Equivariant Poincaré Duality

S. R. COSTENOBLE & S. WANER

1. Introduction

The classical starting point of surgery is the theory of Poincaré duality spaces.
In the case of spaces with G-action, we are aware of no adequate analogue.
By “adequate” we mean that every compact G-manifold should be a G-
Poincaré duality space and that the Spivak normal fibration of every G-
Poincaré duality space should be an equivariant spherical fibration. This
paper and its sequel [CW2] are an attempt to remedy the situation. Through-
out this paper, G will be a finite group.

Of course, the main requirement for an adequate theory of equivariant
Poincaré duality spaces is a suitable ordinary equivariant homology theory.
The construction of such a theory, as well as the Thom isomorphism and
Poincaré duality theorems, is the subject of this first paper.

In [CWI1] the authors described an ordinary equivariant cohomology the-
ory indexed on (equivalence classes of) G-vector bundles over a given space.
In this paper, we give a more elementary cellular construction of that theory,
together with an associated homology theory, and at the same time extend
these to theories graded on representations of the fundamental groupoid
(this phrase will be explained in §2). We then prove Poincaré duality and
Thom isomorphism theorems. In [CW2] we shall use this theory to construct
an equivariant analog of the Spivak normal bundle for a finite Poincaré
complex, and show that under suitable hypotheses this leads to an equi-
variant normal map as in [DR] and [LM].

The main properties of the homology and cohomology theories we con-
struct are summarized in the following theorem, from which it follows that
they are generalized theories in the sense of Wirthmiiller [W4]. (Precise defi-
nitions of as yet unexplained terms are given in subsequent sections.)

THEOREM A. Let (X, A) be a pair of G-spaces, let v be a representation
of the fundamental groupoid of X, and let T be a local coefficient system
on X. Then there are abelian group-valued homotopy functors Hf (X, A;T)
and HX( X, A;T). These satisfy the following properties.
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(i) They extend Bredon’s ordinary homology and cohomology with
twisted coefficients [B].
(ii) There are the expected long exact sequences.
(iii) There are isomorphisms

op: HS(X, A;T) = HZ, y (X, A)x(D(V), S(V)); T)
and
oy HU(X, A;T) = HEY (X, A)x (D(V), S(V)); T)

Jor any G-representation V. These satisfy oy 0y = oy, .
(iv) If KC G then there is a restriction homomorphism

p: HS(X,A;T) - HE ¢ (X, A; T | K)

Y
and a similar one in cohomology; we shall usually write p(a) =a| K.
The composite
HE(Gxg X,Gxxg A;T) > H x(GXg X,GXx A;T | K) > HE g (X, A; T | K)

is an isomorphism, as is the similar map in cohomology. (These are
sometimes referred to as the Wirthmiiller isomorphisms.)
(v) If K C G then there is a restriction to fixed sets

¢: HO(X, A;T) — Hg (X5, A TF)
where WK = NK /K, and similarly in cohomology, we shall usually
write ¢(a) = a¥X.
(vi) There is a cup product
—U—: HY(X, A; S)QHYY, B; T) > HE (X, A)x (Y, B); SOT).
If Tis a «#X-ring then there is a cup product
~U—:HYX, A;T)QHY(X, B; T) > HE* (X, AUB; T).
This product satisfies («UB)|K = (x| K)U(B|K) and («UB)K =
aXUBK,
(vii) There is a cap product
—N—: H3(X, B; S)®H$+5(X,AUB;T)—»Hf(X,A;S®,~rXA*T)
satisfying (eUB)Na=aN(BNa),(aNa)|K=(x|K)N(a|K), and

(aNa)X =aXNnak.

Our Poincaré duality and Thom isomorphism theorems then take the fol-
lowing form (the first of these being stated here only in the case of compact
G-manifolds for simplicity). In both theorems, @5 will denote the Burnside
coefficient system, defined in Section 6.

THEOREM B (Poincaré duality). If M is a compact G-manifold and 7 is
the representation of the fundamental groupoid of M associated with its
tangent bundle, then there is a class [M,3M1e HS(M, dM; Q) such that
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~N[M,0M]: HY(M;Gg) ~ HE (M, M;C)
and
—N[M,3M]: H§(M,dM;Gg) > HE . (M;Gg)

are isomorphisms. [M, 8M is called a fundamental class for M. Moreover,
[M, M ]| K is a fundamental class for M as a K-manifold, and [M, dM 1¥is
a fundamental class for MX.

A more general form of Theorem B is proved in Section 7.

THEOREM C (Thom isomorphism). If & is a G-vector bundle over X and
p is the corresponding representation of the fundamental groupoid of X,
then there is a Thom class t; € HE(D(E), S(§); Qg). For any Thom class,

— Ut HYX;T) » HE T (D(§), S(£); T)

is an isomorphism. Moreover, t;|K is a Thom class for § as a K-bundle,
and t§ is a Thom class for £X.

Theorem C is proved in Section 8.

One could take a slightly different viewpoint toward these theories, one
that we shall simply mention here. That is, by using the Wirthmiiller iso-
morphisms and stability, we can view the homology and cohomology as
Mackey-functor valued. Write H, and H* for these Mackey-functor valued
theories. The cup product can then be interpreted as a pairing HY O H°® -
H7*% (O being the usual box product of Mackey functors [L]), one of
the necessary identities being given by (¢UB)|K=(a|K)U(B|K). Simi-
larly, the usual naturality of the cap product implies that it gives a pairing
H? Xg A H, s~ H.,. From this viewpoint the fundamental class of a mani-
fold can be thought of as a map {M,dM]: Q;— H, (M, dM), cap product
with which gives isomorphisms of Mackey functors H"(M)=H,_.(M, oM )
and so on. There is a similar interpretation of Thom classes and the Thom
isomorphism.

2. Groupoids

The following definitions from [CMW] are fundamental to the theory of equi-
variant orientations. If X is a G-space, the fundamental groupoid = (X; G)
(or just #.X if G is understood) of X is the category whose objects are the
G-maps x: G/H — X, where H ranges over the subgroups of G; equivalently,
x is a point in X, A morphism x - y, y: G/K — X, is the equivalence class
of a pair (o, w), where 6: G/H - G/K is a G-map and where w: G/HXI-> X
is a G-homotopy from x to y.o. Two such maps are equivalent if there is a
G-homotopy k:w=w’ such that k(«,0,¢)=x(a) and k(c,1,t)=yeo(x)
for ce G/H and te 1.

For intuition, it is probably best to think of the objects of #.X as points in
the fixed sets of X. However, in all technical discussions we will use maps
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from orbits into X. Thus, for example, yoo above should be thought of as
a translate of the point y(eK) corresponding to y, since (yeo)(eH) = gy(eK)
if o(eH) = gK. We will also call the homotopy w a path from x to y-a, since
it is determined by the path w(eH, ¢) in X from x(eH) to gy(eK).

Let G be the category of G-orbits and G-maps between them. There is
a functor ¢: 7X— G, given by ¢(x: G/H - X)=G/H on objects and by
¢(0, w) =0 on morphisms. Although we will not fully use this level of gen-
erality, we note that this turns #.X into a groupoid over G in the sense of
[CMW].

DEFINITION 2.1. A groupoid over G consists of a small category C and a
functor ¢: @ — G satisfying the following properties.

(a) For each object b of G, the fiber ¢ ~!(id,) is a groupoid in the classical
sense (i.e., all morphisms in C covering an identity map in G are iso-
morphisms).

(b) (Source-lifting) For each object y of € and each morphism a: a — ¢(y)
in G, there exists a morphism 8: x — y in @ such that ¢(8) = .

(c) (Divisibility) For each pair of morphisms o: x>y and «’: x’— y in
@€ and each morphism 8: ¢(x) = ¢(x’) such that ¢(x) = ¢(«’) 3, there
exists a morphism y: x —» x’ in € such that o« = a’y and ¢(y) =8.

A groupoid C has unique divisibility if the map + asserted to exist in (c) is
unique. All the groupoids we consider will have this property. (When one
considers compact Lie groups, most of the groupoids one considers do not,
so we do not include this as part of the general definition.) Notice in par-
ticular that =X is a groupoid over G with unique divisibility, and that the
fiber ¢ ~1(G/H) is the usual fundamental groupoid of X*.

