A Functional Calculus for a
Scalar Perturbation of 9/0z

MAXIM J. GOLDBERG

1. Introduction

In this paper, we determine when a functional calculus exists for the operator
L=a|—i _6 + i _6 a,closetol, a,closeto0
— —_ a —_— s , .
: 0z 2 0z : 2

In other words, we consider when ¢ (L) can be defined as a bounded opera-
tor on L2(R?) for a certain class of functions ¢. The operator L is not nor-
mal, thus the usual spectral theory cannot be applied. The spectrum of L is
the whole complex plane, so resolvents need to be interpreted, and one can-
not define functions of L by integrating on the boundary of the spectrum.

Extending the unpublished results of Coifman and Meyer ([CM2]; see also
[CML1]), we construct a functional calculus for L and prove L? boundedness
for a certain class of ¢, and connect the study of the functional calculus to
a certain surface in C2. The assumption of the boundedness on L2 of some
natural functions of L is equivalent to certain quantitative conditions on the
surface. We also show how L can be obtained by conjugation from the Coif-
man-Meyer case. This gives another geometric interpretation: a connection
via a change of variables to a simpler surface considered by Coifman and
Meyer.

In Section 2, we discuss some general facts about functional calculi which
lead to the definition of a surface ¥ in C? and the definition of the conju-
gate operator L. Section 3 examines restrictions on the coefficients a; and a5,
and exhibits a class of functions satisfying these restrictions. In Section 4,
we calculate L/L and L/L, while in Section 5 we use the expression

1 06 1
qb(L)_—gcT??L—E

T
to define ¢ (L) for ¢ € Cy (C). In Section 6 we show that the product formula
holds for the functional calculus, and in Section 7 we extend the class of ¢

do(£)
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to those functions which are bounded and holomorphic in a conical sector
in C2. Section 8 considers the quantitative restrictions on the surface implied
by assuming that L/L and L/L are bounded on L?, and Section 9 exhibits
the conjugation to the Coifman-Meyer case.

2. Definition of L and a Naturally Associated Surface

Let
o 1/0 ] a 1/90 ] 0 0
S (L_ ;%) S _(°,;° d LAY WL
3z Z(Bx ’ay) oz 2(ax+’ay) and 0, =I5, 0;=—ig
Consider the operator

L=alaz+azaz.

Here, a,=1/(1+ ), and « and a, have small L® norm and are C'!. We will
restrict them more later.

We would like to define ¢(L) and to show that, for ¢ in a certain general
class, ¢(L) is a bounded operator on L2. As is usually done when defining a
functional calculus, one at first assumes ¢ is in some special class, uses an
integral representation formula for ¢, and then attempts to define ¢(L) at
least on a formal level. Then one shows that the proposed expression for
¢ (L) makes sense, verifies that ¢(L)¢,(L) = (¢;¢,)(L), and extends the ob-
tained formula to more general ¢.

The first problem is thus to choose some representation formula for ¢. A
common candidate is the Cauchy integral formula, in which the integration
is over the boundary of the domain containing the spectrum of L. Since the
spectrum of L is the whole complex plane, we follow [CM2] and instead try
the well-known integral representation formula
@.1) b=~ 92

™

coEz—¢
which is certainly valid for smooth ¢ which decrease sufficiently rapidly at
infinity. Thus we will attempt to make sense of the formula

1 ¢ dp 1
2.2 L)= —S i
(2.2) ¢(L) T CAEL_E
Note that 1/(L — £) still needs to be interpreted since (L — £)~!does not exist.
The intuitive reason for choosing (2.1) instead of the Cauchy integral is that
the singularity in (2.1) is integrable in two dimensions.

Suppose that x(z) has the property that Lx = £x. Then we can interpret
(L—¢&)"'as xL~'x 7!, on a formal level. Setting aside for the time being the
problem of defining L~!, we focus our attention on x. Note that choosing
xo=exp(i(¢z + £Z)), we see that d,x= £x,. Since L is a perturbation of .,
a reasonable candidate for x is

(2.3) x =exp(i(£(h(z)—g(z)) +£g(2))),

do(£),

do(§).



A Functional Calculus for a Scalar Perturbation of d/0z 301

where A(z)— g(z) should be close to z, and g(z) should be close to Z in some
sense. The reason for choosing the notation # — g to play the role of z rather
than a function unrelated to g is for convenience in later formulas. Solving
the equation Lx = £x for this x leads to the system

a%+a ah—-l

Yoz " "*oz
(2.4)

a-a—g-!—a £3ig-—O

Yoz " "oz

These are variants of the Beltrami equation, which can be solved explicitly:
h=z+Z+1, g=Z+m.

