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1. Introduction

Let F, be the finite field of order g=p™, where m>0 and p is prime. A
polynomial fe F,[x] is called a permutation polynomial of F, if the self-
mapping of F, induced by f is a bijection. We write P, for the set of all per-
mutation polynomials of Fj. Background information on permutation poly-
nomials can be found in Lidl and Niederreiter [8, Ch. 7] and in the more
recent survey article of Lidl and Mullen [7]. We note that fe F,[x] and its
reduction mod(x?—x) induce the same self-mapping of F,; hence in the
study of mapping properties of f we can always assume deg(f) < q.

For various combinatorial applications, such as complete mappings and
latin squares, it is of interest to study polynomials f for which f(x)+cxe P,
for several values of c € F,. See for example [1], [2], [3, Ch. 2], [4], [5], [9],
[10], [11, Ch. 6], and [13] for such polynomials and their applications. In this
connection, there arises the question of characterizing the polynomials f
with the property that f(x)+cx e P, for “many” values of c € F,. We prove
the following result in this direction.

THEOREM 1. Let fe F,[x] with deg(f) < q be such that
(1.1) f(x)+cxe P, foratleast [q/2] values of ce F,.
Then the following properties hold.

(1.2) For every ce F, for which f(x)+cx ¢ P, the polynomial f(x)+cx
maps Fj, into F, in such a way that each of its values has a multiple
of p (distinct) preimages.

(1.3) f(x)+cxe P, for at least q—(q—1)/(p—1) values of ce F.

(1.4) f(x)=ax+g(x?) for some ae F, and g € F[x].

We note that (1.4) proves a conjecture of Stothers [12, p. 170] for all odd
primes p. (In the statement of that conjecture, replace the misprints d, and
(p—3)/2 by d, and (g—3)/2, respectively.)

Received August 16, 1990.
Michigan Math. J. 39 (1992).

405



406 R. J. EVANS, J. GREENE, & H. NIEDERREITER

For each g there are examples where (1.3) is “best possible”, that is,
f(x)+cxe P, for exactly g—(g—1)/(p—1) values of c € F; see Section 4.
For odd g, Theorem 11is no longer valid if in the hypothesis (1.1) one replaces
[g/2]1=(g—1)/2 by (g—3)/2. To see this, note that x@*V/2+cx e P, for
exactly (g—3)/2 values of ce F, by [10, Thm. 5 and Rem. 1].

For any ge P,, if f(x)+cx is replaced by f(x)+cg(x) in (1.1), (1.2),
and (1.3), then (1.1) still implies (1.2) and (1.3). This follows from Theorem
1 by carrying out the substitution x =g*(y) in f(x)+cg(x), where g* is a
polynomial representing the inverse of the mapping induced by g (cf. [10,
Prop. 1]).

Suppose that (1.2) holds. Then to each ce Fj for which f(x)+cx ¢ F,,
there correspond at least p—1 distinct nonzero solutions x € F to f(x)+cx=
f(0); thus there are at most (g—1)/(p—1) values of such c. This proves
that (1.2) implies (1.3). Note also that (1.3) implies (1.1) when p is odd, since
q—(g—-1)/(p—1)=(qg+1)/2 for p>2. By Theorem 1, (1.1) always implies
(1.2), and so it follows that (1.1), (1.2), and (1.3) are all equivalent when
p>2.

Suppose on the other hand that f(x)=x3 and g = 2% with k= 3(mod 6).
Then f(x)+cx e P, for exactly one value of ¢ € F,, namely ¢ =0, while
S(x)+x=1 has three distinct solutions in F,. Thus (1.3) does not always
imply (1.2) when p =2. Moreover, (1.2) does not always imply (1.1) when
p =2; see Theorem 3.

As will be shown below, the following conjecture is stronger than Theo-
rem 1.

CONJECTURE 2. Let fe€ F,[x] be such that f(x)+cx e P, for at least
[q/2] values of ce F,. Then

(1.5) S(x)—f(0) isalinearized p-polynomial over F,.

Here, as in [8, Def. 3.49], a polynomial over F is said to be a /inearized p-
polynomial over F if each of its terms has degree equal to a power of p.