A map of groupoids over G is a functor {: @ — @’ such that ¢’c{=¢. If
f: X —>Y is a G-map, then f,: #X — 7Y is a map of groupoids over G.

Let 210, be the category of n-dimensional orthogonal G-bundles over G-
orbits and G-homotopy classes of linear maps, so there is again a functor
¢: h0Q, — G giving the base-space. An n-dimensional representation of C is
a functor p: € — k0, such that ¢p = ¢; that is, it is a functor over G. A map
of representations of € is then a natural transformation over the identity.
More generally, if p is a representation of @€ and p’ is a representation of
©’, then a map p — p’ is given by a pair ({, ), where {: C— €’ is a map of
groupoids and 5: p— p’~{ is a natural transformation over the identity. If
¢ is an n-dimensional G-bundle over the G-space X, then £ determines a
representation p(£¢) of n.X given by p(£)(x: G/H — X)) =x*(£) on objects.
p(£) is defined on maps using the lifting property for G-bundles. Similarly,
a map of G-bundles gives rise to a map of induced representations.

If V is a representation of G, then there is a representation of any group-
oid C over G given by letting p(c) =¢(c) X V. We call this representation
V again. If M is any smooth G-manifold, then its tangent representation
7 is defined to be the representation of wM associated with the tangent bun-
dle of M.
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We also need the following variations defined in [CMW]. There is a cate-
gory v0O,, of virtual bundles over orbits, for every integer n, positive or nega-
tive. It is constructed as follows: Let U be a G-universe, that is, the direct sum
of countably many copies of each irreducible representation of G. The cate-
gory v0O, has as its objects pairs (p: E— G/H, q: F— G/H) € hO,,, X h0,,
where r =0 and r+ n=0. The morphisms, called virtual maps, are equiva-
lence classes of pairs of G-bundle maps (f;, f,) where

fE®@W-E'®W’ and f,: FOW-F @®W’,

where W is an H-invariant subspace of U and W' is an H’-invariant sub-
space of U; here — @ W means the Whitney sum with G Xy W. The equiva-
lence relation is given by three basic relations. First, (fj,.f;) is identified
with its suspension by any G-representation Y C ‘U orthogonal to both W
and W’. Next, (f}, f) is identified with (k;, k),

ki E®Z—E'®Z and k,:F®Z->F'DZ',

if there is an H-linear isometry u: W— Z and an H'’-linear isometry p’:
W' — Z’ such that k;c (1@ p) = (1@ p)e f; as G-bundle maps, for i =1and 2.
Third, we identity homotopic pairs of maps. This specifies a well-defined
category over G. We will often write a pair (E, F') as E—F.

A virtual representation of C is then a functor € - v0,, over G; we will
call a map @ — hO,, an actual representation to distinguish it from a virtual
one. Maps of virtual representations are defined in the same way as maps of
actual representations. The set of isomorphism classes of virtual representa-
tions of C of all dimensions forms a group under direct sum, called RO(C).
If @ has only finitely many isomorphism classes, then RO(®) is isomorphic
to the Grothendieck group of the monoid of isomorphism classes of actual
representations of @, under direct sum. In particular, if X is a compact G-
space then RO(#.X) can be constructed in either way.

We will, however, still need the category of virtual representations of
fundamental groupoids. Precisely, let GRU be the category whose objects
are pairs (X, y), where X is a G-space and v is a virtual representation of
wX. A morphism (X, vy)— (Y, ) is given by a G-map f: X —Y and a map
of representations y — 6 covering f.: X — «Y. For technical reasons, we
shall only consider as objects in GRU those (X, ) for which there exists a
G-representation V such that, for all objects x € 7.X, if ¢(x)=G/H then
(Y®V)(x) =G xy W—R" for some representation W of H and some n. This
will be needed when we extend our cellular cohomology from cell complexes
to arbitrary objects in GRU. If X is compact this is no restriction at all; in
general a more sophisticated approach could probably do without it.

In order to pass to an associated homotopy category, we make the fol-
lowing definition. If (X, v)e GRU, then define (X, )X to be the pair
(XXI,v") where v ' =vep,, p: X XI— X the projection. This gives us the
notion of homotopy and the homotopy category AGRU. The homology and
cohomology functors we shall construct will be functorial on this category,
rather than on the category of pairs (X, @« € RO(#wX)) as might be expected.
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Finally, we can define spherical representations by repeating all of the
above using the category A5, of spherical bundles over G-orbits and spher-
ical maps between them. Likewise, there is the category v&, of virtual spher-
ical bundles, which gives us virtual spherical representations. These cate-
gories are all related by a commutative diagram

ho, — hF,
i) !

v0, — V5,
of categories over G.

3. CW-Complexes

In this section we define a generalized notion of equivariant cell complex
which will allow us to define cellular homology and cohomology theories.
We use here the category GRU of G-spaces and representations of their
fundamental groupoids introduced in the previous section.

DEFINITION 3.1. A cell in the category GRU is a space of the form
(GXy DWV), a), where D(V') is the unit disc of the H-representation V and «
is a representation of (G Xy D(V')) isomorphic to (G X5 V') = R” for some
n. The dimension of such a cell is its nonequivariant dimension.

Let e=(GXgD(V),a) and de=(GXyS(V), | GXy S(V)) Ce. Suppose
that we have a map de — (X, vy). Then we say that (Y,48) is (X, y) with e
adjoined if there is a pushout diagram of the following form in the category
GRU:

de — e

l l
(X,v) — (1,9).

Such pushouts always exist and are unique up to isomorphism. Y is the
usual pushout of spaces, and by the Van Kampen theorem its fundamental
groupoid is the pushout of the fundamental groupoids of X and e. It should
be remarked, however, that there is not a canonical choice for 6. The prob-
lem is that in the map de — (X, v), the map «a — v is a virtual isomorphism
at each point z, but this does not say that the pair representing «(z) is the
same pair of bundles as y(z). We may construct 6 by choosing either pair.

DEFINITION 3.2. A G®-CW complex is an object (X, vy) in GRU that
has a filtration (X% v%) C (X', v’) C -+ C (X, v) in GRU such that (X, v) =
colim(X", v"), (X%, v°) is a union of 0-cells, and each (X", v") for n=1is
obtained from (X"}, y"~!) by attaching n-cells.

Notice that, in order for (X, ) to have the structure of a GR-CW complex,
v must have a special form: each y(x) must be isomorphic to (G Xy V) +R"”
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for some H-representation ¥ and some n, where ¢(x)=G/H. Thus, even
infinite GR-CW complexes satisfy the technical condition introduced in the
definition of GRU.

Smooth G-manifolds provide the motivation for and important examples
of GR-CW complexes. If M is a smooth G-manifold, let 7 be the tangent
representation of #M. An explicit GR-CW structure on (M, 7) may be ob-
tained by starting with a G-triangulation in the sense of Bredon [B] and
then passing to the dual cell complex. Thus the top-dimensional cells are
of the form GD where D is the closed star, taken in the first barycentric
subdivision, of a vertex of the original triangulation.

In order to show that this is a well-behaved theory of cell complexes—
that is, that we have cellular approximation and the Whitehead theorem—
we now define certain homotopy groups.

DEFINITION 3.3. Let f:(X,y)—(Y,6) be a map in GRU and let e =
(GxXgD(V), a) be a cell. We define =, (f) to be the set of homotopy classes
of commutative diagrams

e — (Y,6)

) 1
de — (X, )
in GRU.

This is functorial in f in the evident way. There is a distinguished subset
S of 7,(f) consisting of the image of «,.(1y), and we regard =.(f) as trivial
if m.(f)=S.

DEFINITION 3.4. A map f: (X, v)— (Y, 6) in GRU is an n-equivalence if
w.(f) is trivial for all e of dimension < n; f is a weak GR-equivalence if it
is an n-equivalence for all #.

The following is a variant of the “homotopy extension and lifting property”
due to May [M].

