Mobius Invariant Spaces on the Unit Ball

MARCO M. PELOSO

In this paper we study spaces of holomorphic functions on the unit ball B in
C” that are invariant under composition with automorphisms. These spaces
are called Mobius invariant, and were introduced by Arazy, Fisher, and
Peetre [AFP1]. Previously, Arazy and Fisher [AFI1] had proved that on the
unit disc D in C there exists a unique Mdobius invariant Hilbert space of
holomorphic functions. This turns out to be the classical Dirichlet space D.
Also, Arazy, Fisher, and Peetre constructed a space on the unit disc that
is minimal in the class of Mo6bius invariant Banach spaces. Moreover, in
[AFP1] it was proved that, on the unit disc, the minimal space 9 can be
identified with the 1-Besov space B;.

For n> 1, in [Z1] Zhu proved that there exists a unique Mébius invariant
Hilbert space on the unit ball. However, he was not able to find a characteri-
zation of this space that extended the Dirichlet space to higher dimensions.
This same result was obtained by Peetre, but never published. More recently,
Arazy and Fisher [AF2] proved that on any bounded symmetric domain there
exists a unique Mobius invariant Hilbert space of holomorphic functions.
Again this description is in terms of the power expansion of the holomorphic
functions, and a more explicit characterization seems to be desirable. Again
in the case n>1, Arazy, Fisher, Janson, and Peetre [AFJP] and indepen-
dently Zhu [Z2] have proved that, for p > 2n, where n is the dimension of
the unit ball, the diagonal Besov spaces B, = B,',’/P are Mobius invariant.

In this paper we study the M@bius invariant spaces on the unit ball B. We
construct a space 9 analogous to the space on the unit disc that we prove
to be minimal in the class of Mobius invariant spaces. Moreover, we prove
that the space 9 can be identified with the 1-Besov space B;. As a conse-
quence we obtain that, for 1 < p < o, the Besov spaces B, are Mbius invari-
ant. Moreover, we prove that the 2-Besov space B, is the unique Hilbert
space of holomorphic functions that is Mobius invariant, and we give an ex-
plicit description of the invariant inner product. Finally, among other prop-
erties of the invariant inner product, we prove that the dual of I is the
Bloch space ®&3, with equality of norms.

The paper is organized as follows. In Section 1 we give the basic defini-
tions and introduce the Mgbius invariant spaces. In Section 2 we construct
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the minimal space 9. In Section 3 we introduce the (analytic) Besov spaces
B,, 0 < p <. We prove that B, can be obtained as a projection of a weighted
L? space. Moreover, we describe the atomic decomposition of these spaces,
as obtained by Coifman and Rochberg [CR]. In Section 4 we prove that the
minimal space 9 can be identified with the Besov space B,. As a conse-
quence we obtain that the Besov spaces are Mobius invariant for 1 < p <o,
In Section 5 we show that the 2-Besov space is the unique Mdbius invariant
Hilbert space. Using a different approach, Arazy [A] has recently described
the invariant inner product in a similar way. Using the expression of the
invariant inner product, we prove that the dual of the minimal Banach space
M is the Bloch space 3.

This paper is part of the author’s doctoral dissertation, written under the
direction of Prof. Steve Krantz at Washington University in St. Louis. The
author extends his gratitude and appreciation to Professor Krantz.

1. Definitions and Basic Facts

Throughout this paper we denote by B the unit ball in C”. For z, we C” we
write the inner product as

n
ZW= 3 Z;W;.
i=1

The space of holomorphic functions on B will be denoted by JC(B) and the
group of automorphisms of B by Aut B. The group Aut B, also called the
Mobius group, consists of all biholomorphic self-maps of B onto itself. The
group Aut B can be described as follows (see [R]). For any { € B define ¢, by

_{—Pz—(1—|z|)?Q;z
1—z-¢ ’
where P; is the orthogonal projection onto.the subspace generated by { and

Q¢ =1—P;. Then ¢, € Aut B and ¢, is an involution that interchanges { with
the origin. Moreover,

1) Ps

Aut B={p,oU: f € B, Ue U},

whre U is the space of unitary transformations of C”.

The normalized Lebesgue measure on B will be denoted by dV. In the case
when n =1, we denote the unit disc by D and the normalized area measure
by dA. For any n=1, the invariant volume form is

dV(z)
(l_lz|2)n+l ’

dX(z)=

(see [R]).
The gradient of a holomorphic function f will be denoted by af; that is,
af=(a,f,...,0,f), where
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af

0z [ .
We will also use the following notation. We write

a9%f
az°

3%f(z) =

(2),

where « is a multi-index. Also, we set

6”’f(2)=(aaf (z))l "

daz“
The radial derivative of fe JC(B) is defined to be

n
Rf(z)=2z-3f(z)= X z;0,f(2).
i=1
If ¢,eAutB is defined as in (1), the invariant derivative of fe JC(B) is
defined as
Df(z) =18(f>0,)(0)].
We now introduce the diagonal analytic Besov spaces.

DEFINITION 1.1. Let B be the unit ball in C”, 0 < p <o and let s be any

real number. Moreover, let m be a nonnegative integer, m >s. We define
the diagonal Besov spaces B, of holomorphic functions by

By = {fe 3C(B): (1-(z|)"*|R"f(2)| ELP(ld-Yl(jl)z )}

REMARK 1.2. It fs well known that the definition is independent of #. It is

also well known that one can replace the expression |R™f(z)| with |8™f(z)|.
The reader may consult [BB] and [AFJP] as reference for these results.

We will deal particularly with one family of Besov spaces: the ones corre-
sponding to the value s = n/p. In this particular case we isolate the weight so
that the invariant volume form appears explicitly. Then we have the following.

DEFINITION 1.3. For 0 < p <o we define the analytic Besov spaces B, as
Bp=Bg/P. Explicitly: Let m be any integer satisfying mp > n. Define the
space B, as

B,=(fe3(B): (1-[z[*)"|R"f(z)| € LP(dL)).

DEFINITION 1.4. Let s> —1. We introduce the reproducing kernels X, =
X, (z, w) defined by

(1—|w[?)®
(1—~Z°W)”+H’S ?

Kz, w) =1

where
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_ DP(n+s+1)
Y= Tm+DIGs+1)

It is well known (see [R]) that the kernels X, reproduce the holomorphic
functions. (Indeed, they are the reproducing kernels for the Bergman spaces
A%S; see Remark 1.9.)