Conjecture 2 is stronger than Theorem 1 in the sense that (1.5) implies the
properties (1.2), (1.3), and (1.4). To verify this, we need only show that (1.5)
implies (1.2). Suppose that f(x)— f(0) is a linearized p-polynomial and that
S(x)+cx & P, for some ce F,. The polynomial f(x)+cx— f(0) induces a
linear transformation of the F,-vector space F; into itself whose kernel X is
a subspace of cardinality p’ for some ¢ > 0. For each value b e Fj, of this
transformation, there is a unique coset of K consisting of the preimages of
b. Thus b has p’ preimages and (1.2) follows.

Suppose that Conjecture 2 is true. Then since (1.5) implies (1.2), it would
follow that (1.1), (1.2), (1.3), and (1.5) are all equivalent when p > 2.

In order to state the next theorem, we need the following notation. For an
integer x, let L(x) denote the least nonnegative residue of x(mod g—1). For
indeterminate y, positive integer n, and f'€ F,[x], define s, =5, € F,[y] by

(1.6) sy ()= % (f(D)+by)".

bqu
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THEOREM 3. Let f(x)=x° with 0<e<gq. If p is odd, the following five
properties are equivalent.

(1.7) f(x)+cxe P, for at least [q/2] values of ce F,.

(1.8) f(x) is a linearized p-polynomial; that is, e is a power of p.

(1.9) For every ce F, for which f(x)+cx & P, the polynomial f(x)+cx
maps Fg into F in such a way that each of its values has a multiple
of p preimages.

(1.10) s,(¥)=0 foreachn,1=n<q-—2.
(1.11) For each integer k with 1 <k < q—2, some p-adic digit of L(k — ke)
is less than the corresponding p-adic digit of k.

If p=2, then 1.7)=1.8)=(1.9Y=(1.10)(1.11), but neither (1.7) nor (1.9)
is necessarily equivalent to (1.8).

Theorem 3 verifies Conjecture 2 in the case that f(x) is a monomial. Theo-

rem 1 verifies Conjecture 2 in the case g = p. (See also [12, Thm. 2].)
Theorems 1 and 3 will be proved in Sections 2 and 3, respectively. In Sec-

tion 4, we discuss bounds on the number of ¢ € F, for which f(x)+cxe P,.

2. Proof of Theorem 1

The theorem is trivial for g =2, so we can assume g = 3. Replacing f(x) by
Sf(x)—f(0), we can also assume that f(0) =0. With s,(y) defined by (1.6),
we have deg(s,) =n—1forl=n=<qg—2.1If ce F;is such that f(x)+cxe P,
then

sp(c)= Y (f(b)+bc)"= ), b"=0 for 1=sn=<qg-2.
beF, beFy

Hence if f(x)+cx e P, for at least [g/2] values of ce F,, then

2.1) s,=0 for 1=n=<[q/2].
Define a; € F,[y], 0< j <gq, by the polynomial identity
q :
(2.2) II1 =S(b)=by)= 3 a;(y)z7/
beF, j=0

in the indeterminates y and z, so that in particular @y=1 and a,=0. For
1< j=g-—1, the coefficient of y/ in a;(y) equals the coefficient of z77/ in
I1(z-b)=z7-z.
bqu
Therefore deg(a;) <j—11for 1< j=qg—2. If ce Fj is such that f(x)+cxe
P,, then the substitution y = ¢ in (2.2) yields ¢;(c) =0 for 1 = j = g—2. Hence
if f(x)+cxe P, for at least [g/2] values of c € Fy, then

(2.3) a;=0 for 1=<j=<[q/2].