LEMMA 3.5 (H.E.L.P.). Lef r:(Y,6)—(Z,¢) be an n-equivalence. Let
(X, v) be a GR-CW complex and let A C X be a subcomplex, such that all
of the cells of X not in A have dimension < n. If the following diagram com-
mutes in GRW without the arrows § and h, then we can complete it by filling
in the arrows g and h:

i I
A —— Ax] —— A

X —7 X< X

Moreover, the result remains true when n= oo,
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Proof. The proof, as in [M], is by induction over the cells of X not in A.
One can first extend / over each new cell using the fact that the inclusion
de — e of the boundary of a cell e is a cofibration in GRU, and then extend
£ by using triviality of «,(r). O

The main consequences are these.

DEFINITION 3.6. A map f: X —> Y of GR-CW complexes in GRU is cellu-
lar if f(X")CY" for each n.

THEOREM 3.7 (Cellular approximation). If f: X - Y is any map of GR-
CW complexes in GRU, then f is homotopic in GRU to a cellular map.

Proof. Observe that the inclusion Y” — Y is an n-equivalence, using (for ex-
ample) an elementary G-transversality argument. Wassermann’s controlled
G-transversality works in this context because maps in GRU between cell
complexes are required to preserve the local representations, modulo addi-
tion of trivial summands. O

Now let [X, Y]gs denote the set of homotopy classes of maps X —Y in
G®RU, suppressing the representations from the notation.

THEOREM 3.8 (Whitehead).

(i) If f: Y > Z is an n-equivalence and X is an (n—1)-dimensional GR-
CW complex, then [ X,Y lga = [ X, Z]gq is an isomorphism. It is an
epimorphism if X is n-dimensional.

(i) If f: Y—> Z is a weak GR-equivalence and X is a GR-CW com-
plex, then [ X,Y g~ X, Zlga is an isomorphism. In particular,
any weak equivalence of GR-CW complexes is a homotopy equiva-
lence in GRU.

Proof. (i) Apply H.E.L.P. to (X, 0) to get surjectivity, and to (X X I, X x dI)
to get injectivity. (ii) follows in the same way from the last part of H.E.L.P.

]
We now claim that, by mimicking the usual technique of killing homotopy
groups, we can “approximate” any object of GRU by a GR-CW complex,
and that this approximation procedure behaves well. To see this, let (X, v)
be an object in GRU. We start with a union of 0-cells I'y X and a map f:
'y X - X in GRU, with =.(fp) trivial for all 0-dimensional cells e. We then
inductively attach cells to I',,_; X in order to trivialize 7, (f,_;) for arbitrary
n-dimensional cells e, assuming that an (n—1)-connected f,,_;: ', _1 X > X
has already been constructed. Summarizing, we have the following theorem.

THEOREM 3.9. Let (X, v) be any object in GRU. Then there exists a GR-
CW complex I'X and a weak G®R-equivalence I'’X — X.

By Whitehead’s fheorem, I'X — X is unique up to canonical homotopy equiv-
alence. In addition, if X — Y is in GRU then there is a map I'’X — I'’Y, unique
up to homotopy, such that the expected diagram commutes.
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4. Construction of Equivariant Twisted Homology
Graded on RO(#nX)

In order to discuss the appropriate coefficient systems, we introduce a “sta-
ble” version of X analogous to the stable orbit category.

We first recall the construction of the stable orbit category G. The objects
of G are those of G. The quickest way to describe the morphisms is to define
G(G/H,G/K)={G/H™*,G/K*}g, the group of stable G-homotopy classes
of based G-maps G/H™* — G/K*, where the superscript “+” denotes addi-
tion of a disjoint basepoint. Here one stabilizes by suspending with spheres
of arbitrary representations of G. Alternatively, we can define Q(G/H , G/K)
as follows. Consider equivalence classes of diagrams G/H + ¢ — G/K, where
¢ is a finite G-set, and where the diagrams G/H « c¢— G/K and G/H «d —
G/K are equivalent if there is a G-isomorphism ¢ — d making the diagram

C
N
G/H GIK

~»

d

commute. Taking disjoint unions of finite G-sets makes the set of these equiv-
alence classes into a monoid. Q(G/H , G/K) is then the Grothendieck group
of this monoid. The composite of G/H «c— G/K and G/K «d— G/L is
given by the diagram

Y N YN
G/H G/K G/L,

where the top square is a pullback. The isomorphism relating these two
descriptions of G(G/H, G/K) is given by sending the diagram G/H « ¢ —
G/K to an associated composite ZYG/H* —» ZVc* — £VYG/K *. Here the first
arrow is the collapse map associated with an embedding of ¢ in G/HXxV
covering the given map ¢ — G/H, while the second is induced by the given
map ¢ - G/K.

A Mackey functor may then be characterized as an additive contravariant
functor 7': G — @b, where @b is the category of abelian groups (see [LMM,
L]). Mackey functors are the coefficients needed to define RO(G)-graded
ordinary homology and cohomology. Our coefficients incorporate Mackey
functor structure together with possible twisting. To define these, first let X
be a G-space and let #.X be the following category. For the objects, take
those of 7#X. For the morphisms from x to y, consider the set of equiva-
lence classes of diagrams x « z — y in #.X, where the diagrams x « z — y and
X « z’'— y are equivalent if there is an isomorphism z — z’ in #.X making the
expected diagram commute as above. #.X(x, ) is then taken to be the free
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abelian group on the set of equivalence classes. Composition is essentially
the same as in G; one first takes pullbacks on the level of orbits, then uses
the source lifting property and divisibility to obtain the summands of the
composite. There is an evident functor ¢: #.X — G.

DEFINITION 4.1. A (stable) local coefficient system on X is an additive
contravariant functor 7: #.X — @b. We shall sometimes refer to such a func-
tor instead as a #.X-group, depending on the context.

The next step is to define an equivariant analogue of the universal cover-
ing space of a G-space X; we assume that each fixed set of X is semilocally
simply connected. In order to construct the desired G-space, we use the fol-
lowing generalization of Elmendorf’s coalescence functor [E].

For HC G, let G| G/H be the category of G-orbits over G/H. Thus the
objects of G| G/H are the arrows G/J— G/H in G, and the morphisms are
G-maps over G/H. Given a contravariant functor ¥: G| G/H — ‘U (where
U is the category of unbased topological spaces), we define an associated
G-space CV¥ over G/H to be the geometric realization of the simplicial G-
space B,.(¥,G 1 G/H, §) over G/H given by

B,(¥,G1G/H, g)
={x[fns ..., f118Jo: x€ ¥(G/T,), fi: G/Ji—1— G/J;, gJo € G/Jy}.

We are suppressing the structure over G/H in the notation. (For example,
the f;’s are maps over G/H.) The G-action on B, is given by its action on the
last coordinate; the map to G/H is given by projection of the last coordinate.

In order to describe the general properties of this construction, we first
introduce some notation. Let ® be the functor which assigns to each G-space
Y over G/H the contravariant functor ®Y: Gl G/H — U given by taking
®Y(G/J— G/H) to be the space of G-maps G/J— Y over G/H. One now
has, as in [E], a natural spacewise homotopy equivalence ®CV¥ — ¥. Thus
CV¥ is a G-space over G/H with fixed-set data given, up to homotopy, by V.

If x is an object in 7.X, let ¢(x) = G/H. Define a functor ¥(x): G| G/H —
U by taking ¥(x)(a: G/J— G/H)=X],, the universal covering space of
X7 with basepoint at xea(eJ), that is, the set of homotopy classes of paths
in X/ starting at xea(eJ). ¥(x) is defined on morphisms in the obvious way.
Now let X(x) = C¥(x).