The functions 7 and m should be thought of as perturbations of z and Z (see
the remarks at the end of this section).

The above discussion serves as motivation for examining the functions 4
and g which solve system (2.4), and thinking of #—g as being similar to z
and g similar to Z. We move away from interpreting formula (2.2) for the
time being, until Section 5, and concentrate on 42 and g. We will use these
functions to find an operator L commuting with L. Since L is a perturbation
of d,, we are looking for L to be a perturbation of ;. L is a very useful op-
erator to find explicitly because, if we are given ¢(¢) and set ¢,(£) = ¢(£),
then ¢,(L) = ¢ (L) if ¢,(L) can be defined. To understand how to use 4 and
g, consider the unperturbed operators d, and d;. We define the surface Xy=
(z,2), XyCCXxC={(z;,2,)}. For F holomorphic in a neighborhood of X,
define (Ao F)(z)=F(z,Z). It follows immediately that

0: (Ao F) = Ao(9,, F).

So Ap'd,Ag= 9, and similarly A'd;A¢=a;,. Thus, on the surface T, 3,
and d; become the (commuting) operators d;, and d.,. Hence, following the
idea of Coifman and Meyer in [CM2], to find L we consider the surface £ =
((h—g)(z), g(2)) and define, for F holomorphic in a neighborhood of X,

(AF)(z)=F((h—g)(2), g(2)).
Then

L(AF)=(a,0;+a,07)F((h—g)(z), 8(z)) = A3, F),

using (2.4). So A™'LA =0z, or L = Adz; A~". From the previous remarks, to
find a vector field L commuting with L, it is natural to set L=Ad;,A"". If
L ="5,0,+b,0;, then using a similar calculation to the one above, we will
obtain the following system of equations for b;, b,:

5 2 —8) | p ohi—g) _

b, b
d )
(2.5a) ¢ <
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Using (2.4), and letting b, = a,+ b, and b, = a,+ b,, it is equivalent to solve:

oh oh
by——+b,—-=0,
0z az
(2.5b) 5 3
g g
b—+b,—==1
13z 2%z
Defining

" 9z9Z 09z0Z 9z 07 9z 0%
(2.5b) has solutions

b

oh 1 oh 1
bl - 'bt— N 2= T
z D 0z D

For the development of Sections 4 through 7, when discussing the opera-
tors L/L and L/L, when defining more general functions of L, and when
considering L? boundedness of a certain class of functions of L, we will al-
ways assume that n and m have small Lipschitz norms. This assumption (to-
gether with the assumptions that a, is small relative to a,, as in (i) of Propo-
sition 8.1) is sufficient to guarantee that 72— g is a quasiconformal, and g an
(anti)quasiconformal, homeomorphism of the plane. Furthermore, all the
required expressions (e.g., D) stay away from 0, L/L and L/L are bounded
on L?, and the rest of the results, including Proposition 7.1, go through. In
Proposition 8.1, we see that we can estimate the distance of D from 0, the
L norms of the partials of y and m, and the L® norms of certain other func-
tions connected with the quasiconformal nature of #—g and g, using only
the L% norms of L/L and L/L as well as certain L* norms involving @, and
a,. However, Proposition 8.1 is not a complete converse to our (sufficient)
assumption that » and m have small partials: we need to make assumptions
about boundedness without estimates in Proposition 8.1, and then we obtain
the estimates; we do not obtain that » and rm have necessarily small Lipschitz
norm, but merely bounded. In the next section, we solve (2.4) explicitly, and

give examples which guarantee that » and m have small partials.

3. Beurling Transform; Restrictions on a, and a,

We first make a small digression to discuss the Beurling transform. Let B=
d,d5 ! be the Beurling transform, and B~'=9.8; ! be its inverse. B~!is con-
volution with p.v. —1/7Z2, has symbol &£/&, and is bounded from L?to L.

Let f be a radial function, f(r), defined on C, and let F(z)=e"f(r).
Following Garcia-Cuerva’s derivation of B(f) in [GC], one can show that

(3.1 —e! MV (m41)/r 2 L s (s)ds — f(r)), m=—1,
(BTIF)(re) =1 e’V 2(m+1)/r" 2 Rs" f(s)ds+ f(r)}, m=-3,
—Q2§7 f(s)/sds+2f(0)Inr—f(r)), m=—2.
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Using (3.1), if F=e™f(r) for any integral m, if f(r) is supported in
[1/M, M] with M some fixed constant, and if fe C*, then

|IB7'F|o<5In M| f]w-
So, in particular, if | f|. <6/5In M (6 <1), we have that the series
(3.2) (1=-B'NH ') =1+B Y )+B (/B (/) +--

converges in L* with norm bounded by 1/(1—26).