By the Newton identities [8, Thm. 1.75] we have for arbitrary c € F:
1—1

(2.4) a;j(c)s,_j(c)=—ta,(c) for t=1,2,...,q;
=0

J=
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q
2.5) 2 ai(C)syk—j(c)=0 for k=1,2,....
Jj=0
By (2.1), (2.3), (2.4), and (2.5), we get for arbitrary c € F:
(2.6) si(cy=—ta,(c) for t=1,2,...,q;
qg—1
2.7 =si(c)=—=s00(c)= X  ai(c)sypr—j(c) for k=1,2,....
J=Iq/2]+1
Now fix c € F,. Assume first that
(2.8) a;(c)=0 for 1=j=qg-2.
Then, by (2.6),
(2.9) s,(c)=0 for lsn=sq-2,

and by (2.7) with k=g —2 we obtain —s,_,(c) =a,_;(c)s,_(c); hence
(2.10) ag_1(c)=—1 or s, 4(c)=0.

Next, assume that (2.8) fails to hold, so by (2.3) we have
2.11) a,(c)#=0 forsomer with [g/2]+1=<r=<gqg—2, r minimal.

Then we prove by induction that
(2.12) s,(c)=0 forall n=1.

By (2.1) and the fact that g—r <[g/2], we have 5,(c)=0for l=sn=<gqg-r.
Assume that s,(c) =0 for 1 < n < N with some N = g—r. Then by (2.7) with
k=N—q+r+1 and the minimality of r, we get
g—1
0=—sn_g+r+2(0) = X 4;(C)Sn1r11-j(€) =a,(C)Sn+1(C);
j=r

thus sy,1(c) =0 by (2.11), and the induction is complete.
We have now proved, in view of (2.6), (2.8), (2.9), (2.10), and (2.12), that
for each fixed c € F, we have either

(2.13) S,(c)=0 for l=sn=sg-1

or

(2.14) a,(c)=s,(c)=0 for 1=n=g-2 and a,_,(c)=s,_4(c)=—1.
In particular,

(2.15) s,=0 for l=sn=<qg-2.

If (2.14) holds for ¢, then the right-hand side of (2.2) with y=c is 29—z,
so f(x)+cxeP,. If (2.13) holds for ¢, then by (2.6), the right-hand side
of (2.2) with y=c is a polynomial in z” and thus equals a pth power of a
polynomial in F,[z]. This proves (1.2).
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We noted in Section 1 that (1.2) implies (1.3), so it remains to prove (1.4).
By (2.15),

n

> E(Z)(by)””‘f(b)k=0 for 1=n<qg-2;

bquk=O
equivalently,
(2.16) S b k(b)Y =0 if 1sk<n=<gqg-2 and p,l’(n).
beF,; k
Taking k=1 in (2.16), we get
S b f(b)=0 if 1=sn<g-2 and ptn.
bqu

Thus f(x) has no monomial of degree g —»n whenever l<=n<gqg—2and p tn.
This proves (1.4). O

3. Proof of Theorem 3

The following three lemmas will be used for the proof of Theorem 3.
Throughout this section we may assume that g > 2, as the results are trivial
for g =2.

LEMMA 4. For any fe F,[x] with deg(f) <gq, (1.9) and (1.10) are equiv-
alent.

Proof. By the definition of s,(y) in (1.6), we see that (1.9) implies (1.10).
Conversely, suppose that (1.10) holds. Then by the Newton identities (2.4),

3.1) s(c)=—ta,(c) for t=1,2,...,q, allcekF,.
By the Newton identities (2.5), we see that for all ce F,
(3.2). aj(c)s,_1(c)=0 for j=1,2,...,9-2,
and

(3.3) ag_1(c)sg_1(c)+s,_4(c)=0.

It follows from (3.1), (3.2), and (3.3) that for each fixed c € F, either (2.13)
or (2.14) holds. Finally, (1.9) holds by the argument used to prove (1.2) fol-
lowing (2.15). O

LEMMA 5. Suppose that f(x)=x¢ with 0<e<gq. Then (1.10) and (1.11)
are equivalent.

Proof. In view of (2.16), we see that (1.10) holds if and only if

S b k*tke =0 whenever 1sk<n=<gqg-2 and p,{’(n).
beF, k

Thus (1.10) holds if and only if
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n#k—ke(modg—1) whenever l1=sk<sn=<g-2 and p*(Z).
Thus (1.10) fails to hold if and only if

p,{’(Z) with n=L(k—ke), forsomek,1<k<qg-—2.

