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The classical mean-value theorem for Dirichlet polynomials asserts that
2
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and the implied constant is absolute; cf. [M, Thm. 6.2}, where also the result
is refined. This result is best possible when N < q, in which case the result is
true without the error term. In this paper we consider the case N> g, and
improve on the result for special sequences. We consider convolutions \ =
a*fB*xyand N=KLM, where a = (o )r <k, B=Bi<r, and vy = (Ym)m<m>
with oy, B, arbitrary and «,, =1.

Let
1 2
S*(\) = —— A, .
X#Xo

THEOREM 1. We have
S*<< |a|lB[yI1+q~¥*(K+LY/4KLY”*+q " (KL)*1q".

REMARKS. Actually, by using (1) and restricting M << ¢'/? (without loss
of generality), the term ¢ ~'(KL)"/* can be dropped. In this paper, in order
to keep the exposition clear, we present only the proof of a special case which
does, however, contain all of the basic ideas.

This work was originally motivated by applications to character sums and
Dirichlet L-functions. The Pdélya-Vinogradov theorem [P; V] gave the first
significant estimates in this area:

Y x(m)<<q'logqg
m=<M

so that
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2) Y x(m)y<<m!'~?
m=<M

for M > g'/?*¢ and some 6 =6(e) >0, and

3) L(s,x)<<q"*logq

for Res=> %, with an implied constant depending on s.

The problem of obtaining (2) for shorter intervals is important and diffi-
cult. It was only forty years later that Burgess succeeded in obtaining (2) for
M > g'/4*¢ at first for prime moduli [B1] and then more generally [B2]. He
also gave specific values for 6 which, among other things, improve (3) to

(4) L(s, x) << g¥16+¢

Burgess uses deep estimates for complete character sums due to Weil. Bur-
gess’ technique could be combined with a weaker result of Davenport [D] that
preceded Weil’s. This would give, for instance, (2) for M > q4/ °*¢ Daven-
port’s estimate, like Weil’s, is based on the arithmetic of function fields and
is not a simple one to obtain.

There has also been more recent work of interest in this area due to Gal-
lagher [G], Hildebrand [H], Elliott [E], and Graham and Ringrose [GR].

Theorem 1 yields the following corollaries.

COROLLARY 1. Let x be a nonprincipal character mod p. We then have,
forM2p5/ll+e’
> x(m)y<<M'™?,
m=M

where 6 and the implied constant may depend on e.

COROLLARY 2. With x as above, we have
L(s,x) << p’#2*¢ for Res=1,
with an implied constant depending on € and s.

In fact, both Theorem 1 and the corollaries can be quantitatively sharpened
by using more sophisticated tools, for example, estimates for Kloosterman
sums. We purposely refrain from using these in order to show that the Pélya~
Vinogradov barrier can be beaten without “advanced technology”; in fact,
we use only an estimate for the sum of a geometric progression. Since we are
not straining for the best result, we make further compromises for technical
simplification by proving only a special case of Theorem 1 that still suffices
for Corollaries 1 and 2. Thus we make the following assumptions:

&) q is prime;

(6) v(m) = f(m), where f is a smooth real function supported
on (%M, M) with derivatives satisfying

0 WM™, j=0,1,2,...,

where the implied constant depends on J.
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Proof of Theorem 1. We note that we can also assume K, L, M < g; other-
wise, the result follows from the classical mean-value theorem for Dirichlet
polynomials.

To the sum S* we add a corresponding contribution from the principal

character, namely,

2 2 2
3

S=——| S a |SB| = fim)
q—1lk=k i=sL m=M
so that
S=8*+S8"= PR otk @k, B1, B, S (1)) f(m3).
kylymy=kylym, (mod q)
We split
S= 2 S,
|rl<R

where S, denotes the contribution from terms with k,/,m,;—k,l,m, = gr and
R=KLMgq™'. For r =0 (the diagonal) we have the trivial estimate

So<<|«]|B]lvlg".

For r#O, we put 0= (klll,kzlz), ny =k1116~1, n2=k2125—1, and S=r6_l, SO
that (n;, n,) =1and n;m;—n,m, = gs. Equivalently,

m; = gsn; (mod n,).
For given 6, n;, n,, s we sum over n; using Poisson’s formula and obtain

mn;—qs
ny

S fim)fim)= 3 f(m)f(

my, iy m=qst| (mod ny)

1 n X—gs /
= e Eh; e<——hqsn—;>Sf<n£]>f< R )e(n;%)dx.

The terms with # =0 give the main contribution:

1 xX—qs
T (e (P

Sum this over s # 0 to obtain

_ 1 fe(x x—gs
2= () 2/ (") e
_ nllnz Sf(,%)@ f(x;fy>dy+0(1)) dx

- é(ﬂ f(x)>2+ o<n—j"2’).

By symmetry we may take the error term to be O(M/n,) and therefore
O(M/(n;+ n,)). These terms give a contribution to S of

2
1 _ - |k, ke, B, B, | (kv ly, ko 1)
= ok, Ok, B1,B1 ( (x)dx) +O<M 17727172 ):
q k?’l . Sf klz,[l k111+k212

ky, 1y ky, 1y
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2
= E aklakzﬁzlﬁlz(E f(m)+0(1)> +O(M|a||B]q)

m
kz 12

=S"+O(la|IBIIvI(KLg ™" +q°).