We introduce a space of functions: the Bloch space. When we define the
Mobius invariant spaces, we will restrict ourself to Bloch functions. We will
explain shortly afterwards how this is not a too restrictive assumption.

DEFINITION 1.5. Let feJC(B). Let Df be the module of its covariant
derivative. We say that f is a Bloch function if

pa(f) =sup Df(z) <eo.

zZeB

Moreover, we define the Bloch norm | f|g of f as

|.fl& = sup Df (z) +| f(0)|.

zeB
We define the little Bloch space & to be the subspace of @ for which
lim Df(z)=0.
lz{—17

It is easy to see (cf. [T1]) that ® is a Banach space with the above norm, and
that the seminorm satisfies pg(fe) = pg(f) for all fe @ and all ¢ € AutB.
It is well known that the Bloch space B is maximal in a very large class of
function spaces that are preserved by composition with automorphisms (see
[RT], [T2], and [AFP1]).
We now introduce the Mdébius invariant spaces.

DEFINITION 1.6. Let X be a linear space of analytic functions on B en-
dowed with a seminorm p: X — [0, ). Suppose that the following proper-
ties hold.

(1) X is complete on the topology generated by p and embeds contin-
uously in the Bloch space ®; that is, there exists a positive constant C
such that, for all fe X,

sup Df(z) = Co(f).

zeB

(2) For all fe X and pe AutB, fepeX.
(3) There exists a constant ¢> 0 such that, for all fe X and ¢ € Aut B,

p(fop)=co(f).
(4) The group action is continuous. That is, for each fixed f e X, the map-
ping Cy: Aut B — X defined by C/(¢) = fop is continuous.

If X satisfies conditions (1) through (4) then it is called a Mdbius invariant
space. Moreover, if the constant c¢ in (3) equals 1 then X is called a strict
Mo6bius invariant space.
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REMARK 1.7. (a) Condition (3) in the definition requires that the compo-
sition operators C,, ¢ € Aut B,

C,: XX
defined by
Co(f)=Sfop

are (well-defined and) uniformly bounded in the (semi)norm of X. If we
define a new seminorm p’ on X by setting

P’ (f)=sup{p(feop): ¢ € Aut B},

we obtain a seminorm equivalent to p. Such a new seminorm p’ satisfies the
condition

p'(fep)=p'(f) forall feX, o AutB.

Hence every Mobius invariant space can be made into a strict Mobius invari-
ant one.

(b) As a consequence of Rubel and Timoney’s theorem [RT; T2}, condi-
tion (1) is equivalent to requiring the existence of a nonzero continuous
linear functional on X that is also continuous in compact-open topology.
Such linear functionals have been called “decent” in the literature. In par-
ticular, it suffices to require that any point evaluation of derivatives of any
order is continuous on X.

EXAMPLES 1.8. (a) For 1 < p <o the Besov spaces B,(D) on the unit disc
D are such that

B,= {fe 3C(D): SD(I ~1z|)?|f(2)|PdE(z) < oo}-

Recall that since n=1,
dA(z)
(1-|z[?)?
and that (1—|z|?)| f'(z)| is the invariant derivative Df(z) of f. Hence B,isa

(strict) MObius invariant space. Notice that for p =2, the space B,(D) re-
duces to the Dirichlet space

dX(z) =

D= {fe Je(D): Sle’(z)l2 dA(z) < 00}

of analytic functions on the unit disc of finite area. The quotient space
$/C is a Hilbert space. We have already mentioned that /C is the unique
Hilbert space which is Mdbius invariant in the sense of Definition 1.6.

(b) Let A(B) be the ball algebra, that is, the space of holomorphic func-
tions on B continuous up to the boundary. Then A(B) is a (strict) Mobius
invariant space with the supnorm.

(c) Let ® be Bloch space. The seminorm pg,

pa(f)=sup{Df(z): z € B},
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is (strict) Mobius invariant. But @ does not satisfy condition (3) in Defini-
tion 1.6; that is, the group action is not continuous. However, the group
action is continuous in the weak*-topology.

(d) The little Bloch space &, is a (strict) Mobius invariant space. The
proof of the continuity of the group action is elementary. Just notice that
if fe By and f is nonconstant, then there exists 2o € ® that realizes the semi-
norm. That is,

sup Df(z) = Df(zy).
zeB

(e) The classical H”(B) spaces do not satisfy condition (3) in Definition
1.6 for 1 = p <. Indeed, an easy calculation shows that, if ¢, is defined as
in equation (1), then the composition operator C, (see Remark 1.7(a)) has
norm (1—|e|?)~1P, which is unbounded as a — S. By contrast, the space
H>(B) does not satisfy condition (4) in Definition 1.6.

REMARK 1.9. Let us consider the diagonal Besov spaces B;, as defined
in Definition 1.1. Notice that for s <0 and 0 < p < we obtain the classi-
cal weighted Bergman spaces on the ball A””(B), where y=—s—1> ~1.
Explicitly,

aro(B)={reseid): [ | f@P APy avia) <o)

On the Bergman spaces A" is possible to define a weighted action
S (deto')P(fop),

where 8= (1—p/(n+1))>P. It would then be interesting to investigate the
present theory under this approach, extending it to the whole scale of weighted
Besov spaces.

We now present some properties of the Mdbius invariant spaces. Proposi-
tion 1.10 is an immediate consequence of the definition; nonetheless, it fur-
nishes a key tool in studying Mdbius invariant spaces.

PROPOSITION 1.10. Let X be a Mébius invariant space and let p be a finite
measure on Aut B. Then the integral operator

(LN@=|  fle@)due)

maps X into X and
p(T, ) =|r]p(S).

The integral converges in the topology of X.

Proof. This follows immediately from the properties of vector-valued inte-
grals. The continuity of the group action on X implies that f(¢) is a con-
tinuous function on Aut B. O
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The next proposition has been used rather explicitly by some authors. For
n=1 it was proved by Arazy, Fisher and Peetre [AFP1]. For n=1, partial
results were obtained in [Z2] and [AFJP]. Our proof follows the one on the
disc by Arazy, Fisher, and Peetre.

We introduce here some more notation that will be used later on.