In what follows, f will be either @,, aa,, or their linear combination (here
a;=1/(1+«)), so we must take f in L®. This places restrictions on the func-
tions involved since B!, a Calderon-Zygmund operator, will not usually
map L™ to L™.

Now we return to the system (2.4). We treat each equation separately.
Each is similar to the Beltrami equation, except one has a nonzero right-hand
term, and the roles of d, and d; are reversed. So we can solve them in the
usual way (a minor modification to the solution in Ahlfors [A]) to obtain:

g=zZ+m,

(3-3) b -1
_ﬂ=_33(1+3—192> (1),
0z a a
om a, -1
—=(1+B"1=2) ()-1
0z ( al> M
Here, a, /a; denotes the corresponding multiplication operator. We also have:
h=z+Z+n,
-1 1 1
n:{a—@(1+3*lﬁ) (1+B“——>}*—t,
a a a; w7
an a, a7t 1
—=a——(1+B = 1+B7 — ),
(3.4) oz 01( al) ( al)

- 1+B"‘£7:>_1 g-i(Ll_a
a a a

(here, @, =1/(1+ «)). Noting that B~!(1) =0, and using (3.2), we see that if
we choose « and a, to be C*, compactly supported on I/ M <r<M (M
fixed), of the form I7_,e"%;(r) (the sum finite), and such that each f;
is of sufficiently small L® norm, then all the series defining 1, », and their
derivatives will converge, and m,n will be Lipschitz of norm as small as
we want.



304 MAXIM J. GOLDBERG

These restrictions on the form of « and @, are probably unnecessarily se-
vere. They merely serve to illustrate that there do exist many functions o
and a, such that the operator series in (3.3) and (3.4) converge and the par-
tials of m and » can be taken small.

We now return to (2.5b) to calculate b, =a,;+ b, and b,=a,+b,. Note
that D=(1/a,)(dg/dZ), using (2.4). D is never 0 and is, in fact, bounded
away from 0, given our choices of « and a,. Thus,

- a(l +B~Y(ay /a)) (B~ (1 /ay))

(353) bl_ (1+B—-l(az/al))_1(l)
and
(3.5b) b,= 1—ay(1+ B~ (@ /)" "(B~\(1/a))

(1+B~Y(az/a))~'(1)

So L = b,8,+ b, 8, where b, and b, (given by the formulas above) are in L*
and L is obtained by simply finding the conjugate vector field, correspond-
ing to d/dz, on L, to the vector field L (which corresponds to d/dz;). If we
write out the partial differential equations obtained by considering LL =LL,
we obtain:

ab db d d
a1_1+ 2—_]-—171 @ bz a4
3.6) 0z a0z 0z 07’
' b, 3b, - da, da,
a1 Yo g =bigm+ha e

One can check, without too much difficulty, that (3.5a) and (3.5b) satisfy
system (3.6). It would be hard to guess a solution to (3.6) (other than the
trivial one, viz., a multiple of L) without using the surface L.

4. Calculation of L', L~ L/L, L/L

In this section, we calculate some particular operators which have already
been mentioned and which will also be used in what follows. In all that fol-
lows, we suppose fe Cy (C). We first state a lemma of Coifman-Meyer, a
proof of which appears in the appendix.

LEMMA 4.1. If p: C~C is a quasi-conformal mapping, and fe Cy’, then

) _ ap/az
5 Ve @—ptmy A0 == | o)
while

S(w)do(w)

f(z) ’ S dp/dz
“op/0z F T )e (o= p(w))

9 g v
0z Jc p(z)—p(W)

5 f(w)da(w).
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Now, let

i
c 7 g(z)—g(w)
Then, LT, f=f(z): we apply Lemma 4.1, but since g (not g) is q.c., we must
interchange d/dz and d/d7 in that lemma. So,

f(z) _ i a(3g/9z)f(w)D(w)
3/07° P02 [ =gy
—pw LS a,(g/0z).f(w)D(w)

Cwle (g(z)—g(w))?

T.f=| FOo»)D(w) do(w).