Let GU | Q be the category of G-spaces over orbits. Then X is in fact a
covariant functor 7.X —» GU { G over G. To see this, let (o, w) be a morphism
in 7.X, where o: G/H — G/K and wis a path from x to y.¢in X, This gives,
for each o: G/J— G/H, a map X}, — X}, given by preceding each path
with w~leq. This specifies a natural transformation ¥(x) — ¥(y)co.. Appli-
cation of C in turn gives a G-map X(x) — X () over o, which is what we
seek. In addition to this structure, one has a canonical G-map g: X(x) - X
for each x € wX such that gX(f)=q for any map f in 7.X. Explicitly, g is
given on the simplicial level by g(wl[f,, ..., f118Jp) = o(f,o---° fi1(gJp), 1),
where w: G/J, X I — X is a point in X/x.
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In summary, the above construction gives us the following. If o: X(x)—
G/H is the given structure map, then o ~!(eH) is an H-space whose fixed set
by any J C H is homotopy equivalent to the nonequivariant universal cover
X;]. Moreover, the projection g agrees with the usual universal covering map
X! - X, where X} is the component of X’ containing x. It follows that the
restriction of ¢ to o~ !(eH) is an H-equivariant quasifibration whose fiber
has homotopically discrete fixed sets. Therefore we let p: X(x) —» X be the
associated G-fibration (see e.g. [W2]). Since the construction of associated
fibrations is functorial in G-spaces over X, X is a functor #.X - GU Q.
Furthermore, the fixed sets of p are equivalent to the nonequivariant uni-
versal covers as in the case of X.

We are now ready to construct the cellular theory promised above. Sup-
pose then that (X, vy) is a GR-CW complex. We first construct the cellu-
lar chain complex as a complex of #X-groups. If X” is the n-skeleton of
X, let X"=p~1(X"), and observe that X" is a subfunctor of X. Now let
x be an object in 7.X with ¢(x) = G/H. Write y(x) = G Xz V—G Xy W, and
let

Co(X, Y)(X)={G Xy (S'AS"), X"(x) /X"~ H(x) Ag/rr G X (SN Sh)l Nom-

Here, A gy denotes fiberwise smash over G/H, and {—, —}g/y denotes stable
G-homotopy classes of based maps over G/H. Before describing the behavior
on morphisms, we consider the structure of the groups C, (X, v)(x). By the
center of the n-cell e= (G Xx D(U), o) we mean the map xy: G/K — X given
by the orbit GXgx0Ce.

LEMMA 4.2. C,(X,v)(x)= X #X(x,Xxy), where the sum runs over the cen-
ters xo of the n-cells of X.

Proof. Define F: X #X(x,xy) = C,(X, v)(x) as follows. Take a generator
X «y—xgof #X(x,xy) for the center x, of some n-cell e. By divisibility, we
may assume that the map y — x; has the form (g, ¢), where o: G/L - G/K
and c is the constant path, so that y = x,0. We now use the representation
v of wX to obtain corresponding maps between disc bundles. First, write
v(x9) = G Xk (Vo—Wp), so that the cell e has the form G Xx D(U), where U
is K-equivalent to (VO—WO)@)R""V'. This means that we can choose a K-
isomorphism «: Vo@R" = U®W,@®R. Applying v to the map y — x,, we
get a virtual G-map y(o,¢): GX; (Vi—W;) > GXg (Vy—W,). k now gives a
G-bundle map G Xx (Vo@R") > GXx (UD W0®Rl7|). Pulling this back over
o and using universality of the pullback, together with (g, ¢), gives a sta-
ble G-map \: G x; (V;®R") > G X, (U’ @W, DR, where 0X(Gxx U)=
GXx; U’. Now let

Y- x)=(1,/2): GX,(Vi—=W) > GXy (V=W).

Dualizing f;, we obtain a stable G-map

GXHSV+n fl, G)?LSVI_HTL G>_<L SU’+ Wi+|v| Q) (GXKSU)/\(GXHSW'HV}).
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Here, X; indicates that base-points in the fibers are identified that map to
the same coset in G/H upon composition with the map G/L - G/H. Pro-
jecting to the cell e now gives a stable G-map

¢: GXHSV+n_) (GXKSU)/\(GXHSW'*‘I'V') —’Xn/Xn—I/\(GxHSWHYI).
Notice that £ factors through a map
G >_<L SU+ Wi+l _,Xn/Xn—lA(G XHSW'E'"Y‘),

In addition, we are given a map G/L — X"(x) over G/H specified by the
path y — x. This specifies a lifting of the zero section of G X, U’ to X"(x),
which extends to a lift G X; SY" - X"(x)/ X" 1(x), over G/H, of the pro-
jection G X; SV — X"/ X"~ onto the cell e. Putting this all together gives a
lift of £ to a stable map £: G xgy SV — X" (x)/ X" Y x) A(Gx SY 1))
over G/H. We take F(x <y —xo) = [£].

We now construct E=F~1: C,(X, v)(x) = 2 #X(x, x,) as follows. Con-
sider a stable G-map

f: GXH(SV/\ S7) _’XH(X)/XH-I(X)/\G/H GXH(SW/\ Sh((x)l).
First, we may compose with p to get
DG X (SYAS™) » XY X" IANG Xz (SWA STy,

We now claim that we can G-homotope pf to make it transverse to the cen-
ters of all the n-cells in X. This assertion rests on the following observation.
If z is any point with isotropy subgroup L such that pf (z) is the center x; of
some n-cell e in X, then one has G-maps G/H <% G/L 2> G/K where K =
Gy,- The fact that pf factors through f shows that there are stable G-bundle
maps a*(GXyg VAR - (GXx U)X G X (WDRIYN), where the cell e is
G Xx D(U) (these bundle maps coming from the path defined by f(z) and
the representation ). The existence of these bundle maps means that the
various local representations match up where necessary in order to do equi-
variant transversality a la Wasserman [W3], establishing the claim. Since p
is a G-fibration, we can now assume that f is such that pf is transverse to
the centers of the cells. It follows that f is G-homotopic to a sum of G-maps
Ji» such that each pf; is the composite of a collapse map associated with a
G-orbit € in GX; SY*" and a map induced by a G-bundle map over or-
bits. In addition, f;(2) specifies an object y € 7.X together with a morphism
y — x, and the projection @ — x,(G/K) induces a morphism y — x,, defining
an element of #.X(x, xy). By the construction of F above, this element deter-
mines a stable G-map G Xz 8¥ 7 — X"/ X"~ 1A G Xz (S"A S|y which, due
to our use of Wassermann’s controlled G-transversality, agrees with pf; up
to a sign e = +1. We now define E(f;) =e[x —«y—-xy] and E(f)=X; E(f;).
That E is the inverse of F should now be clear from the constructions.

We can now use the isomorphism C,(X, y)(x)=Y #X(x,Xx,) to make
C, (X, v) into a contravariant functor on #.X. An explicit description of the
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action of morphisms on C,(X,y) can be obtained from the proof of the
lemma above.

COROLLARY 4.3. C, (X, v) is a projective ®X-group.

We now define the boundary homomorphism ad,: C,(X, v) = C,_ (X, y) to
be induced by the usual map X”*(x)/X" 1(x) - ZX"1(x)/ X" %(x).

If A is a sub-GR-CW complex of (X, vy) then C.(A4,~) is a summand
of C.(X,7), and we can define C,(X, A4, v) = C.(X,v)/C«(A,v) as usual.
More generally, we can consider a relative GR-CW complex (X, A4, v) with
filtration {X"}, each X" containing A4, and then define C,(X, A4, v) in the
same way as we did C,(X, v).

In order to describe the associated homology and cohomology groups, we
make the following standard definitions.

DEFINITIONS 4.4. If A and B are #X-groups, define Hom; x(A, B) to be
group of natural transformations A — B, and

2ix A(X)RB(x)

~

AQix B=

where the equivalencg is given bAy f*(a)®b=a®f.«(b) for a morphism f
in #X. Here f,=B(f), where f is the dual of f; the dual of a generator
[x<y—z]is [z« y—x].

Finally, we define cellular homology and cohomology.

DEFINITION 4.5. Let (X, vy) be a GR-CW complex, and let 7 be a lo-
cal coefficient system on X. Define groups H$+,,(X;T) and HXY"(X;T)
as the (|y|+n)-dimensional homology groups of C.(X,v)®;x7T and
Hom; v (C.(X, v), T) respectively. The relative groups H$+ 2(X,A;T) and
HJX*"(X,A;T) are defined similarly, using C.(X, A4, 7).

Before extending these to theories defined on arbitrary G-spaces, we make
two observations.

PROPOSITION 4.6.
(1) If Vis any representation of G then there is a natural isomorphism

0: HS (X, A;T) > HS, y, ,(X,A)x(D(V),S(V)); T),

and similarly for cohomology. (Here v+ V means y@®V.)
(i) HZ ,(X;T) is functorial on hGR'W, the full subcategory of hGRU
whose objects are the GR-CW complexes, and similarly for pairs.