DEFINITION 1.11. For j=1,..., n we define the coordinate functions v; on
B as

v;j(z) =2;.

PROPOSITION 1.12. Let X be a Mébius invariant space. Suppose that X
contains a nonconstant function f. Then X contains all polynomials and
these are dense in X. Moreover,

p(z*)=0(la|) as |a|- .

Proof. Here we consider only the case n>1; the case n=1is in [AFP1,
Prop. 2]. Let V be the subgroup of the unitary matrices U that are diagonal.
Thus, V is defined by

ei91 O
2 = U= O
) Y {Ue‘u U ( 0 " ol

For a multi-index « and 6 =(4,, ..., 0,) € R", write

),0:(91,...,0,,)511"}.

n
a-0= 2 a,-@,-.
i=1

Given a multi-index 8, define the measure p= pg on Aut B by the formula

1
(2m)"

gAutB J() drgle) = S:r e g:r f(6y,...,0,)e=%%de, --- db,,

where we identify 8 € R” with U e V as in (2). Since X is a Mobius invariant
space, by Proposition 1.10 it follows that for any fe X the function

_ 1 T T 6 i0), -0
Tl"Bf(z) - (271")" S_ﬂ_ Tt S_Wf(e‘ 1215 -..,e’ z,,)e’ dﬂn soe d01

belongs to X. Let f(z)= 2, a,z“ be the power series expansion of f. Then

n x ' .
TupJ(2) = %aaz "’JI:II % S e'i%e=%% dg,

-7
=agz®.

Hence ag # 0 implies z% e X. Let 3C; be the space of all holomorphic poly-
nomials of degree k. Since X is unitarily invariant and {z%-U}yq span
3C) (see [R, 12.2.8]), we have that

JCWCX
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In particular, vJ'.B |°go e X forall pe Aut B, j=1,..., n(recall Definition (1.11).
Therefore

r—z; \I8l
( / ) eX for —1<r<i,j=1,...,n.
l—ij

Now, arguing as in [AFPI1, Prop. 2], we obtain that X contains all poly-
nomials.

The proof that the polynomials are dense in X is the same as in the case
n=1. It suffices to notice that, if f € IC(B) and f(z) = Xg F;(z) is its homo-
geneous expansion, then

o W G R

: ijog ~ik8 g —
27 27 S-—r(j ¢ F}(Z))e a6 Fk(Z)

(here ez indicates the scalar product). Set
y VIR
6) = 1— L it
ow(6) j:E_N< N+1)e
the Nth Fejer kernel, and

1
T

on()(@)= 5= S; flez)e~*0g,,(6) db.

Using standard arguments of approximation of the identity, one shows that

plon(f)=Sf)—0 as N— oo,

Finally, we wish to estimate the size of z% in the seminorm p. By [AFPI,
Prop. 1] it follows that, for j=1,...,n,

p(z[')=0(m) as m— oo,

By the theory of spherical harmonics (see [R, 12.2.5]) we know that for
any m there exists a function H,,(z, ) defined on B X S such that for all «,
la|=m,

%= SS 1“H,(z,n)do(n)

= | (U'e)"H,,(Uz, e))dU,

where dU is the normalized Haar measure on the unitary group U and ¢ is
the unit vector (1,0, ...,0) (see [R, 1.4.7]). Since X is MoObius invariant, the
mapping U~ H,, (U, e;) is continuous from ‘U into X. Thus, by Proposition
1.10,

p(z%) < p(H (-, e)).
By [R, 12.2.6] we have that

H,(z,e)={ (vf'U)(z)dV,

€
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where U, is the subgroup of ‘U that fixes e;, with measure dU normalized
so that the subgroup has measure 1, and v, is the coordinate function intro-
duced in Definition 1.11. Then

p(2%) = p(Hy (-, €1)) = p(v]") = O(m).

This gives the desired conclusion. O

2. The Minimal Space

In this section we construct the space 9 that turns out to be the small-
est Mobius invariant space, in the sense that it is contained in every other
Mgbius invariant space.

For a e B let ¢, € Aut B as defined in (1). Notice that ¢, - @ uniformly on
compact subsets of B as |a| — 1. Thus we identify ¢, with a if |a| = 1. Recall
that, for j =1, ..., n, v; are the coordinate functions as defined in Definition
1.11.

DEFINITION 2.1. With the above convention define
J={r:B->C:r=y;oyforyeAutBandj=1,...,n}.
Let O be the subspace of JC(B) defined by

= {f:f-:%CiTi with TiEG, CiEC,§|C,~|<ooz.
1 1
We give 9 the norm
o =int{ Sl /=S,

REMARK 2.2. The following are elementary.

(a) For all 7eJ we have |7|q; = 1.

(b) The space I is complete in this norm.

(c) The space M continuously embeds into the little Bloch space ®,; that
is, M = &, and for each fe M we have

|fla <1/l
(d) For every fe 9 and fe Aut B we have that
|foelon =1/ lon-

Therefore, in order to conclude that 91T is a M6bius invariant space, we need
to show that the group action is continuous (see Definition 1.6 (4)). This is
our next task.

LEMMA 2.3. Letj=1,...,nand k=1,2,.... Then the functions z} satisfy
Izflon =O(k) as k— .
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Proof. Obviously, the functions z;,...,z, all belong to M. For Ae D let
¢y € Aut B be defined by
@)= (XA A=P)z A=),
2 1—nz," 1-rg 77 1-xgzg )
Set oy, = v o ¢y, (recall Definition 1.11). Applying [AFP1, Thm. 6] we obtain
that, for suitable \; with |\;] <1,

vit'=3g O\
1

and

00 0 2 k/2

inf{E]aj|; pf+1 =2aja,\j} < (k+2)(1+7€—>
1 1
=0(k) as k- oo.
This gives the desired result. Ol
LEMMA 2.4. For each multi-index «, the function 7% e 9N and
|z%lw=O(la]) as |a|— .

Proof. Recall that 3C; is the space of all holomorphic homogeneous poly-
nomials of degree k. We want to show that, for each o with |a|=k, the
action U~ z% U of U into I is continuous.