If we write the p-adic expansions of n, k as

n=y% n,-pi, k= 2 kipi,

i=0 i=0

(0)= (&) (&) emoe

so p & (}) if and only if n; = k; for each i. Therefore (1.10) fails to hold if and
only if there exists k, 1<k =<gqg—2, such that n; = k; for each i, with n=
L(k—ke). This proves the equivalence of (1.10) and (1.11). O

then [11, p. 19]

LEMMA 6. Suppose that 0 <e<gq and that x°+cx € P, for at least [q/2]
values of ce F,. Then e is a power of p.

Proof. Define
V={[ceF,;: x*+cxe Py}, W={ceF;: x°+cx¢ Py}.

If ce W, each value of x®+cx has a multiple of p preimages, since (1.2)
holds by Theorem 1. Therefore 0¢ W, so x®e€ P,. Thus (e,g—1)=1. We
may now assume that g > 3; otherwise the result is clear.

Let c € F,. Observe that ce W if and only if x¢~ 1= —¢ has nonzero solu-
tions x € F;. Thus ce W if and only if —c is a nonzero dth power in F,,
where d =(e—1,g—1). Thus card(W)=(g—1)/d, so d >1 by the hypothe-
sis of Lemma 6. By definition of W, we see that ce Wif and only if x¢+cx=
14 c has solutions x # 1in F,. Thus ce Wif and only if (x*—1)/(x—1)=—c¢
has solutions x# 1 in F,. In particular (4°—1)/(u—1) is a dth power in F,
for all u#1in Fj.

Let B be a multiplicative character on F, (with B(0) = 0) and suppose that
the order of B divides d. Then
(3.9 Y B(l—-u®)B(l—u)=q-2,

0#=uek,
where B denotes the inverse of B. For arbitrary multiplicative characters
M, N on F,, define the Gauss sum G(M) and the Jacobi sum J(M, N) by

GM)= Y Muw)i™,  JM,N)= ¥ M@u)N(1-u),

uqu uqu

where { =exp(27i/p) and T': F, — F,, is the trace map. For y € I, it is easily
proved that

(3.5 (g—DN(1-y)=3J(N,M)M(y), y#O0,
M
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where the sum is over all g—1 characters M on F,. (Formula (3.5) is a finite
field analog of the binomial theorem.) By (3.4) and (3.5),

) %J(B,M)Me(u)é(l-u) =(g—1)(g—2),
SO

3.6) EJ(B,M)J(B,M9)=(q—l)(q—Z)-

If each summand on the left-hand side of (3.6) is replaced by its absolute
value, then the resulting sum equals (g —1)(g —2); see [8, Thm. 5.22]. Hence
J(B,M)=J(B,M?¢) for all M and for all B of order dividing d. Conse-
quently, for all such M and B,

G(MB) G(M°B)
GM)  GWMe)’
see [8, Thm. 5.21]. In (3.7), take the product over all d characters B of order

dividing d. It then follows from the Davenport-Hasse product formula [8,
Cor. 5.29] that for all M,

(3.8) GYM)/G(M?) ~ GY(M®)/G(M*?),

where the symbol ~ denotes that the two sides of (3.8) have the same prime
ideal factorization in the cyclotomic field Q(exp(27i/p(q—1))). For inte-
ger x, let s(x) denote the sum of the p-adic digits of L(x), where as be-
fore L(x) denotes the least nonnegative integer congruent to x(modg—1).
By (3.8) and Stickelberger’s theorem [6, p. 212, Thm. 3], ds(¢)—s(td) =
ds(et)—s(etd) for all integers ¢. In particular, for 1 =d",

ds(d™)—s(d"*t'y=ds(ed")—s(ed"*!) for n=0,1,2,....

3.7

Therefore, for all integers n=0,
S(dn)/dn_s(dn+l)/dn+l =s(ed”)/d”—s(ed”“)/d””.

Summing from n=0 to n= o0, we get s(1) =s(e). Thus e is a power of p.

