Linearized Polynomials and Permutation Polynomials of Finite Fields

RONALD J. EVANS, JOHN GREENE, & HARALD NIEDERREITER

1. Introduction

Let F_q be the finite field of order $q = p^m$, where m > 0 and p is prime. A polynomial $f \in F_q[x]$ is called a *permutation polynomial* of F_q if the self-mapping of F_q induced by f is a bijection. We write P_q for the set of all permutation polynomials of F_q . Background information on permutation polynomials can be found in Lidl and Niederreiter [8, Ch. 7] and in the more recent survey article of Lidl and Mullen [7]. We note that $f \in F_q[x]$ and its reduction $mod(x^q - x)$ induce the same self-mapping of F_q ; hence in the study of mapping properties of f we can always assume deg(f) < q.

For various combinatorial applications, such as complete mappings and latin squares, it is of interest to study polynomials f for which $f(x) + cx \in P_q$ for several values of $c \in F_q$. See for example [1], [2], [3, Ch. 2], [4], [5], [9], [10], [11, Ch. 6], and [13] for such polynomials and their applications. In this connection, there arises the question of characterizing the polynomials f with the property that $f(x) + cx \in P_q$ for "many" values of $c \in F_q$. We prove the following result in this direction.

THEOREM 1. Let $f \in F_q[x]$ with $\deg(f) < q$ be such that

(1.1)
$$f(x) + cx \in P_q$$
 for at least $[q/2]$ values of $c \in F_q$.

Then the following properties hold.

- (1.2) For every $c \in F_q$ for which $f(x) + cx \notin P_q$, the polynomial f(x) + cx maps F_q into F_q in such a way that each of its values has a multiple of p (distinct) preimages.
- (1.3) $f(x)+cx \in P_q$ for at least q-(q-1)/(p-1) values of $c \in F_q$.
- (1.4) $f(x) = ax + g(x^p)$ for some $a \in F_q$ and $g \in F_q[x]$.

We note that (1.4) proves a conjecture of Stothers [12, p. 170] for all odd primes p. (In the statement of that conjecture, replace the misprints d_p and (p-3)/2 by d_q and (q-3)/2, respectively.)

Received August 16, 1990. Michigan Math. J. 39 (1992).

For each q there are examples where (1.3) is "best possible", that is, $f(x)+cx \in P_q$ for exactly q-(q-1)/(p-1) values of $c \in F_q$; see Section 4. For odd q, Theorem 1 is no longer valid if in the hypothesis (1.1) one replaces $\lfloor q/2 \rfloor = (q-1)/2$ by (q-3)/2. To see this, note that $x^{(q+1)/2}+cx \in P_q$ for exactly (q-3)/2 values of $c \in F_q$ by [10, Thm. 5 and Rem. 1].

For any $g \in P_q$, if f(x) + cx is replaced by f(x) + cg(x) in (1.1), (1.2), and (1.3), then (1.1) still implies (1.2) and (1.3). This follows from Theorem 1 by carrying out the substitution $x = g^*(y)$ in f(x) + cg(x), where g^* is a polynomial representing the inverse of the mapping induced by g (cf. [10, Prop. 1]).

Suppose that (1.2) holds. Then to each $c \in F_q$ for which $f(x) + cx \notin P_q$, there correspond at least p-1 distinct nonzero solutions $x \in F_q$ to f(x) + cx = f(0); thus there are at most (q-1)/(p-1) values of such c. This proves that (1.2) implies (1.3). Note also that (1.3) implies (1.1) when p is odd, since $q-(q-1)/(p-1) \ge (q+1)/2$ for p>2. By Theorem 1, (1.1) always implies (1.2), and so it follows that (1.1), (1.2), and (1.3) are all equivalent when p>2.