Let U, = {(u]})]=1} be a sequence of unitary diagonal matrices converging
to the identity. Fix the function f,(z) =z%in 3C;. Then

n
Iz =2
j=1

n
= Elll“(“ﬁ)ajl'"za"mz:
J=

I,fa°Um '-fa"im =

and the right-hand side tends to 0 as m — oo,
If U,, are not diagonal matrices, we can find unitary matrices V;, such that
V,, U,V are diagonal. Then

Ilfoz°Um _fa"Em = "gaon Um Vtr;_ga"ml’

where g, = f,°V,r is a function of the variable w=V¥,,z. Thus the unitary
group acts continuously on M. Now, as in the proof of Proposition 1.12,

7%= Xm(U—le,)aHk(Uz, e,)dU
with |H,(-, e;)|ox =< |v¥|or. Then, by Proposition 1.10 it follows that
lz%|ow = O(le|) as |a— co. O

THEOREM 2.5. The space I is a Mobius invariant space. Moreover, M
is minimal in the sense that if X is any Mobius invariant space that contains
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a nonconstant function then there exists a positive constant ¢ > 0 such that,
Sor all fe I,

|flx =c]flon-

Proof. Inorder to prove that 91T is Mobius invariant, we need only prove the
continuity of the group action. Notice that it suffices to show that fep™ — f
in M as ¢ —id in Aut B. Notice that —¢, — id as a - 0. We first show that
if a—> 0 in B then

v1°(""99a) — U in n,

where
a—P,z—(1-|a|))"?*Q,z
(Pa(Z)= 1 '_l Qa
_.z.a
1 z-a 241/2 z-a Y
1—z ﬁ(aj | Izaj (=1alY" (5 Ialzaj =1
We have

Vie(— @) (2) —141(2)

_ 1
1—z-a
[ a (1—|al?)V/?
3) X (—al+(1—|a|2)1/2Z1—'Z1+Z-a(|a;2 — |Ia||2 al+Z1>)

= S(e-a)f (~a— a1~ (1~af))
1) 1—(1— 241/2
+20:(Z'(_1)k+1(a1 ( Iallgl ) +ZI>.

Let e,=(1,0,...,0) and U, be any unitary matrix such that U,(|a|e;) =a.
Then

@) Iz @) on = al* | Jor.-

Hence (4), together with the estimate in Lemma 2.3, gives

(5) Sz-a)| =CY klal~.
0 1 1

Arguing as before we obtain

(6) (z1(z-@)¥|gn < C(k+1)|alk.

These estimates also yield

M

i(z_a-)k+l
0

< CS(k+1)]alk+!
m 0

and
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)

< k+1
Szi(z-a)yt
0

< CS(k+2)|alt*2.
m 0

Therefore, collecting the estimates (4) through (8) and using the expansion
in (3), we find

Jvio(—0a(z)) = v1fon

<la|-| @Dt +1-1-]aP)?)|  zz-2)*
k=0 mMm k=0 m
(1 —171231/2 11 o o
+'Iall a Itzll) Sayt| +] $ z@ayt
Ial 0 m k=0 Mm

< Cla| 3 klal* +(1—(1~|a|?)V2) Stk +1)|a]c+!
1 1

+|a] %(k+l)lavl’””+§)(k+2)|ar|"+2
1 1

=0O(|a|) as |a]-0.
Thus we have proved that, for j=1,...,n,
lvje(—¢s)—Vj|qr =0 as a—0.
This easily implies that

|feo™—flaw—=0 as ¢™—id.

Hence I is a Mobius invariant space.
The minimality of 91T as a Mobius invariant space follows at once. Indeed,
let X be any Mobius invariant space that contains a nonconstant function.
By Proposition 1.12 it follows that X contains all the polynomials. In par-
ticular, X contains the functions vy, ..., v,. By Mébius invariance, X con-
tains J as defined in Definition 2.1. Let fe M, f=X ¢ 7, 1;€3. Let M=
max({|v;| x:j=1,..., n}, where |-| x is the M6bius seminorm on X. Then
;? Ci T

|1 flx=

X
SM?ICI'I.

Taking the infimum of the right-hand side over all representations of f in
I, we obtain that

1A x=M|Sflon.
This concludes the proof. O

3. Analytic Besov Spaces

In this section we collect some results on the Besov spaces B, or, more gener-
ally, on the weighted Besov spaces B, on the unit ball. After proving a simple



M©oébius Invariant Spaces on the Unit Ball 521

fact about the equivalence of several norms on such spaces, we identify the
weighted Besov space B, with a quotient of the L? space LP((1— 1z|2)*dV).
This extends a result of Zhu on the unit disc (see [Z3]). Finally, we describe
the atomic decomposition of the Besov spaces, as obtained by Coifman and
Rochberg (see [CR]).

Recall that for fe JC(B) we write

af(z) =(8; f(2)j=1,...,n>
and that

let|
a4z«
Also, for any positive integer m we write

3" f(2) = (3°f(2))|a)=m

(z) (oamulti-index).

0°f(z) =

and

la’"f(z)|=] % |0°%f(2)].

al=m

Recall that in Definition 1.1 we defined the analytic Besov spaces B}, by

B:= {fe JC(B): (1-|z|*)" " |R"f(z)] e”(ld—vl(;l)2 B

and in the case »=n/p we defined (see Definition 1.3) B, as
B,={fe3(B): (1-|z[*)"|R™f(z)|e L (dX)).

Our next goal is to prove that we can replace the differential operators 9™
and R™ with other differential operators in the definition of the norm of Bj,.
The next proposition furnishes a simple but particularly useful criterion for
when this can be done. First we have two definitions.

DEFINITION 3.1. Let D be a linear first-order partial differential operator
in 4y, ..., d,, with coefficients that are C* up to the boundary; that is,

“ d
D= Y di(z)—,
JE] i@ azj
where d; are functions C® up to the boundary. We say that D is never tan-
gential on B if, for all ze B and z#0,
D(|z]*)(z) =0

(that is, if the projection of D onto the normal direction is never 0).