Proof. (i) follows from the fact that ((X,AA)xX(DV),S(V)),y+V) has a
natural GR-CW structure for which the desired isomorphism can be seen
on the chain level. For (ii), one uses the usual arguments involving cellular
approximation of maps and homotopies. ]
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We now extend these functors to the category AGRU of all G-spaces with
specified representations of their fundamental groupoids. If (X, v) e hGRU,
define

HE, (X, A;T) = colim HS,  , ,(T((X, A) X (D(V), S(V)); T),
V

where I'(Y, B) = (I'Y, I'B) is the GR-CW approximation of Theorem 3.9,
and where the colimit runs over the finite-dimensional G-invariant subspaces
of a G-universe. Cohomology is defined similarly, using the inverse limit.

REMARKS 4.7. (i) In view of Proposition 4.6(i), the need for taking (co)-
limits over ¥ might seem surprising. However, suspension by ¥ does not in
general preserve weak equivalence in GRU even though it does in GRW.
The reason for this is that components of fixed sets corresponding to virtual
representations not equivalent to actual ones (modulo trivial representa-
tions) are not detected by weak homotopy type.

(ii) By the same token, suspension does preserve weak equivalence when
v has the property that

Y(x)=GXyV—R" forall x.

Thus, by the technical condition introduced in the definition of GRU, the
limit in the definition of cohomology is achieved, and so we will get long
exact sequences of pairs. A more sophisticated approach might consider the
spectrum {I'((X,AA)x (D), S(V)))}, but this is beyond what we need for
our purposes here.

(iii) If ¥y =0, then H$+,,(-—;T) and H2""(—;T) coincide with Bredon
homology and cohomology with twisted coefficients 7.

The theories just described are now easily seen to exhibit the first three prop-
erties listed in Theorem A. We finish this section with some remarks on the
relationship between our definition and the usual one when G is trivial. Thus,
let X be a CW-complex, and let v be a representation of X, its fundamental
groupoid. It is trivial to see that (X, vy) is an ®-CW complex in our sense.
For simplicity, assume that X is connected, and choose a basepoint x € X.
Then + is determined up to natural isomorphism by the homomorphism
w: (X, x)—> Z,={1, —1} given by w(\)=11if (\) preserves orientation,
and by w(\) = —1if y()\) reverses orientation. Now consider C,(X, v)(x).
This is the usual group of cellular n-chains of the universal cover X; how-
ever, the action of 7 (X, x) on this group is slightly different from the usual.
If (c,\)~ch: Cp (X, v)(x) X (X, x) = C,(X, v)(x) denotes the usual per-
mutation action, then the action we consider is (¢, A\) = w(X)cA. If now T is
a coeflicient system on X, then 7 is determined up to isomorphism by the
(right) 7;(X, x)-module 7'(x), and the homology groups we construct are
the homology of Ci«(X, v)(X)&®x, (x,x) T(x), where we let m (X, x) act on
the left on 7'(x) by At =¢\~!. Comparing with [W1], we see that this is iso-
morphic to Wall’s twisted homology H(X;T), where w plays the same role
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as in [W1]. Similar remarks can be made about cohomology; although Wall
does not use this case, one might denote this H;*(X; T). Thus our construc-
tion is a generalization of Wall’s construction. However, we consider his
twisting information w to be part of the grading, and this is reflected in the
action of #.X on the chains.

S. Restriction to Subgroups

In this section we shall construct the two kinds of restriction mentioned in
Theorem A: restriction to subgroups and restriction to fixed sets. To make
clear what group we are talking about, we will write CZ(X, A4, v) for the
G-equivariant chain complex of (X, A4, v).

Let KC G and let X be its orbit category. There is a functor i: X -G
defined by i(—) = GXgx —. If X is a G-space then there is a functor ¢:
7(X; K) - 7(X; G) covering i and given by sending x: K/J — X to GXgx:
G/J — X; the definition on morphisms is similar. : now extends to a functor
T X;K)->#(X;G). If T: #(X; G) > @b is a coefficient system, then the
composite 7| K = T-i is a K-equivariant coefficient system. Composing natu-
ral transformations with ¢ makes this construction a functor from #(X; G)-
groups to 7 (X; K)-groups, which we call restriction to X.

In order to describe restriction of representations, let #G0O,, be the category
of n-dimensional orthogonal G-bundles over G-orbits and G-homotopy
classes of linear maps (what we called 40, in §2). Then there is a functor
J+hKO, - hGO, given again by G Xg —. The diagram

hKO, L hGo,

i) )

x H g
is then a pullback diagram of categories. Thus if v: 7(X; G) » hGO,, is a
representation, the functors ye: and ¢: w(X; K) - X specify a map y|K:
T(X;K)—- hKQ,.

We are now ready to define the restriction homomorphism
p: HE(X, A;T) - HE ¢ (X, A; T | K)
of Theorem A, and its cohomological analog. First observe that, if (X, 4,7)
is a GR-CW pair, then the K-equivariant chains CX(X, A4, y| K) are natu-
rally isomorphic to CY(X, A, v) | K. This gives a chain map
Homir(X;G)(C)?(Xa A: ’Y)’ T) L Hom-ir(X;K)(CnG(XsA’ ’Y) I K’ TI K)
= Hom;x.x)(CX(X,A,v|K), T|K),

where i* is composition with . This describes the restriction homomorphism

for cohomology.
For homology, if M and N are #(X; G)-groups then define

r"M®ix;cy N> M| KQ;x; k) N1 K
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as follows. If x: G/J — X is an object in #(X; G), decompose G/J as a union
of K-orbits: G/J=11,K/J,. Let 9,: GXx(K/J,) — G/J be the restriction
of the obvious projection G Xg (G/J)— G/J. If m@ne M(x)Q@N(x) then
define

. r(m®n) = % n3(m)@nz(n),

where nk(m)e M(xen,)=M|K(x|(K/J,)). The desired homomorphism
p is now obtained by applying r to CE(X, A4, v)®;x.c)T. Notice that
T(X; G (—,x) | K=X, #(X;K)(—,x,) if xg: G/J—> X and x,=x,| K/J,,
and that the map

T(xg) = #(X; G)(—, X0) Rix: ) T 2 #(X; G)—, %) | K@iz x: ;) T | K

is given by ¢~ X, nx(¢).

Proof of Theorem A(iv). The construction of p having been given above, it
is easy to see that it is natural, and it remains only to check the Wirthmiiller
isomorphism. This may be checked first on cells, and then inductively up
the skeleta using the usual long exact sequences. ]

We now wish to construct the restriction ¢. First, note that there is a natural
functor e: #(XX; WK) - #(X; G) given by inclusion of XX in X and exten-
sion of NK-maps to G-maps. If T is a #(X; G)-group then the composite Toe
is a #(XX; WK)-group. We define the coefficient system 7X: #(X%X; WK) -
@b by taking TX(x)=Tee(x)/I(x), where, for x: NK/L— X, I(x) is the
subgroup generated by elements of the form (o, c).(#) where ¢t € T(x-0),
o: G/J— G/L for a (proper) subgroup J of L not containing K, and c de-
notes the constant path at xeo. If we do the same construction with the equi-
variant chains, we have the following result.

LEMMA 5.1. CS(X,A,v)X=ct (XX, AKX, vX) as #(XX; WK)-groups.

K
—|vkl

Here, |vx|=|v|—|v*|, and is only locally constant.