Suppose on the other hand that $f(x) = x^3$ and $q = 2^k$ with $k \equiv 3 \pmod{6}$. Then $f(x) + cx \in P_q$ for exactly one value of $c \in F_q$, namely c = 0, while f(x) + x = 1 has three distinct solutions in F_q . Thus (1.3) does not always imply (1.2) when p = 2. Moreover, (1.2) does not always imply (1.1) when p = 2; see Theorem 3.

As will be shown below, the following conjecture is stronger than Theorem 1.

CONJECTURE 2. Let $f \in F_q[x]$ be such that $f(x) + cx \in P_q$ for at least [q/2] values of $c \in F_q$. Then

(1.5)
$$f(x)-f(0)$$
 is a linearized p-polynomial over F_q .

Here, as in [8, Def. 3.49], a polynomial over F_q is said to be a *linearized p-polynomial* over F_q if each of its terms has degree equal to a power of p.

Conjecture 2 is stronger than Theorem 1 in the sense that (1.5) implies the properties (1.2), (1.3), and (1.4). To verify this, we need only show that (1.5) implies (1.2). Suppose that f(x) - f(0) is a linearized p-polynomial and that $f(x) + cx \notin P_q$ for some $c \in F_q$. The polynomial f(x) + cx - f(0) induces a linear transformation of the F_p -vector space F_q into itself whose kernel K is a subspace of cardinality p^t for some t > 0. For each value $b \in F_q$ of this transformation, there is a unique coset of K consisting of the preimages of p^t . Thus p^t preimages and (1.2) follows.

Suppose that Conjecture 2 is true. Then since (1.5) implies (1.2), it would follow that (1.1), (1.2), (1.3), and (1.5) are all equivalent when p > 2.

In order to state the next theorem, we need the following notation. For an integer x, let L(x) denote the least nonnegative residue of $x \pmod{q-1}$. For indeterminate y, positive integer n, and $f \in F_q[x]$, define $s_n = s_{n,f} \in F_q[y]$ by

(1.6)
$$s_n(y) = \sum_{b \in F_q} (f(b) + by)^n.$$

THEOREM 3. Let $f(x) = x^e$ with 0 < e < q. If p is odd, the following five properties are equivalent.

- (1.7) $f(x) + cx \in P_q$ for at least [q/2] values of $c \in F_q$.
- (1.8) f(x) is a linearized p-polynomial; that is, e is a power of p.
- (1.9) For every $c \in F_q$ for which $f(x) + cx \notin P_q$, the polynomial f(x) + cx maps F_q into F_q in such a way that each of its values has a multiple of p preimages.
- (1.10) $s_n(y) = 0$ for each $n, 1 \le n \le q 2$.
- (1.11) For each integer k with $1 \le k \le q-2$, some p-adic digit of L(k-ke) is less than the corresponding p-adic digit of k.

If p = 2, then $(1.7) \Rightarrow (1.8) \Rightarrow (1.9) \Leftrightarrow (1.10) \Leftrightarrow (1.11)$, but neither (1.7) nor (1.9) is necessarily equivalent to (1.8).

Theorem 3 verifies Conjecture 2 in the case that f(x) is a monomial. Theorem 1 verifies Conjecture 2 in the case q = p. (See also [12, Thm. 2].)

Theorems 1 and 3 will be proved in Sections 2 and 3, respectively. In Section 4, we discuss bounds on the number of $c \in F_q$ for which $f(x) + cx \in P_q$.

2. Proof of Theorem 1

The theorem is trivial for q = 2, so we can assume $q \ge 3$. Replacing f(x) by f(x) - f(0), we can also assume that f(0) = 0. With $s_n(y)$ defined by (1.6), we have $\deg(s_n) \le n - 1$ for $1 \le n \le q - 2$. If $c \in F_q$ is such that $f(x) + cx \in P_q$, then

$$s_n(c) = \sum_{b \in F_q} (f(b) + bc)^n = \sum_{b \in F_q} b^n = 0$$
 for $1 \le n \le q - 2$.