DEFINITION 3.2. Let 0< p=oco. Let m be any positive integer such that
m > s. Define the spaces Bg)p , by

dV(z) < oo}

_ . _ 2\m—s m -_—
B@p’s_{fe{}C(B)-sB[(l SR A Lo

Moreover, set
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+ 3 [9°4(0)].

|ej<m

dv(z) \/°

—_ 1— 2 DM p

la, = (], 10-lePomr@ne 29

PROPOSITION 3.3. Let 0< p=<oo, s be a real number, and D be a firsi-

order differential operator which is never tangential. Then there exist two

constants cy, ¢, >0, depending only on p, s, m, n, and D, such that for all
SfedC(B) we have

XB(I—IZIZ)SIR”‘f(z)l"dV(z)scl SB(I—lzlz)sliDmf(z)l”dV(z)+ S |0%£(0)]

|aj<m

<c | (1=-|zP)* IR dV)+ 3 [9%(0).

|af<m

Notice that it is part of the statement that the finiteness of one right-hand
side implies the finiteness of the left-hand side.

Proof. The case p=co is an easy consequence of the arguments in [T1] and
[Z4]. The case p < « in contained in Theorem 1.1 of [BS]. m

COROLLARY 3.4. Let 0< p<ooand let D be a first-order differential oper-
ator which is never tangential. With the above notation there exist two con-
stants c;, ¢, >0, depending only on p, n, and D, such that for all f € 3C(B)
we have

Ifls,= Cl"f"B:DM <ol fls,

/p

Proof. It suffices to set s=mp—n—1 for any positive integer m satisfying
mp > n, in Proposition 3.3. 4

We now introduce some differential operators. These operators are modifica-
tions of the radial derivative, and behave particularly nicely with respect to
the reproducing kernels X (as defined in Definition 1.4). They also give rise
to fractional integrations since they can be defined for noninteger values, too.

DEFINITION 3.5. Let s> ~1 and p be a real number. We define a linear
operator ®* on L((1—(z|*)*dV) by

1— 2y\s
®REf@ = | (l(_z'f;'),f,r{fﬂ# dV(w).

Recall that vy, =T'(n+s+1)/T'(n+1)I'(s +1) (see Definition 1.4).
REMARK 3.6. (a) Notice that for fe JC(B)
(n+D7'R+T) f(z) =Ry f(w),
and for m a positive integer
RPf=({(n+1+s+m—-1)"'R+I)R"1f

=y, S (k(n+14+s+m—1)"" 1) (k(n+1+5) " + DF,,
k=0
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where f=Y7_, F is the homogeneous expansion of f (and R is the radial
derivative).
(b) For all s> —1 and p, p € R with s+ p > —1, it is easy to see that

o — +p
®RE,,RE= REYP.

(c) Let X(z,w) be the Bergman kernel and let ®% act on the z-variable.
Then
(Rg(fj{(, w)l+s/(n+l)) =X(-, W)l+;u/(n+1)+s/(n+l).

PROPOSITION 3.7. Let 0< p<o and t=0. Then for p>t and s> —1,
the expression

1/p
(SBlﬂlﬁf(z)l”(l —|z|?)tr-np-t dV(z))
defines an equivalent norm on B},.

Proof. For the case 0< p<1, see [W]. Let p>1. If x is an integer we have
nothing to prove. For yu nonintegral let m be the positive integer such that
m>t and |p—m|<1. Write ®* = QR ®”. Then the integral in the state-
ment is less than or equal to a constant times

SB((I— 2|2 REIRE S ()P (1|2 ]?) "= 9P =1 dV(z).

It follows from [Z5] that (1—|z|?)®*~™®.™ is a bounded linear operator
on LP((1—|z|?)™=97=14V), This argument works both ways. O

Coifman and Rochberg [CR] have proved that the weighted Bergman spaces
AP? (0< p<oo, y>—1) admit an atomic decomposition. Precisely:

(1 _lg-ill)[(n+l)(p+l)+v]/p
fRY=Yc¢

where {{’} form a lattice,

(1 __z.g-'i)[(n+l)(p+2)+21x]/p ’

v
p> (l+m) max(—1, p—2),
and
1f15r. = Xl

We now illustrate how to obtain the corresponding atomic decomposition
for the weighted Besov spaces. The case 0 < p <1 can also be found in [W].

THEOREM 3.8 [CR]. Let 0<p<ow and teR. Let

g> | max((G=0(p=1,0) i 1<,
max(z(p—1),0,t~3) if t=0.

Then there exists 0y = 0y( p, 8, n) such that if the points {¢'} form a 0-lattice,
0<0<8y, then the following conditions hold.
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(1) If fe B}, then there exist numbers {c;} such that

& (1—[¢)?)P
f(Z) - 21: Ci (1 _Z.Ei).3+n/p-t

and
Slalr<clriz,
i
(2) If T|c;|? <o and f is defined as in (1), then f e B}, and

1/15=C3lel”.

Proof. If t <0 we can choose m =0 in the definition of the norm of the
Besov space. Then this is just the Coifman and Rochberg theorem.
If £ = 0, let m be a real number such that # > ¢. Let s be such that m+s>
—1. It is easy to see that ®; ", is an isomorphism of A?»"="~1gnto By, and
m amisitsinverse. Set v=(m—t)p—1. Let p> (1+v/(n+1)) max(—1, p—2)
and let {{'} be a 6-lattice for 6 small enough. Then, for fe B!,

© (1_'g-i|2)((n+l)/p)p+n/p+m—l

m —_— .

Let

n n+1
B=—+m—t+—np.
D P

Since p> (1+»/(n+1)) max(—1, p—2) and v =(m—t)p—1, it follows that
8> (m+t+£—)(1+max(——1,p——2))

&) "
= (m—t+ ;)max(o,p—l).

Choose s so that m+s>—1 and
n+1 n
m+s+n+l=——p+2( —+m—t).
p p
Because of our choice of 8, this is always possible. Next, if

(10) B+E—t>0
p

then we have that

—m 1 _ 1
m+s (l_z,?)ﬁ+n/p—t+m - (l_z,g'?)6+n/p~t'

By Remark 3.6(a) and (b) we have
f(2) =R RE, 2 f(2)

_ 3 (1=]5'?)?
_(,‘?C,' (l—z-fi)ﬁ+"/l’"'
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Since m >t was arbitrary, from (9) we have that

(1) B>max(—g(p—1),0>.

Finally, (10) and (11) give the range for .
The norm estimates follow easily. O
COROLLARY 3.9. Lets>—1and p+s>—1. Then
RE: By - B~

Is a continuous isomorphism onto.

Thus, if 4 <0 then ®¥ is a fractional integration, and if x>0 then it is a
fractional derivation.