Proof. Let x be an object of #(XX;WK) so that x: NK/L— XX with
L>OK, and as usual let y(e(x))=GXx;, V—GXx,W. Consider the map
CE(X,A,v)(ex)> CKII(TH(XK, AK, %) (x) given by taking a stable G-map

F:Gx SV X (ex) /X" (ex) A/, Gx SPHI
to the stable WK-map
FEKNKx, SV +n ()?K)”"I”’K'(x)/(}?K)”‘hK"'(x)/\NK/LNKXLSWK+|”|

given by restricting f to the fiber over the identity coset of L and taking
K;ﬁxed points. Here we use the WK-homotopy equivalences X" (ex)X =
(XXyn=lvkl(x). Using the suspension isomorphism
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clK (XK, AKX, vK)(x)

n—|ykl
= [SVK-{-H—'l'YKf, (XK)H—ITKI(x)/(X’K)n—lyKl—l(x)ASWK+|7K|]L

= {SVK+n, (X'K)”"h’Kl(x)/(XK)H—hqd—l(x)ASWK+|7|}L,

we have indeed a map CE(X, 4, v)(ex) > Cy |, (XX, A, ¥%)(x). In fact,
this defines a map of #(XX; WK)-groups.
This map is onto, by the following argument. Let

[ sV¥+en—lvkl _, (XK=l (x) J( XKy =kl =1 (x) A sW+ly
be any stable L-map. The NK-homotopy equivalence
(XKyn=lvxl (o) J(XFYr Ik~ 1 (x) = X (ex) K/ X7 ex)®
gives us a stable L-map sV en—lvkl o gn(ex)K/ X1 (ex)KA sW 17" which
extends to a stable G-map
£ Gxy SV =kl o Zn(ex) /X (ex) Ay Gxp SPHIT,

and hence f”: Gx; 87" " = X"(ex)/ X"~ (ex) Ny Gx, S¥*1. The pro-
jection of £ onto X"/X" A G x; S *"l maps the K-fixed set of S¥*” into
that of isomorphic spheres, and can therefore be extended normally to all
of SY*+", This now gives an element

F1Gx SV = X(x) /XY (x) Ay GXxp ST HI

of CO(X, A, v)(ex) such that fX = f" in C8, (XK, AX, y%)(x).

The kernel of this map is exactly I(x) C CS(X, A4, y)(ex). For suppose
that fX = fKX; then f; and f, differ by elements of the Burnside ring of L
induced from the Burnside rings of subgroups of L not containing K, and
hence f;—f, € I(x). Alternatively, one can use the transversality argument
of Lemma 4.2 to show that, if fX =0, then f; is a sum of maps induced by
imbeddings of orbits L/J in V@®R", for subgroups J of L not containing K.

Therefore, CE(X, A, v)X = C, 5, (XK, AKX, vX) as claimed. O

5

We can now construct ¢ in cohomology. It is induced by the chain level map
¢: Hom, (x. 6)(CE(X, A, 7), T) = Homy (x X, iy (Cr oy (XX, AX, v 5), T¥)
given by ¢(F) = FX, using Lemma 5.1.
For homology, we need to consider the map
2: A®sx;0) B~ A sk, wry BY
given as follows. Let aQbe A(y)®B(y), where y: G/J— X. Decompose

(G/J)X into NK-orbits; (G/J)X =11,NK/J,. Let 4,: G/J,— G/J be the evi-
dent extension of the inclusion, and let

2(a®b) =3 ni (@) @ni(b)¥.

Here the superscript X denotes the reduction map 7T'(ex) —» TX(x). One can
check that this is well defined, and this uses the fact that we have reduced
mod 7. ¢ is the map induced by the chain level map
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¢: CO(X, A, V)®sx:6) T = Ca (XK, AKX )R K. iy TX

given by z and Lemma 5.1. Theorem A(v) can now be checked.

6. Multiplicative Structure

In order to describe cup and cap products in the theories we have constructed,
it is easiest to allow arbitrary G-sets in places where we have heretofore
allowed only G-orbits. Precisely, we make the following definitions.

DEFINITION 6.1. Let Gt be a small category of G-sets and G-maps that
contains G and is closed under disjoint union and product. If X is a G-space,
let 7 X be the groupoid over G* formed in the same way as w.X, except that
its objects are G-maps A — X, where A4 can be any G-set in G*.

We can now form the categories §* and #*X in essentially the same way as
before, except that we make the identifications [x <y - z]+[x <y > z]=
[x <~yIly’—z]. Here,if y: A—> X and y’': A’—> X, then yIIy": AIIA’— X is
the obvious object of #*X. We define a #* X-group to be a contravariant
additive functor #*X — @b that takes disjoint unions to direct sums. It is
familiar from the theory of Mackey functors [L] that this last requirement
makes the categories of #X-groups and #*X-groups equivalent.

In order to define cup products, we will need an internal tensor product
of #*X-groups. For this and later constructions we need the following nota-
tion: If x: A— X and y: B— Y then x X y will denote the map xxXy: AXB—
X X Y. Notice that objects of 7t (X X Y) do not necessarily have this form,
but are given by pairs (x,y) where x: A— X and y: A—Y for the same
G-set A.

DEFINITION 6.2. If S is a #7X-group and T is a #*Y-group, then the
#t (X xY)-group S [T is defined by
SUT)z)= ¥ Sx)QT()/ =,

IXXYy

where (S® 1), xrx y L28 x 5y = (f*SQ&*) 1 s x'c

The importance to us of this “box product” comes from the easily checked
observation that

TrX (=, %) O 7Y (—, yo) =7 (X XY )(—, X0 X o),

from which it follows that C.(X XY, vy+6)=C.(X, v) OC.(Y, d). More-
over, it is easy to write down an explicit isomorphism, given from right to
left, by taking smash products of maps. (Note that, if (X, y) and (Y, 8) are
G®R-CW complexes then (X XY, y+46) has an obvious GR-CW structure,
and this is the one we use. This is simplified somewhat if we allow cells to
have the form of disc bundles over finite G-sets, rather than orbits, so that a
cell in X and one in Y give a product cell in X X Y.) The analogous statement
holds for products of pairs.
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This much allows us to define the external cup product in cohomology:
Let S be a #*t X-group and let T be a #* Y-group. The chain level pairing

Hom ;5 (Cu(X, 4, v), S)®Hom ;y(Cu(Y, B, 8),T)
— Hom v (Ca((X, A) X (Y, B), y+6), SO T)

given by E® F+~ E [1 F passes to cohomology to give the external cup product
—U—: HY(X, A; S)QHS(Y, B; T) » HE (X, A)x (Y, B); STI T).

To internalize this product we need a little more algebra. Let A: X - X XX
denote the diagonal map. This induces the diagonal A: #7 X - #T(X X X),
and composition with A takes any @+ (X x X)-group U to the #*X-group
A*U. In particular, if T is a #+ X-group, then A*(T' 0 T) is also a #+ X-group.
We say that T is a #+ X-ring if there is a homomorphism p: AX(TOT)~>T
satisfying the usual associativity diagram. This is made clearer by noting (from
the definitions) that u is determined by the products T(x)Q7T(x)— T(x)
given by looking at elements in A*(7 [1T) indexed by the diagonal map
(x,x)— xXx. This makes each 7°(x) a ring, and the ring structures are re-
lated by certain naturality conditions; this is, in other words, a generaliza-
tion of the definition of a Green functor on G [L].

If now T is a #7 X-ring, then we have the internal cup product

—U—: HY}X, A;T)QHE(X, B;T) > HYY (X, AUB; T),

which is obtained from the external product by restricting along the diagonal
and using the multiplication of 7.

Finally, we would like to have a unit for this multiplication. For this, let
Qg =¢*G*(—, G/G), so that Bs(x) =§*(8(x), G/G); if $(x)=G/H then
Q@s(x) is the Burnside ring of H. We call @, the Burnside ring coefficient sys-
tem; it plays much the same role in our theory as Z does nonequivariantly. If
T is any #* X-group, then there is a homomorphism A*(®g [0 T) — T defined
as follows. Suppose that (f&1?) . x)»axb € A* (R LI T)(x), so that f®te
CH(p(a), G/G)QT(b). Write ¢(a)x b for the map bep,: ¢(a) X ¢(b)—
¢(b) — X; this is also the projection of a X b onto the second factor of X. Then
fdefinesamap fx1: ¢(a) X b— bin #* X and the given (x, x) — a X b defines
amap g: x— ¢(a) X b (project onto the second factor of X). We send f®i to
g*(fxX1)*(¢) € T(x). This map has the property that (15, ®?#)a: (x,x)»xxx" I
There is a similar map A*(T 0 Q@g;) — 7. We now say that a #*X-ring is
unital if there is a homomorphism 5: @5 — T such that the diagrams

A UUT) —AX(TUT) A (TUQg) —AN(TUT)
N 4 and N e
T T

both commute. With the map A*(®@; [J @) — @ constructed above, one
can check that @ in particular is a commutative unital #+X-ring, and that
any #*X-group is naturally a module over Q.