Hence if $f(x) + cx \in P_q$ for at least $\lfloor q/2 \rfloor$ values of $c \in F_q$, then

(2.1)
$$s_n = 0 \text{ for } 1 \le n \le \lfloor q/2 \rfloor.$$

Define $a_j \in F_q[y]$, $0 \le j \le q$, by the polynomial identity

(2.2)
$$\prod_{b \in F_q} (z - f(b) - by) = \sum_{j=0}^q a_j(y) z^{q-j}$$

in the indeterminates y and z, so that in particular $a_0 = 1$ and $a_q = 0$. For $1 \le j \le q - 1$, the coefficient of y^j in $a_j(y)$ equals the coefficient of z^{q-j} in

$$\prod_{b \in F_q} (z - b) = z^q - z.$$

Therefore $\deg(a_j) \le j-1$ for $1 \le j \le q-2$. If $c \in F_q$ is such that $f(x)+cx \in P_q$, then the substitution y=c in (2.2) yields $a_j(c)=0$ for $1 \le j \le q-2$. Hence if $f(x)+cx \in P_q$ for at least $\lfloor q/2 \rfloor$ values of $c \in F_q$, then

(2.3)
$$a_j = 0 \text{ for } 1 \le j \le \lfloor q/2 \rfloor.$$

By the Newton identities [8, Thm. 1.75] we have for arbitrary $c \in F_a$:

(2.4)
$$\sum_{j=0}^{t-1} a_j(c) s_{t-j}(c) = -t a_t(c) \quad \text{for } t = 1, 2, ..., q;$$

(2.5)
$$\sum_{j=0}^{q} a_j(c) s_{q+k-j}(c) = 0 \quad \text{for } k = 1, 2, \dots.$$

By (2.1), (2.3), (2.4), and (2.5), we get for arbitrary $c \in F_q$:

(2.6)
$$s_t(c) = -ta_t(c)$$
 for $t = 1, 2, ..., q$;

(2.7)
$$-s_{1+k}(c) = -s_{q+k}(c) = \sum_{j=\lfloor q/2\rfloor+1}^{q-1} a_j(c) s_{q+k-j}(c) \quad \text{for } k=1,2,\dots.$$

Now fix $c \in F_q$. Assume first that

(2.8)
$$a_j(c) = 0 \text{ for } 1 \le j \le q - 2.$$

Then, by (2.6),

(2.9)
$$s_n(c) = 0 \text{ for } 1 \le n \le q - 2,$$

and by (2.7) with k = q - 2 we obtain $-s_{q-1}(c) = a_{q-1}(c)s_{q-1}(c)$; hence

(2.10)
$$a_{q-1}(c) = -1$$
 or $s_{q-1}(c) = 0$.

Next, assume that (2.8) fails to hold, so by (2.3) we have

(2.11)
$$a_r(c) \neq 0$$
 for some r with $\lfloor q/2 \rfloor + 1 \leq r \leq q-2$, r minimal.

Then we prove by induction that

(2.12)
$$s_n(c) = 0$$
 for all $n \ge 1$.

By (2.1) and the fact that $q-r \le \lfloor q/2 \rfloor$, we have $s_n(c) = 0$ for $1 \le n \le q-r$. Assume that $s_n(c) = 0$ for $1 \le n \le N$ with some $N \ge q-r$. Then by (2.7) with k = N - q + r + 1 and the minimality of r, we get

$$0 = -s_{N-q+r+2}(c) = \sum_{j=r}^{q-1} a_j(c) s_{N+r+1-j}(c) = a_r(c) s_{N+1}(c);$$

thus $s_{N+1}(c) = 0$ by (2.11), and the induction is complete.