Proof. Simply use the atomic decomposition and compute. O

We conclude this section by extending a result of Zhu to the weighted Besov
spaces on the unit ball. We prove that the Besov spaces B, (1< p <o, veR)
can be seen as quotient spaces of the weighted L” spaces. We introduce some
more notation. For s R, let dV, denote the measure (1—|z|?)*dV. More-
over, we have the following definition.

DEFINITION 3.10. Let s> —1and p>0. On A" define the operators

(1—-|w*)g(w)
B (l_z.W)n+l+S+y.

=(1-]z]*)*Reg(2).

dV(w)

Vp,sg(z) = (l - Iz'z)a'Ys s'

Also, when p=0 we write the operators ®? as ®@,. That is, for s>—1 we
have

(1=|wP)*
B (l_z.w)n+l+s

O S =)= | Sw)dV(w).

Now we are ready to state our theorem. Similar results, but with different
techniques, are proved in [BB].

THEOREM 3.11. Let 1< p<oo. Then, for any s > —1,
@1 LPAV_(,p11)) - B}
is a continuous projection onto. Moreover, if t > v then
VisiBp— LP(AV_(p,41))
is a continuous embedding and
CsVis="Yr4s1.

COROLLARY 3.12. For 1= p <o, the Besov spaces B, can be realized as
quotient spaces of LP(dX).



526 MARCO M. PELOSO

Proof of the theorem. Let fe LP(dV_(,,,y)). Since for each fixed z
(J1—z-w|)~"+1+9) js bounded, @, f(z) is well defined. If f has support away
from the boundary then the estimate is trivial. Fix the size 8 of a lattice as
in Theorem 3.8. Then it suffices to check the boundedness of @ for charac-
teristic functions of balls in the Bergman metric with radius 6. Let E=E({, 6)
be the ball of center { and radius 6. Let f=dxg, where x is the character-
istic function of the ball E({,0) and d = (1—|¢]?)*~*/?, so that f has unit
norm. Notice that, for 1> »,

'Rt(Psf(z)I <c d(l . |§‘|2)n+l+s

(l_z.g'?)n+l+s+t '

Then
(I_IZIZ)(t—y)p—l
"f";;;:dp(l_lflz)(n+l+S)p 53 Il—ZaE,(n+l+s+t)P dV(Z)
— 2\(t—»)p—1
(12 1 #12\(s+p)p+(n+1)(p—1) (1-]z]*)
) S(l lg-, )s+ Pt SB ll—z.g:l(n+l+s+t)P dV(Z)

=<C,

where we have applied the Forelli-Rudin estimate (see [R, Thm. 1.4.10]).
Then it follows that @ is bounded from L#(dV_,, ) into B,.
Conversely, let fe By, Let > v and let

Vs f(z)=(01- Izlz)t(ﬁfgf(z).
We have

(13) |, a=1z)77 1 1W,  F)P dV(@) =1 71,

Again, notice that ¥, ; f=0 implies f=0 and that

@V = — 1.

Ym+s
Then V,,  is a continuous embedding, and we are done. U

4. Mobius Invariance of the Besov Spaces

In this section we prove two of the main results. First, we identify the mini-
mal space M with the 1-Besov space B;. As a consequence of this and of the
interpolation of Besov spaces B,, 1< p <co, we then prove that these are
Mobius invariant according to Definition 1.6. In fact, we need only prove
that the composition operators induced by the automorphisms are uniformly
bounded in the norm (condition (3)).

THEOREM 4.1. There exists a positive constant ¢ such, that for all fe M,

=1 s, = el f o

that is, By and I can be identified as spaces.
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Proof. First of all we want to show that there exists a positive constant c,

depending only on the dimension #, such that for all 7 € 3 (see Definition 2.1)
I7ls,=c.

Let A be any complex number |\| <1, and let ¢, € Aut B be defined by

¢ (z)=< A=z (I=]\P)z, __(1—|>\|2)‘/2zn)
. 1-\z,’ 1-Nz; 7 1-xz; /)
Set 7=v;°¢,. Then
10" 7(z)| = (n+1)!X”———1—;m2——— .
(1—)\21)"+2
Hence,
S [a”“r(z)ldV(z)scnS —l—j-)—\l—:z—rdV(z)
B B {1—Ngy|"*
=C

- rn

by [R, 1.4.10]. Now let k=2,...,n. Put 7=uv;°p,. Then

9"+ 7(2)| = 8] *17(2)| + |81 B 7(2)|

N I2NY/2,k
(n+ 1y xrt A1 d
(1=Azy)"*

Notice that |z;| < (1—|z;|?)"/2. Therefore,
(1__')\|2)1/22k - (l_l)\IZ)I/Z
(1—)_\2,'1)"+2 - (l_le)n+1+l/2'
Hence, from (14) and (15) and [R, 1.4.10] again, we obtain that

(1=[\[})?
ll__ XZ] In+l+1/2

(14)

s NP2
(l—le)""'l *

(15)

g ]a"+lr(z)|dV(z)scng dV(z)
B B

(16)
<c,.

Next notice that, if U is any unitary transformation and ¢, € Aut B is as
before, then for j=1,..., n we have

oy (Uepnls, = | 87100 Ue )2 dV(2) + 3 18%(1;e(Uor))(O)

laj<n

<n 3 [ 10" 0ee)@dV@ + 3 5% wep) O

le|=n
<c,.
Furthermore, for fe B; and Ue U we have

0"+ 1 foU)(=)] < ¢, [0+ LA (UR)).
Therefore,
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1f-Uls,= | |0" ()@ dV@) + 3 [9%(/=U)(0)]

lalsn
=< y| S g,

Next, notice that any automorphism ¢ € Aut B can be obtained as a com-
position
VopyoU,

where ¢, is as above and U and V are unitary transformations. Hence, for
any 7€ J,

"THB] =Cp,

where ¢, is a constant depending only on #.