The cup products satisfy the following properties:
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PROPOSITION 6.3. The external and internal cup products are natural in
all variables. If T is a unital #*X-ring, then there is a unit 1€ H3(X;T)
Jor the internal product. Further, these products are respected by the re-
strictions of Theorem A; that is, if KC G then («UB) | K=(x|K)U(B|K)
and (aUB)X =aXUpBK,

Proof. Naturality is obvious from the definitions. The unit is the image un-
der 7, of a unit 1€ H2(X;®;) which is in turn the image of the unit 1€
HQ(*;@) = A(G) (the Burnside ring of G) under the map induced by the
projection X — *. That this is a unit for .the internal cup product now fol-
lows by first checking the external product (of X and *) and then using an
obvious naturality argument.

That p respects the product follows from the definitions and the natural
isomorphism (SUT)|K=(S|K)U(T|K). Similarly, that ¢ respects the
product follows from the definitions and the fact that (SO T)X =S¥ O TX.

O

Now we wish to construct a cap product making cohomology act on homol-
ogy. We first record that we have an evaluation homomorphism.

PROPOSITION 6.4. There is a natural homomorphism
(=, =) HY(X,A; S)QHI (X, A;T) > S®;x T

extending the usual evaluation homomorphism of the nonequivariant the-
ory. It is respected by restriction to subgroups and fixed sets in the sense that

r{a,ay=<a|K,a|K) and z{a,a)={(aX,aX),
where r: SQ;x.c)T— S| KQizx.x)T | K and z: S®;x T— SX®,xx TX are

the homomorphisms defined in Section 5.

Proof. On the chain level, this is defined by
Homer(Cn(X: As ’Y): S)®(Cn(X’ A: 'Y)@erT) - S®1‘:-X T’
given by FRc®t~F(c)®t. The stated properties of the evaluation can

now be checked from the definitions. O

The cap product comes from a generalization of this evaluation. Some pre-
liminary algebra is necessary. Suppose that U is a #1(X x Y)-group and
that 7 is a #* Y-group. Then we define the #* X-group 7®.y U by

(TRiy UNXx)=T®;y U(x X —)

where, on the right, we regard U(x X —) as a #* Y-group and use ®,y in its
previous sense. One of the properties of this tensor is

SUOT)®ixxy U=SR;x (T®;:y U);

this follows by playing with the definitions. Another piece of algebra we
need is this: Suppose that f: X — Y is a G-map. Given a #+Y-group T, we
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can form the #*X-group f*T by composing with the induced map #* X —
#%Y. There is a left adjoint to this construction. Given a #*X-group S, we
can form a #* Y-group f. S by letting
(S S = T S(x)/=,
yofx
where s, _, g I, g = (h*S),,_, 5. The homomorphisms of #+X-groups S — f*T
are in one-to-one correspondence with the homomorphisms of #* Y-groups
f+«S—T. The case that interests us here is A, S, where A: X - X X X is the
diagonal. A, S is just S along the diagonal, and is extended to other points
in X X X in the minimal way possible. Thus, if (x,y): G/H - X XY can be
connected by a path to a point in the diagonal (i.e., if x and y can be con-
nected by a path), then (x, y) gets assigned the same group that S assigns to
that diagonal point, which is the same group assigned to x and to y.
We can now define a generalized evaluation

(—, —)=H3(KB;T)®H$+5((X,A)><(Y,B); U)->HS(X, A;T®;y U).
It is given on the chain level by
Hom ;y (C, (Y, B, 6), T)®(C, 4 n (X, A) X (Y, B), v+ 0) Qz.xxy U)
— Hom;y(C,(Y, B, 8), T)®((C\,(X, A, v) T Cp(Y, B, 8)) ;. xxy U)
= Hom;y(C,(Y, B, 8), T)®(C,(X, 4, V) ®;x (Cp(Y, B, 6) ®;:y U))
= C (X, A, 7) Qi x (TR;iy U),
the last step being given by evaluation. We define the cap product
—N—: HY(X,B; S)Y®HS, 5(X,AUB;T) > HO(X, A; S®;x A T)
bﬂ/ aNa={a, A.a), where
A HI(X,AUB;T)—> HS((X,A)X (X, B); A T)

is induced by the diagonal map and the map 7"— A*A, T (which is actually
an isomorphism) adjoint to the identity A, 7— A, T.

To simplify the coefficients of the result, one can note the following: If S=
Q@ then there is a natural homomorphism Qg ®;x A«T — T which comes
about from the isomorphism

(R ®ix ArT)(x) = A Qg O 77 X(—, X)) Rsx T

and the map A*(G; O #T X (—, x)) » #7 X(—, x) constructed earlier. In par-
ticular, the map Qg ®. x A« Qg — Q4 can, with a little effort, be shown to be
an isomorphism.

PROPOSITION 6.5. The cap product is natural in the usual sense and satisfies
(eUB)Na=aN(BNa);

with Qg coefficients 1Na=a. Further, the cap product is respected by the
restrictions, in the sense that
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(@Na)|K=(a|K)N(a|K) and (aNa)X=aoXNaX.

Proof. Naturality and associativity are straightforward from the definition;
in showing associativity we use the isomorphism A*S®; x T =S®;ixxx AxT
for appropriate S and 7. The action of the unit is seen as follows: Let p: X — *
and let g: X X X — X be projection onto the first factor. Then

INa=(1,Asa)={(p*l,Aa)={l,q.Ava)=(1,a)=a,

since geA is the identity.
That p and ¢ respect the cap product is easy to check, as it was for eval-
uation. [l

7. Poincaré Duality

We now show that arbitrary G-manifolds exhibit Poincaré duality in the
theory we have constructed, using the line of argument in [MS]. Note that,
since twisting information is built in to the grading, we shall make no as-
sumptions about orientability, nor shall we need to use twisted coefficients.
Throughout we shall use Burnside ring coefficients, so we write H(X) for
HE(X;QRg), and so on. Until the end of this section we will deal strictly with
manifolds without boundary. We start with a technical lemma.

LEMMA 7.1. Let M be a G-manifold, let T be the representation of ©M
associated to the tangent bundle, and let K C M be a compact G-invariant
subset. Then

(i) HS, ,(M,M—K)=0if n>0, and

(ii) a class « € HE(M, M —K) is 0 if and only if the restriction
i*a € HS(M, M —s) is zero for every finite G-set s C K, where
itM,M—-s)>(M,M—K) is the inclusion.

Proof. We prove the lemma by considering a succession of cases. For the
first, we introduce the following terminology: An invariant subset CC G Xg V'
of the total space of a vector bundle is elementary if it is the finite disjoint
union of convex subsets. It follows that C has a finite G-set as a G-defor-
mation retract.

Case I: M= G X,V and K C M elementary. As mentioned above, K has
some finite G-set s as a deformation retract, so the restriction

HSM,M—K)—> HE(M,M—s)

is an isomorphism. (ii) follows immediately. (i) follows from excision and
the easy computation HE, ,(D(7(s)), S(7(s))) =0 for n>0 (here, as in §6,
we think of wM as having objects the maps from G-sets into M').
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Case 2: M arbitrary and K = K;UK,, where the lemma is known to be
true for K, K,, and K;NK,. This is an easy consequence of the Mayer-
Vietoris exact sequence of the triad (M; M —K,;, M —K,).

Case 3: K any G-invariant compact subset of M =G X, V. Let a€
Hﬁr (M, M—K), where n=0. We first claim that there exists an invariant
open neighborhood U of K and an element 8e€ HC, , (M, M —U) such that
B restricts to a. This follows from the fact that M — K is o-compact, which
implies that HE(M —K) = colim HZ(C), the colimit running over the com-
pact subsets of M — K (take a sequence C; C C, C --- whose union is M —X,
and inductively construct CW approximations); a diagram chase compar-
ing the long exact sequence of (M, M —K) and (M, C) now gets us 8. Cover
K by a finite collection {K;, ..., K,} of elementary subspaces of M contained
in U, so that if L=K;U---UK, then KCLCU; let ye HS, ,(M,M—L) be
the restriction of g.