Thus the terms with 4 = 0 cancel the main term, apart from admissible error
terms.
We next consider the terms with /# # 0. First we truncate. Integrate by

parts j times, yielding
x\ o X—as hx nny\ df(ff)
Sf<n1)f< ny )e(”1n2>dx<<< h >S dx’
mm\ (1 1Y —j
<(%52) (g ) prm

ni+n, KL
e (Y nr e (L Y
by Leibniz’ rule and (7). Hence if |h| = H = (KL/M?&)q¢ then the integral <<
(6hq)~2, provided j > j,(e), so these terms contribute a negligible amount
to S.

Now let 0 <|h|< H. These remaining terms give a contribution to S of
V=20<s<r Vs where

_ AN

V= Y, S Otk Ok, 31,61 6(-*}1615 )

" o<l<n kil kaby=s 7 kyly /6
0<|s| <R/

5 x6—qbs hx6? 52
VWAt
5 ki1, kyl, kilikx 1, ) kyliky 1
We separate /; (in f) from the other variables. We first make the change of
variable x — x(/,k,/,)/6, so the integral becomes

xky 1, qs o0\ o
J7 ( k )f <XI1_5k2/2) (hxk,>k. dx.

To separate /; from the other parameters write

7= 7ecpyay,
where f is the Fourier transform, so that

1

S|f(JJ)|dJ’<<S°_°w min(M M)a’y<<1

Hence

qs A ygqs
/ — = / — dy,
f(xl 6k212) Kf(y)e<xy1 6k212) 'y

giving
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Vs <<6Sys OEALTY ozkzﬁlef<k2[12x) ,E

xS h k2 ,2 kl
8lkyl
where 22
kil /6
x= X Bi e(—hqs +xy1>.
; 2 ! kaly /o "
(k1) ky) =6
Hence e
kil,/d
My s > |k, ak, Bt 131 ( hqs >
’ KL §hioty kll 2 2| : kyl> /6
for some §3; with |3;| =|8,|. Fixing attentlon on (k, 6), we have for some é*| 6
57(6)M
Vs << XY Y |aknaknBL|X |-
S, hkz 12 kl 11
(ky, 8) =5*
Furthermore, by Cauchy’s inequality, we get
57(5)M<RH)1/2 12 ki/8 N\ [P\
V<< aﬁ’(EE B:(hqs ))
< () N[5 |5 Bue(—hasy 1y

Put d =k,1, /6, so d < D with D=KL/é. Letting »;(x) be the number of
solutions to —hgs(k;/6*) = x (mod d), we can write

IPHIARELLED D) vd(x)’§[3616<%z>2

d<D x(modd)

’

where 8; = f5/5+.
We again apply Cauchy’s inequality, obtaining

SIS < gix ),

where

X=%d Y vix)=Y di#{sh(k/6*)=s"h'(k'/6*)mod d}
d x(modd) d

<<D(D+ RHK)RHK )

6 6 q b
and, as we shall prove:
PROPOSITION. We have

Y= a3

d=D x (modd)

<|BIA(D+L*)L

5, ae(x 1)

Substituting in these estimates for X and Y, we have

oT(6)M (RH

1/2 1/4
) | lillﬁlr[ RHK(KL+RHK)(KL+L2)] q.

Vs <<
KL )

Substituting for R and H and summing over 6,

V=3V, <<|a||BlIvI(KLY *q " (g + K*L)*(K + L)'/*.
o
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By the symmetry in the problem we may replace K2L by min(K 2L, KL?),
and this is bounded by (KL)?/(K +L). This gives Theorem 1, subject to the
proposition.

Proof of Proposition. The left-hand side is

Y= X |B1,81,81,61,|
dsD11+12573+74(m0dd)
=X % =2 X+tX X
d=D 12[3[4+[1{31451112{44'!]1213 (modd) d = d #
<D > B+ Big|+ X |8+ Buy| (L l3ly+--+).
1/I1+1/[2=1/[3+1//4 11,...,[4

The second sum << L?|8|*L¢; the first,
SONAREAR > 1.
1,1 I3+ 1/l =1/l +1/1,
Now consider the equation
(1)L =L+ 1)

Write ([3, 14) =A, 13=Ad3, and [4=Ad4, where (d3, d4)= 1. Then d3d4A |1112
so, given /,, I, there are at most L¢ possibilities. Thus 3,3 _ << D|B|°LS,
proving the result. Ll

Proof of Corollaries. We take g=p and o, =x(k), 8,=x(I) (k=<K,[=<L).
The contribution of x (mod p) to the sum S* is bounded below by

(KL)Z 2

7 .

The contribution to S* from each of the other nonprincipal characters y
(mod p) is greater than or equal to 0.

> x(m)

m=<M

We have, by choosing K = L = p*" and applying Theorem 1,
E X(m) <<M1/2p5/22+6.
m=M

This gives Corollary 1 at once and also, by a standard technique [B2], gives
Corollary 2. O
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