We have now proved, in view of (2.6), (2.8), (2.9), (2.10), and (2.12), that for each fixed $c \in F_q$ we have either

(2.13)
$$s_n(c) = 0 \text{ for } 1 \le n \le q - 1$$

or

(2.14)
$$a_n(c) = s_n(c) = 0$$
 for $1 \le n \le q - 2$ and $a_{q-1}(c) = s_{q-1}(c) = -1$.
In particular,

(2.15)
$$s_n = 0 \text{ for } 1 \le n \le q - 2.$$

If (2.14) holds for c, then the right-hand side of (2.2) with y = c is $z^q - z$, so $f(x) + cx \in P_q$. If (2.13) holds for c, then by (2.6), the right-hand side of (2.2) with y = c is a polynomial in z^p and thus equals a pth power of a polynomial in $F_q[z]$. This proves (1.2).

We noted in Section 1 that (1.2) implies (1.3), so it remains to prove (1.4). By (2.15),

$$\sum_{b \in F_q} \sum_{k=0}^{n} {n \choose k} (by)^{n-k} f(b)^k = 0 \quad \text{for } 1 \le n \le q-2;$$

equivalently,

(2.16)
$$\sum_{b \in F_q} b^{n-k} f(b)^k = 0 \quad \text{if } 1 \le k \le n \le q-2 \text{ and } p \not\nmid \binom{n}{k}.$$

Taking k = 1 in (2.16), we get

$$\sum_{b \in F_q} b^{n-1} f(b) = 0 \quad \text{if } 1 \le n \le q-2 \text{ and } p \nmid n.$$

Thus f(x) has no monomial of degree q-n whenever $1 \le n \le q-2$ and $p \nmid n$. This proves (1.4).

3. Proof of Theorem 3

The following three lemmas will be used for the proof of Theorem 3. Throughout this section we may assume that q > 2, as the results are trivial for q = 2.

LEMMA 4. For any $f \in F_q[x]$ with $\deg(f) < q$, (1.9) and (1.10) are equivalent.

Proof. By the definition of $s_n(y)$ in (1.6), we see that (1.9) implies (1.10). Conversely, suppose that (1.10) holds. Then by the Newton identities (2.4),

(3.1)
$$s_t(c) = -ta_t(c)$$
 for $t = 1, 2, ..., q$, all $c \in F_q$.

By the Newton identities (2.5), we see that for all $c \in F_a$,

(3.2)
$$a_i(c)s_{q-1}(c) = 0$$
 for $j = 1, 2, ..., q-2$,

and

(3.3)
$$a_{q-1}(c)s_{q-1}(c) + s_{q-1}(c) = 0.$$

It follows from (3.1), (3.2), and (3.3) that for each fixed $c \in F_q$, either (2.13) or (2.14) holds. Finally, (1.9) holds by the argument used to prove (1.2) following (2.15).

LEMMA 5. Suppose that $f(x) = x^e$ with 0 < e < q. Then (1.10) and (1.11) are equivalent.

Proof. In view of (2.16), we see that (1.10) holds if and only if

$$\sum_{b \in F_q} b^{n-k+ke} = 0 \quad \text{whenever } 1 \le k \le n \le q-2 \text{ and } p \not \mid \binom{n}{k}.$$

Thus (1.10) holds if and only if

$$n \not\equiv k - ke \pmod{q-1}$$
 whenever $1 \le k \le n \le q-2$ and $p \not\mid \binom{n}{k}$.

Thus (1.10) fails to hold if and only if

$$p \nmid \binom{n}{k}$$
 with $n = L(k - ke)$, for some $k, 1 \le k \le q - 2$.

If we write the p-adic expansions of n, k as

$$n = \sum_{i \geq 0} n_i p^i, \qquad k = \sum_{i \geq 0} k_i p^i,$$

then [11, p. 19]

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots \pmod{p},$$

so $p \nmid \binom{n}{k}$ if and only if $n_i \geq k_i$ for each *i*. Therefore (1.10) fails to hold if and only if there exists k, $1 \leq k \leq q-2$, such that $n_i \geq k_i$ for each *i*, with n = L(k-ke). This proves the equivalence of (1.10) and (1.11).