If n>0 then y=0 by the first two cases, and so =0, showing (i). For
(ii), we can suppose that every component of every fixed set of K; meets K,
so that the hypothesis of (ii) holds for -, and the first two cases again imply
that y=0, and so a=0.

Case 4: M and K arbitrary. By the compactness of K, we can assume that
K=K;U---UK, where each K; is contained in a neighborhood of the form
G X; V. The result now follows by excision and cases 2 and 3. O]

For the following definition, note that, if sCM is a G-orbit G/J, then
HC(M,M—s)= A(J), the Burnside ring of J.

DEFINITION 7.2. Lets be a G-orbit in M. Then a local homological orien-
tation of M at s is an element pe HC(M, M~s) generating this group as
a free module over the Burnside ring of J, s=G/J. A global homological
orientation of M is a collection of elements ,uKeHTG(M,M —K), one for
each G-invariant compact subset K C M, that are compatible under the re-
strictions induced by the inclusions K; C K,, and have the property that, for
each G-orbit s in M, pu, is a local homological orientation at s. If M itself is
compact, we write [M]=p,, € H,G(M )} and call this element a fundamental
class for M.

THEOREM 7.3. The global homological orientations of M are in one-io-
one correspondence with the virtual spherical self-equivalences of T covering
the identity of wM. In particular, M has a canonical global homological
orientation corresponding to the identity map v— 7.

Proof. Suppose we are given a virtual spherical equivalence £: 7 — 7 cov-
ering the identity of #M. To produce a global homological orientation of
M it suffices, by Lemma 7.1 and a standard Mayer-Vietoris argument, to
produce the classes px for compact K of the form D(7(s)), where s is a
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G-orbit G/J in M. Combining excision, the exponential map and £ gives an
isomorphism
HE(M,M—K)=HF(D(7(s)), $(7(s))) = A(J),

and we let ug be the element corresponding to 1 € A(J). The naturality of £
implies that this does determine a global homological orientation.

Conversely, suppose we are given the classes ug. If s is a G-set G/J in M,
then p, is a generator of HE(D(7(s)), S(7(s))) = A(J) via the exponential
map. u, therefore gives us g virtual spherical equivalence £(s): 7(s) — 7(s).
The compatibility of the classes pux implies that £ is a natural transforma-
tion, and the one-to-one correspondence between generators of the Burn-
side ring and virtual spherical equivalences shows that the two constructions
above are inverses. ]

As in [MS], we will express Poincaré duality in terms of “cohomology with
compact support.”

DEFINITION 7.4. If X is any G-space, let
LX) = colim HX(X,X—K),
where the colimit runs over the G-invariant compact subsets of X.
Note, of course, that if X is compact then JC5(X) = HZ(X). Now if {ux} is
a global homological orientation of M, then we have maps
—Npg: HY(M,M—K) - HE (M)
which, by the compatibility of the ug, pass to the colimit to give a map
—N[M]: 3HM) — HE (M),

THEOREM 7.5 (Poincaré duality). — N[M] is an isomorphism for any
G-manifold M.

Proof. The proof is another Mayer-Vietoris argument, essentially the same
as the one in [MS, §A.9]. The only point at which the proof differs is the
local case, so we assume that M =G X, V. In this case, the collection of
closed discs G X; D, (V) of varying radii r is cofinal in the collection of in-
variant compact subsets, and by excision one sees that

IL(M)=HE(GX,;DV),Gx;8(V)).
The result now follows from the commutative diagram

HE(G/]) =25 HY(Gx,;D(V), GX,;S(V))
-N1 ] = -N[M] |

HE (G/T) ==  HE(Gx;D(V)),
where ¢ is the generator of HL(GX; D(V), GX;S(V)) = A(J). L]
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THEOREM 7.6 (Addendum to Poincaré duality). If {ux} is a global homo-
logical orientation of the G-manifold M and HC G is a subgroup, then
{ug | H} determines a global homological orientation of M as an H-manifold,
and {(ng)™} determines a global homological orientation of M¥.

Proof. These observations follow from the local case: If x is a local orienta-
tion at the orbit s = G/J in M, then p| H is a local orientation at the H-set s
and p% is a local orientation at s. For the first, suppose that ¢ Cs is an
H-orbit H/L; then restriction to H followed by restriction to ¢ induces the
restriction A(J) —» A(L) given by the inclusion of a conjugate of L in J. This
restriction is a ring homomorphism, so takes units to units, so takes u to a
generator. For the second, let ¢t C s be a WH-orbit; t = WH/L. t deter-
mines the inclusion of H in g~!Jg, and L = (NHNg~'Jg)/H. Restriction to
H-fixed sets followed by restriction to ¢ induces the map A(J) - A(L) given
by regarding a finite J-set as a g ~!Jg-set, taking the H-fixed set and regard-
ing that as an L-set. This is another ring homomorphism. Ol

It is worth noting the following special case.

COROLLARY 7.7. If M is a closed G-manifold and [M] is a fundamental
class for M, then

—N[M]: HY(M)—> HE ;(M)
is an isomorphism. Further, [M1|K is a fundamental class for M as a K-
manifold, and [M1X is a fundamental class for MX. O

In a similar vein, one can prove relative, or Lefschetz, duality. We state
the result without proof. To explain the statement, suppose that M is a G-
manifold with boundary, and that {u} is a global homological orientation
of M —0M. Let U be a collar neighborhood of dM. Then

HE(M,dMU(M—K))= HE(M,M—(K—U)),

and so we can consider the element px_ye HE(M,dMU(M—K)). Cap
product with these elements defines a homomorphism :

—N[M,3dM]: IS (M) - HS s(M,dM).

On the other hand, if we let 3¢&(M, M ) = colimy H&(M, M U (M —K)),
then cap product with the elements described above defines

—N[M,0M]: I&(M, M) - HC (M).
THEOREM 7.8 (Lefschetz duality). If M is a G-manifold with boundary,
and if {ug} is a global homological orientation of M — oM, then

—N[M,oM]: & (M) — HS 5(M, M)
and
—N[M,0M]: 3¢&5(M,0M ) - HE (M)

are isomorphisms.
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In the case where M is compact, consider K = M — U where U is a collar neigh-
borhood of dM; by excision HE(M, oM ) = HS (M, M —K) and —N[M, dM ]
is given by — Npug, so we define [M,dM]e HE(M,dM) to be the element
corresponding to ug.

It follows from Theorem 7.6 that Lefschetz duality is also respected by
restriction to subgroups and fixed sets.

8. The Thom Isomorphism

Here we give a quick proof of the Thom isomorphism, along the lines of
our proof of Poincaré duality.

DEFINITION 8.1. Suppose that £ is a G-vector bundle over X and p is the
corresponding representation of the fundamental groupoid of X. Then a
Thom class for & is an element t; € HE(D(&), S(£); Q) such that, for each
G-map x: G/K - X, x*(t;) € HG(D(x*£), S(x*£); Qg) = A(K) is a genera-
tor, where X is the canonical map x*¢ — £.

The following two results prove Theorem C.

THEOREM 8.2. For a given G-vector bundle £ over X, Thom classes t €
HE(D(§), S(€); Q) are in one-to-one correspondence with stable spherical
self-maps of p covering the identity on wX. Moreover, multiplication by
any Thom class t induces an isomorphism

HY(X;T)—> HETP(D(%), S(£);T).

Proof. That each Thom class ¢ gives a stable spherical self-map of p follows
from the definitions. The converse, and the fact that multiplication by Thom
classes yields an isomorphism, is clear in the special case where £ is induced
from a G-vector bundle over an orbit. The general result follows by induc-
tion on skeleta using standard Mayer-Vietoris patching arguments. L]

THEOREM 8.3. Ifte HH(D(£), S(§); Q) isa Thom class for £ and K C G,
then t;| K is a Thom class for ¢ as a K-bundle, and tf is a Thom class for £X.

Proof. A Thom class is defined in terms of its local properties; as in the
proof of Theorem 7.6, generators of the cohomology of spheres are taken to

generators of the cohomology of spheres under either kind of restriction.
d
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