{-1}(C) \neq 1$) that are not solutions of (10).

From now on we will assume that 1/R < a < 1; the case a = 1 is analogous. Fix (t_0, u_0) in $D_{\pm} \cup \gamma_{\pm}$ (resp. in $\gamma_{+} \cup D_0 \cup \gamma_{-}$). In view of (11), it suffices to prove that the system

$$\Psi_{\pm}(C, u) = t, \ \Psi_{\pm}(C, u_0) = t_0$$

has exactly one solution u=u(t) and $C=C_{\pm}(t_0,u_0)$ such that the function $(t,u)\to C_{\pm}(t,u)$ is continuous on $D_{\pm}\cup\gamma_{\pm}$ and of class C^1 in D_{\pm} (resp., the system $\Psi_0(C,u)=t$, $\Psi_0(C,u_0)=t_0$ has exactly one solution u=u(t) and $C=C_0(t_0,u_0)$ such that the function $(t,u)\to C_0(t,u)$ is continuous on $\gamma_+\cup D_0\cup\gamma_-$ and of class C^1 in D_0).

In the first case the situation is simple because

$$\pm \frac{\partial \Psi_{\pm}}{\partial u} > 0$$
 and $\frac{\partial \Psi_{\pm}}{\partial C} > 0$ in int (B_{\pm}) ,

and therefore one can use the implicit function theorem. In the second case the situation is more complicated; it is clear that $\partial \Psi_0/\partial u < 0$, but the proof that $\partial \Psi_0/\partial C < 0$ in int(B_0) needs some work.

It suffices to prove that

$$\frac{\partial \Psi}{\partial C} < 0, \tag{12}$$

where

$$\Psi(C, u) = C \int_{u}^{\delta^{-1}(C)} \frac{ds}{s\sqrt{\delta^{2}(s) - C^{2}}} \quad \text{for } 1/R < u < \delta^{-1}(C) < 1.$$

Recall (cf. [4, 5]) that

$$\delta(e^{2\pi i\xi}) = \frac{k}{2\pi} \operatorname{cn}(2\xi),$$

where cn denotes the *cosinus amplitudinis* with periods $\omega_1 = 1/2$ and $\omega_2 = \tau/2$ ($e^{i\pi\tau} = 1/R^2$), and k is the "Jacobi Modul" for the theta functions. Hence, from standard properties of cn, sn, and dn, we get

$$[\delta'(s)s]^2 = 4\left[\delta^2(s) - \left(\frac{k}{2\pi}\right)^2\right]\left[\delta^2(s) + \left(\frac{k'}{2\pi}\right)^2\right]$$

when 1/R < s < R and when $k' = \sqrt{1 - k^2}$. Using this identity, after elementary calculations we conclude that

$$\Psi(C, u) = \frac{\pi}{\sqrt{2}} \Lambda\left(\frac{P}{\delta^2(u)} + Q, \frac{P}{C^2} + Q\right), \tag{13}$$

where

$$P = \frac{1}{2} \left(\frac{kk'}{\pi} \right)^2$$
, $Q = k^2 - k'^2$, and

$$\Lambda(\xi, x) = \int_{\xi}^{x} \frac{dt}{\sqrt{(1 - t^2)(x - t)}} \quad \text{for } -1 < \xi < x < 1.$$

Observe that (the idea is due to P. Tworzewski):

$$\Lambda(\xi, x) = \int_0^1 \sqrt{\frac{x - \xi}{1 - [\xi + \eta(x - \xi)]^2}} \, \frac{d\eta}{\sqrt{1 - \eta}}.$$

Hence

$$\frac{\partial \Lambda}{\partial x} > 0$$

and consequently, in view of (13), we get (12).

References

- [1] S. Dineen, The Schwarz lemma, Clarendon Press, Oxford, 1989.
- [2] M. Jarnicki and P. Pflug, The simplest example for the non-innerness of the Carathéodory distance, Resultate Math. 18 (1990), 57-59.
- [3] ——, Invariant pseudodistances and pseudometrics—completeness and product property, Ann. Polon. Math. 55 (1991), 169–189.
- [4] ——, The inner Carathéodory distance for the annulus, Math. Ann. 289 (1991), 335–339.
- [5] F. Rühs, Funktionentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.
- [6] R. R. Simha, *The Carathéodory metric of the annulus*, Proc. Amer. Math. Soc. 50 (1975), 162–166.
- [7] J. L. Troutman, *Variational calculus with elementary convexity*, Springer, Berlin, 1983.

Marek Jarnicki
Uniwersytet Jagielloński
Instytut Matematyki
Reymonta 4
30-059 Kraków
Poland

Peter Pflug
Universität Osnabrück
Standort Vechta
Fachbereich Naturwissenschaften,
Mathematik
Postfach 15 53
2848 Vechta
Germany