LEMMA 6. Suppose that 0 < e < q and that $x^e + cx \in P_q$ for at least $\lfloor q/2 \rfloor$ values of $c \in F_q$. Then e is a power of p.

Proof. Define

$$V = \{c \in F_q : x^e + cx \in P_q\}, \qquad W = \{c \in F_q : x^e + cx \notin P_q\}.$$

If $c \in W$, each value of $x^e + cx$ has a multiple of p preimages, since (1.2) holds by Theorem 1. Therefore $0 \notin W$, so $x^e \in P_q$. Thus (e, q-1) = 1. We may now assume that q > 3; otherwise the result is clear.

Let $c \in F_q$. Observe that $c \in W$ if and only if $x^{e-1} = -c$ has nonzero solutions $x \in F_q$. Thus $c \in W$ if and only if -c is a nonzero dth power in F_q , where d = (e-1, q-1). Thus $\operatorname{card}(W) = (q-1)/d$, so d > 1 by the hypothesis of Lemma 6. By definition of W, we see that $c \in W$ if and only if $x^e + cx = 1 + c$ has solutions $x \ne 1$ in F_q . Thus $c \in W$ if and only if $(x^e - 1)/(x - 1) = -c$ has solutions $x \ne 1$ in F_q . In particular $(u^e - 1)/(u - 1)$ is a dth power in F_q for all $u \ne 1$ in F_q .

Let B be a multiplicative character on F_q (with B(0) = 0) and suppose that the order of B divides d. Then

(3.4)
$$\sum_{0 \neq u \in F_q} B(1-u^e) \bar{B}(1-u) = q-2,$$

where \bar{B} denotes the inverse of B. For arbitrary multiplicative characters M, N on F_q , define the Gauss sum G(M) and the Jacobi sum J(M, N) by

$$G(M) = \sum_{u \in F_q} M(u) \zeta^{T(u)}, \qquad J(M, N) = \sum_{u \in F_q} M(u) N(1-u),$$

where $\zeta = \exp(2\pi i/p)$ and $T: F_q \to F_p$ is the trace map. For $y \in F_q$, it is easily proved that

(3.5)
$$(q-1)N(1-y) = \sum_{M} J(N,M)\bar{M}(y), \quad y \neq 0,$$

where the sum is over all q-1 characters M on F_q . (Formula (3.5) is a finite field analog of the binomial theorem.) By (3.4) and (3.5),

$$\sum_{u} \sum_{M} J(B, M) \bar{M}^{e}(u) \bar{B}(1-u) = (q-1)(q-2),$$

SO

(3.6)
$$\sum_{M} J(B, M) J(\bar{B}, \bar{M}^e) = (q-1)(q-2).$$

If each summand on the left-hand side of (3.6) is replaced by its absolute value, then the resulting sum equals (q-1)(q-2); see [8, Thm. 5.22]. Hence $J(B, M) = J(B, M^e)$ for all M and for all B of order dividing d. Consequently, for all such M and B,

(3.7)
$$\frac{G(MB)}{G(M)} = \frac{G(M^eB)}{G(M^e)};$$

see [8, Thm. 5.21]. In (3.7), take the product over all d characters B of order dividing d. It then follows from the Davenport-Hasse product formula [8, Cor. 5.29] that for all M,

(3.8)
$$G^d(M)/G(M^d) \sim G^d(M^e)/G(M^{ed}),$$

where the symbol \sim denotes that the two sides of (3.8) have the same prime ideal factorization in the cyclotomic field $\mathbf{Q}(\exp(2\pi i/p(q-1)))$. For integer x, let s(x) denote the sum of the p-adic digits of L(x), where as before L(x) denotes the least nonnegative integer congruent to x(mod q-1). By (3.8) and Stickelberger's theorem [6, p. 212, Thm. 3], ds(t)-s(td)=ds(et)-s(etd) for all integers t. In particular, for $t=d^n$,

$$ds(d^n) - s(d^{n+1}) = ds(ed^n) - s(ed^{n+1})$$
 for $n = 0, 1, 2, ...$

Therefore, for all integers $n \ge 0$,

$$s(d^n)/d^n - s(d^{n+1})/d^{n+1} = s(ed^n)/d^n - s(ed^{n+1})/d^{n+1}$$
.