]
REMARK. Suppose that a pair of integers d, e satisfiesd > 1, d |(e—1), and
(e,g—1)=1. For 6 =exp(2wi/(q—1)), define o € Gal(Q(6)/Q) by a(8) = 6°.
Fix a character N on F, of order g—1. The proof of Lemma 6 shows that if
o fixes J(B, N 4"y for each B of order dividing d and each n=0, 1, 2, ..., then
e is a power of p. Thus the set of such J(B, N d” ) generates the decomposi-
tion field in Q(6) for the prime p.

Proof of Theorem 3. Lemmas 4 and 5 show that (1.9), (1.10), and (1.11) are
equivalent. Lemma 6 shows that (1.7) implies (1.8). It was shown in Section 1
that (1.5)=(1.2)=(1.3). Thus (1.8) implies (1.9) and, for odd p, (1.9) implies
(1.7).

It remains to show that neither (1.7) nor (1.9) need be equivalent to (1.8) in
the case p = 2. First suppose that g =8, e=6. For each integer k, 1 <k <6,
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some binary digit of L(2k) is less than the corresponding binary digit of £.
Thus (1.11) holds, so (1.9) holds. Therefore (1.9) is not equivalent to (1.8),
since e = 6 is not a power of 2. Finally, suppose that g =4, e=2. Then (1.8)
holds. However, x?>+cxe P, for exactly one value of ce Fj, namely ¢ =0,
so that (1.7) fails to hold. O

4. The Number of ¢ for which f(x)+cxeP,

We begin by discussing general upper bounds for the cardinality of the
set V(f)={ceF,: f(x)+cxeP,}. If deg(f)=1, then card(V(f))=qg—1.
Thus, in the sequel let 1 <deg(f) < g and suppose without loss of general-
ity that f(0)=0. Define U(f)={-f(D)/b:0# be Fp}. If c=—f(b)/b for
some nonzero b € Fy, then f(x)+cx maps both 0 and b to 0, so ¢ ¢ V(f).
Thus card(V(f)) < g —card(U(f)). Since each element of U(f) has at most
deg(f)—1 nonzero preimages under the map — f(x)/x,

card(U(f))z[ q-1 1

deg(f)—1
Thus
@1 cardV( /) <q-| 22— |
B deg(f)—11
In the case g = p > 2, Theorem 1 yields another upper bound, namely
4.2) card(V(f)) <(g—3)/2 if g=p>2.

Still another upper bound has been given by Chou [1, Thm. 2.3.3]:

4.3) card(V(f)) <g—1—deg(f).

A generalization of (4.3) for prime g has been given by Stothers [12, Thm. 1}.

Note that x? +cx & P, if and only if x”+cx =0 has a nonzero solution
x € F,. Thus card(V(f)) =q—(q—1)/(p—1) when f(x)=xP. This example
shows that we can have equality in (4.1) for every q.

If p is odd, x9*D/24 cx e P, for exactly (g—3)/2 values of c € F, by [0,
Thm. 5 and Rem. 1]. This example shows that we may have equality in both
(4.2) and (4.3) for all odd q. If g is a square and e = Vg, then x¢+cx ep,
for exactly g—1—e values of ce€ P,. This provides further examples where
equality holds in (4.3).

Sometimes card(V(f)) is quite small. If f(x)=x2, for example, then
card(V(f)) =0 for all odd g and card(V(f)) =1 for even g. Using deep
methods, Cohen [2] has proved that if fe P, n=deg(f)>1, and g=p>
(n?—3n+4)?, then card(V(f)) =1. For a related result involving monomials
f(x), see [10, Thm. 9]. ,

Finally, we remark that if card(V(f))=[q/2] (as in Theorem 1), then
card(V(f)) = —1(mod p). To see this, suppose that card(V(f)) =[q/2]. Then
(1.2) holds by Theorem 1, so for c € £y,
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> (f(x)+cex)? =

O;éxqu

0 if c¢V(f),
g—1 if ceV(f).

Thus

oo

10.

11.

12.

13.

—card(¥(MMN=3F I (f(x)+cx)?!

cquO;#xqu

= ¥ I Ux)+ex)? = ¥ (g—1)=1(modp).

O;éxqucqu O#xqu
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