Now let f be any function in M, and let f= ¥{° ¢;7; be any representation
of f. Then
(7) /15, = |

o0 [o°]
?Cﬂi =¢y §]:|Cf"

By

Taking the infimum of the right-hand side of (17) over all representations of
f in N, we obtain that

1/, = cul flon-
Conversely, let fe B;. We want to show that fe 9 and that

|/ low = | f15,

for some constant ¢ independent of f. Since fe B, we have that ®R"*!fe
LY(dV). Moreover, by Remark 3.6 it follows that

1— 2 n+I(Rn+1
J(@)= SB : lv(vll—?z-W)n+1f(W) dv(w).
From [R, 2.2.2] it follows that
(=g (@) )™ = (_____I“IWV)"“
e 1—z-w

Consider the mapping 4:B— I defined by h(y)=h,, where h, (§)=
(1—¢-5)"*L. It is easy to see that 4 is continuous from B into 9. Then the

mapping
H:BxXAutB - M

(0, ¥) = hyoy

is continuous. Then by Proposition 1.10 we obtain that, for all finite Borel
measures dv on B X Aut B, the function

| . H@wdim
BxAutB

belongs to . Identify ¢,, with we B. Set
di(n, ¢,) = di(n, w) = db,,(n) R"*1f(w) dV(w),
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where §,, is the Dirac delta at w. Then

[ HOe)die)=| (10" ds, ()R 1 (w) dV(w)
BxAutB BxB

= SB(I—qow-w)"HCR"Hf(W)dV(W)

=f.

Moreover,

flow= " sup  |H(n, ou)lon 7]
(p,w)eBxB

< sup|h, o] Sz,

neB

S c"f"B]'
This concludes the proof. ]

COROLLARY 4.2. The 1-Besov space B, is a Mobius invariant space (in
the sense of Definition 1.6).

Our next goal is to interpolate between B, and B,,. We use our Theorem 3.11
and complex interpolation (see [BL] for notation). We actually just refer to
Zhu’s proof in the 1-dimensional case (see [Z3, Thm. 5).

THEOREM 4.3. Let 1= p,<p<p;<o and 1/p=(1-0)/py+6/p, with
0<0<1. Then

[B,, By, lg=B,.
Proof. The very same argument as in [Z3, Thm. 5] applies here. ]
COROLLARY 4.4. For 1= p <o, the B, spaces are Mobius invariant.

Proof. This follows at once. We actually interpolate on functions mod-
ulo constants. Notice that, for f holomorphic across the boundary and ¢ €
Aut B,

|foele=1fle

and
| foels, =clfla,

By interpolation for functions modulo constants,

|7ools, <cll5,

for 1 < p <o, where c is independent of . O
5. The Invariant Inner Product and the
Invariant Hilbert Space

It has been known for some time that there exists a unique Mdébius invariant
space. Peetre proved uniqueness in an unpublished note. Years later, Zhu
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[Z1] reproved uniqueness and gave a power series description of the invari-
ant inner product. In this section we show how the invariant inner product
can be realized in a closed form on the 2-Besov space B,. Consequently B, is
the unique Mo6bius invariant Hilbert space. We also prove that the invariant
inner product can be used to realize the dualities M* = &/C and (B,/C)*=
M. Such dualities give equality of norms, hence showing the naturalness of
the MoObius invariant pairing of duality.

THEOREM 5.1 [Z1]. Let H be a Hilbert space of holomorphic functions
on the unit ball B. Suppose the polynomials are dense in H and that H has
a Mobius invariant inner product, that is, feo € H for all fe H, o€ AutB,
and

(fop,8o0)=([, &

forall f,eeH, o€ AutB.
Then H can be identified with

!
{fe JC(B):if f(z) =3 a,z® then 3o, |? ‘T"I""I oo},
o o|!
and if f=X,a,2% and g =3 bgz® € H then

(o= E b,

ol jo|
]!

In the remainder of this paper, {-, -) will always indicate the invariant inner
product defined above.

We now introduce one more variation of the radial derivative R. This new
operator R will define an equivalent norm on B, and at the same time be
compatible with the invariant inner product.

DEFINITION 5.2. Define the differential operators R* for k=0,1, 2, ... by
setting RO=17, R'=R, and for k>1,

RE=((k—=1D"'R+I)RF 1,

REMARK 5.3. (a) It is clear that if fe 3C(B) with f= X%, F; its homoge-

neous expansion, then
k—1+
Rff= 2 ( ; / )F,

(b) By Proposition 3.3 it follows that the norm on B, can be realized by
setting

) 1/2
1/la,= ([, (=l R @I @) +170)

for any m > n/2. Moreover, it is well known that in the case of holomorphic
functions it suffices to integrate outside the ball of radius r, for any ry<1.
As a consequence, the norm
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1— 2\n\2 _ 1/2
(I,(5) Rr@raz@) -+ o)

|z|"

is equivalent to the one on B, (notice that R"f has a zero of first order at the
origin, so there is no integrability problem there).

DEFINITION 5.4. Define an inner product (-, -), in B, by setting
(1=|z[*)" (1=|z*)"
|z|” |z|”

_ § (1—|z*)"!
B |Z|2n

frg)= SB R f(z) R"g(z) dZ(z)

R"f(z)R"g(z) dV(z).

THEOREM 5.5. The 2-Besov space B, is the unique Mobius invariant Hil-
bert space and

n(fsg)Z‘:'(fag)
forall f, g e B,.

An immediate corollary is the following.

COROLLARY 5.6. The inner product {, ), is Mobius invariant. Explicitly,
Jor all f, g e B, and all ¢ € Aut B we have

(fop,g°o0),=(], 8.

Proof of the theorem. Let f, g€ 3C(B), f(z) =2, a,z% and g(z) = X bgzh.
Then

~ = dV
Srgn=| (-l R () RE @) [
B |z
_ o2t n-1+|a|) N (n—1+|ﬁ]>_ _g dV(z)
K () b (PR L
_ n—1+la|\ Lo a1, e -1 |2
—ialEZI( || >aaba 2n 50(1 ryrEr Ss'g. [ do()dr
1 ~ T Y )
= [a!EZI((n 1+|a]) -+« |a|)*a,b, (=Lt ]aD)?
_1 ~ ol
=% 29D
Lo 0
n

DEFINITION 5.7. The Mobius invariant pairing on the unit ball is given by

1
(f,ey=lim 3 r3la b el

r-17 o “ Ial' ’
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where f(z) =X, a,z% and g(z) =23 gﬁzﬁ. Also, by Definition 5.4 we have
that

dx
(fsg>=n Iim Sz' (1 IZIZ)ZHRnf(Z)Rng(Z) l I(zi)'

r—1-

Notice that in general the invariant pairing must be taken as a limit.

In the rest of the paper, we will prove the following dualities.