Summing from n = 0 to $n = \infty$, we get s(1) = s(e). Thus e is a power of p.

REMARK. Suppose that a pair of integers d, e satisfies d > 1, $d \mid (e-1)$, and (e, q-1) = 1. For $\theta = \exp(2\pi i/(q-1))$, define $\sigma \in \operatorname{Gal}(\mathbf{Q}(\theta)/\mathbf{Q})$ by $\sigma(\theta) = \theta^e$. Fix a character N on F_q of order q-1. The proof of Lemma 6 shows that if σ fixes $J(B, N^{d^n})$ for each B of order dividing d and each n = 0, 1, 2, ..., then e is a power of p. Thus the set of such $J(B, N^{d^n})$ generates the decomposition field in $\mathbf{Q}(\theta)$ for the prime p.

Proof of Theorem 3. Lemmas 4 and 5 show that (1.9), (1.10), and (1.11) are equivalent. Lemma 6 shows that (1.7) implies (1.8). It was shown in Section 1 that $(1.5) \Rightarrow (1.2) \Rightarrow (1.3)$. Thus (1.8) implies (1.9) and, for odd p, (1.9) implies (1.7).

It remains to show that neither (1.7) nor (1.9) need be equivalent to (1.8) in the case p = 2. First suppose that q = 8, e = 6. For each integer k, $1 \le k \le 6$,

some binary digit of L(2k) is less than the corresponding binary digit of k. Thus (1.11) holds, so (1.9) holds. Therefore (1.9) is not equivalent to (1.8), since e=6 is not a power of 2. Finally, suppose that q=4, e=2. Then (1.8) holds. However, $x^2+cx \in P_q$ for exactly one value of $c \in F_q$, namely c=0, so that (1.7) fails to hold.

4. The Number of c for which $f(x) + cx \in P_q$

We begin by discussing general upper bounds for the cardinality of the set $V(f) = \{c \in F_q : f(x) + cx \in P_q\}$. If $\deg(f) \le 1$, then $\operatorname{card}(V(f)) = q - 1$. Thus, in the sequel let $1 < \deg(f) < q$ and suppose without loss of generality that f(0) = 0. Define $U(f) = \{-f(b)/b : 0 \ne b \in F_q\}$. If c = -f(b)/b for some nonzero $b \in F_q$, then f(x) + cx maps both 0 and b to 0, so $c \notin V(f)$. Thus $\operatorname{card}(V(f)) \le q - \operatorname{card}(U(f))$. Since each element of U(f) has at most $\deg(f) - 1$ nonzero preimages under the map -f(x)/x,

$$\operatorname{card}(U(f)) \ge \left\lceil \frac{q-1}{\deg(f)-1} \right\rceil.$$

Thus

(4.1)
$$\operatorname{card}(V(f)) \le q - \left\lceil \frac{q-1}{\deg(f)-1} \right\rceil.$$

In the case q = p > 2, Theorem 1 yields another upper bound, namely

(4.2)
$$\operatorname{card}(V(f)) \le (q-3)/2 \text{ if } q = p > 2.$$

Still another upper bound has been given by Chou [1, Thm. 2.3.3]:

$$(4.3) \operatorname{card}(V(f)) \le q - 1 - \deg(f).$$

A generalization of (4.3) for prime q has been given by Stothers [12, Thm. 1]. Note that $x^p + cx \notin P_q$ if and only if $x^p + cx = 0$ has a nonzero solution $x \in F_q$. Thus $\operatorname{card}(V(f)) = q - (q-1)/(p-1)$ when $f(x) = x^p$. This example shows that we can have equality in (4.1) for every q.

If p is odd, $x^{(q+1)/2} + cx \in P_q$ for exactly (q-3)/2 values of $c \in F_q$ by [10, Thm. 5 and Rem. 1]. This example shows that we may have equality in both (4.2) and (4.3) for all odd q. If q is a square and $e = \sqrt{q}$, then $x^e + cx \in P_q$ for exactly q-1-e values of $c \in P_q$. This provides further examples where equality holds in (4.3).

Sometimes $\operatorname{card}(V(f))$ is quite small. If $f(x) = x^2$, for example, then $\operatorname{card}(V(f)) = 0$ for all odd q and $\operatorname{card}(V(f)) = 1$ for even q. Using deep methods, Cohen [2] has proved that if $f \in P_q$, $n = \deg(f) > 1$, and $q = p > (n^2 - 3n + 4)^2$, then $\operatorname{card}(V(f)) = 1$. For a related result involving monomials f(x), see [10, Thm. 9].

Finally, we remark that if $\operatorname{card}(V(f)) \ge \lfloor q/2 \rfloor$ (as in Theorem 1), then $\operatorname{card}(V(f)) \equiv -1 \pmod{p}$. To see this, suppose that $\operatorname{card}(V(f)) \ge \lfloor q/2 \rfloor$. Then (1.2) holds by Theorem 1, so for $c \in F_q$,

$$\sum_{0\neq x\in F_q}(f(x)+cx)^{q-1}=\left\{\begin{array}{ll}0&\text{if }c\notin V(f),\\q\!-\!1&\text{if }c\in V(f).\end{array}\right.$$

Thus

$$-\operatorname{card}(V(f)) = \sum_{c \in F_q} \sum_{0 \neq x \in F_q} (f(x) + cx)^{q-1}$$

$$= \sum_{0 \neq x \in F_q} \sum_{c \in F_q} (f(x) + cx)^{q-1} = \sum_{0 \neq x \in F_q} (q-1) \equiv 1 \pmod{p}.$$

References

- 1. W.-S. Chou, Permutation polynomials on finite fields and combinatorial applications, Ph.D. thesis, Penn. State Univ., 1990.
- 2. S. D. Cohen, *Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials*, Canad. Math. Bull. 33 (1990), 230–234.
- 3. J. Denes and A. D. Keedwell, *Latin squares*, Ann. Discrete Math., 46, North-Holland, Amsterdam, 1991.
- 4. A. B. Evans, Generating orthomorphisms of $GF(q)^+$, Discrete Math. 63 (1987), 21-26.
- 5. ——, Orthomorphisms of $GF(q)^+$, Ars Combin. 27 (1989), 121–131.
- 6. K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer, New York, 1982.
- 7. R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95 (1988), 243–246.
- 8. R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.
- 9. G. L. Mullen and H. Niederreiter, *Dickson polynomials over finite fields and complete mappings*, Canad. Math. Bull. 30 (1987), 19-27.
- 10. H. Niederreiter and K. H. Robinson, *Complete mappings of finite fields*, J. Austral. Math. Soc. Ser. A 33 (1982), 197–212.
- 11. L. Rédei, *Lacunary polynomials over finite fields*, North-Holland, Amsterdam, 1973.
- 12. W. W. Stothers, On permutation polynomials whose difference is linear, Glasgow Math. J. 32 (1990), 165-171.
- 13. D. Q. Wan, On a problem of Niederreiter and Robinson about finite fields, J. Austral. Math. Soc. Ser. A 41 (1986), 336–338.

Ronald J. Evans
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112

John Greene
Department of Mathematics
University of Minnesota, Duluth
Duluth, MN 55812

Harald Niederreiter
Institute for Information Processing
Austrian Academy of Sciences
Sonnenfelsgasse 19
A-1010 Vienna
Austria