(A) M*= (B/C

(B) (By/C)=

(C) For p>1, let p’ be its conjugate exponent, p’= p/(p—1). Then B; =

B,.

The dualities (A) and (B) have been proved by Arazy, Fisher, and Peetre
[AFP1] in the case n = 1. The duality in (C) is well known, even for n > 1. The
novelty here is in proving (A) and (B) for # > 1, obtaining isometric equality
in (A), and using the invariant pairing in all (A), (B), and (C) dualities.

REMARK 5.8. The reproducing kernel for the invariant Hilbert space is

1
Ky(z, w) =log ————.
(oW =log T 5

Indeed, the functions {z%}j,j>¢ form an orthogonal basis. Since |z°)*=
al/(Ja|= 1)1, it follows that

zr W
2o T2 uw“u
=§ y &

]a] ko
o0 1 _
=3 @t

=log(1—z-w)~L.

Ky(z,w) =

We now prove two lemmas that will be needed to derive some new repro-
ducing formulas.

LEMMA 5.9. Let K, be as in Remark 5.8 and let R* be as in Definition 5.4
and act in the z-variables. Then, for k=1,2,...,
1—(1—z-w)*

(1—z-w)k

Rsz(Z, W) =

Proof. An easy induction argument shows that

1

(1—z-w)k H

RFlog(l—z-w) 1=

LEMMA 5.10. Let ¢y AutB be as in the proof of Theorem 4.1. Let 7=
viopy and a;=vje ) for j=2,...,n. Then, for k=1,2,..., we have
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~ k(l)\lz——l)zl
RFr(z)=——
T( ) (1“‘>\Zl)k+l
and
- —k(1—=|\>)V?z;
Rko_j(z)= ( —I lk) 1 J
(I—=Nz))*F
Proof. These are just straightforward computations. (Il

PROPOSITION 5.11. For all fe B,, the following reproducing formulas
hold:

_[ 1=z w g, A=y
f(z)—SB (1—z-w)" R"f(w) e dv(w)
and
_a'_f_ — 1 - (1—|w|?)n~1
3z, (@)=n{ Tyt RN i dvow).

Proof. The first statement is immediate from Definition 5.4 and Lemma
5.9. The second follows from the first. ]

We are almost ready to prove our final result. We need one more definition.

DEFINITION 5.12. Let X be a Mobius invariant space. We say that X™* is
the dual space of X if X* is the set of linear functionals L on X such that

[L(Sf)| = co(f),
where c is independent of f.
THEOREM 5.13. We have the following dualities:
(A) M*=®/C;
(B) (B,/C)*=M.

Proof. Let Pre; = pr€Aut B be as in the proof of Theorem 4.1, and let
g € ® with g(0) =0. By Lemma 5.10 and Proposition 5.11 we have

o NP=Dz o5, (=)t
" (v, m,g)—nsB-————————(l_le)nHR 8(2) = 17— V@)
vz 98
_(lx' 1) azl ()\el)a
and, for j=2,...,n,
d
(19) (Uj°90>\,g>=—(1—|7\]2)]/2‘£_‘(7\31)

J
Recall that Dg($) =|d(ge¢;)(0)|. By IR, 2.2.2],

0t (0) = —(1=|¢ )P — (1-[¢[H)2Q;,

where P; is the orthogonal projection onto the subspace generated by {, and
Q¢ =1—P;. Then (18) and (19) give
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[Kvj° Prep 80)7=1]=De(Ney).
Now let ¢ € B and U; € U be such that U;{ =Ney, |\ <1. Then
Dg(5)=D(g-Ur)(Ney)
=l«vj°¢)\s goUg.));Lll
=|(vjoUrog;, 8N} -1
=|U§'«Uj°¢§"g>)}?=l)
=|(vjoer, 8))]=1l-
Thus, for ge @, g(0) =0, we have
(20) sup(7, &) <|gla-

7€J

Next we want to show that actually equality holds in (20). Let U= (;;) eU
be such that

U(<vj°§0§‘, g))}’=1 = |(Uj°¢;, g)]el.
Then
Dg(g—) = IU(<vj°§0§’! g))_f:l‘

= <2 UijVj° e, g>l
J

= l<U1°U°§D§‘: g)l-
Thus we have shown that, for all fe @,
sup(7, /) =|Sla-

7€3

Since I distinguishes the polynomials, using the atomic decomposition of
I we obtain that

Q1) ®/C <M

and

M < (Bo/C),

where the first inclusion (21) is an isometry.

In order to prove the reverse inclusion in (21), let L € 9M*. Since we are
working on functions modulo constants, suppose that L(1) =0. Set L(z%) =
(a!lle|/||!) £, and define f(z) =X, faz"‘. Since

(lal Jxf!

U= | 2o = 12 e,

Ifa"— ]L( oz)l

it follows that f is analytic in B. Next, let ¢, be as before, with 7 =v°¢,.
Then

(2) = 7(z) = (N2 =1) S W 1zk,
1

Therefore,
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L(n)= (M=) XN L(zp*
1

=(\P=1) SR-1f,
1

=(]A\2=1)8;/(\ey).

Now let 0(z) =v;°0), j=2,...,n. Then
L(o) = (1—|\>)V2L(22 T Nezk)
== |\2 T NL(z,zF)

kl(k+1)
Wfkel+e2

=(1—=|N*Y23, f(\ey).

— (1___1)\‘2)1/22 )\k

Thus,
(L (vje0\))f=1|=Df (Ney).
By rotation invariance it follows that, for { e B,

[(L(vjoop))P=1|= DS ().

Hence,

Lo =] Sl -
On the other hand,

ILlgme=  sup  |L(vjeey)|
ltl=j=1,...,n

=< sup | Df(¢)|
IKl=1
<|fla-
Let p(z) = Z4|<n €. 2* be a polynomial. Then
alla| -
P, fd= 2 € | ,lfa
la|=N lal
2 CoL(z%)
la|=N
=L(p).
Thus, IM*=®/C isometrically. Finally, the same argument as in [AFPI]
shows that M = (B,/C)*. O
PROPOSITION 5.14. For p and p’ conjugate exponents, we have
(B,) =
Proof. We use the invariant pairing of duality. Let f€ B,, g € B,,.. Write
n+1 n+1
n—1=n-— +n——
b P

and apply Hoélder’s inequality. D
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