LTlf=a1 dU(W)

do(w)

T
= f(z),

using (3.1) and the equality D(z) = (1/a;)(dg/dZ). One can also show3 using
(2.4) and a bit more manipulation, that 7L f = f(z). So, T,=1/L.
Similarly,

1 i 1
=l T Tmmm—ti s’ PO

Here we use (2.5) and the fact that also D(z) = (d(h—g)/3z)/b,.
Using Lemma 4.1 and the expressions for L= and L=},

L, . -
7= (blaz‘*'bzaz){s f(w)D(w)da(w)}

51(2)
¢ 7(g@)—gQwy2) WP dotw)+2n

)
c w(g(z)—g(w))

f(2).

——p.|

Similarly,

L
LTf: (@,0;+a,0z)

i
D d.
{Sc T (h—g)@)—(hi—g)ow)’ P "(W)}

1 a,(z)
D d . 7).
¢ Th—8)@) —(h=g) o2 WP doebn)+ 270 S ()

—p|

5. Functional Calculus

We now try to make sense of the formula (2.2) which was discussed in Sec-
tion 2:

do(%).

1 do 1
L)y=— S =
o(L) wJc & L—§&
The first part of this section follows closely the work of Coifman-Meyer.
Let us first suppose that ¢ is decreasing more rapidly than a linear exponen-

tial. Now, we know what L™ !is. If we let x =exp(i(£(h(z)—g(2)) + E2(2))),
as before, then Ly = £x and so

gty tL
(L=§) =xL™"—.
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Since the kernel of L™'is (i/x(g(z)—g(w)))D(w),

3 2

L= == expli(E(Ui-8) (@)~ (h—g)(w))
T JC

% +£(g(2)—gwW)).f(W)D(w)do(w)
and
(L) f
6.n = 7:5 EC k((h—g)(z)—(h—g)(w), g(z)—gWm)f(w)D(w)do(w),
where

k(u, 0) = _(8) exp(iCut +vE) do(?).

We now attempt to define more general functions of L, and to tie in L
(which was obtained by geometric considerations) to the functional calcu-
lus. To this end, define ¢(£) =exp(—|£|?) and ¢,(£) =exp(—¢2]¢|?). Then

, _ 1 7z2+2\* 1 /z—72\?
SC ¢t(£)exp(l(z£+22))da(2)=%eXp<—ﬁ<%£> —75(’2’.2) )

We can extend this uniquely as an entire function in (#, v) € C X C, to obtain

o L /uto\ 1 fu—v\
6(u,v) =75 exp _TZ( 2 '72'< 2i ) ’

Let u=(h—g)(z)—(h—g)(w) and v=g(z) —g(w). Note that

16, (ut, v)] = — exp( —— z=-w)+EZ-w\ ¢ /z-w)—(z-w)\
t ’ —fz P 12 2 t2 Zl .

We want to calculate lim,_,, ¢,(L)f, where ¢,(L)f is defined by (5.1). Now,
making a change of variables w — z —u’ and then u’— v¢, we obtain

é:(L)f(z)

_iS <ol — h(Z)—h(Z—vt)>2_ (h—2g)(z)—(h—2g)(z—-vt)>2>
o Ce p( ( 2t ( 2it

Sf(z—vt)YD(z—vt)do(v).
Taking the limit as ¢ — 0, we obtain (since we can take the limit inside):

lim ¢,(L)f(z)

-0

= f(z2)D(z)
1 oh dh 2
X [«7; Sc exp(—((gz:(z)ﬁ-f- E(z)v)/Z)

_ _ 2
(A28 oy, 2020) ) /2,-) o).
0Z 0z
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The expression inside { } is an unpleasant (but straightforward) Gaussian,
which yields 1/D(z) after calculation. So,

(5.2) limo¢,(L)f(z) =f(z).

t—0

Hence we have an entire (and rapidly decreasing on ¥X) approximation to
the identity.
For p rapidly decreasing, we define f,=p(L)/f.

PROPOSITION 5.1.
fg ", = Ln(qu,) = (Lnf)¢,

f§”¢, = Z"(f¢,) = (Enf)qst

and

forn=1,2,3,...

This proposition connects L, obtained geometrically, to the functional cal-
culus. Equation (5.2) shows that lim, _, o( fgnd, )= L"f, giving the expected re-
sult, and similarly for L"f. Before proving the proposition, we first note that,
by a calculation using (2.5), we have the following lemma.

LEMMA 5.2.
0.(a\D)+3;(a,D)=0 and 3,(b,D)+3;(b,D)=0.

Here, as before,
__0hdg adgoh

T 0z 07 09z oz
Proof of Proposition 5.1. We will show that
fg”q; =L"(f¢) = (L”f)(z; and f§”¢ =L"(f$)= (l_«”f)¢
for any suitable ¢. ¢, is certainly suitable. We define

u=h—-g)(z)—(h—g)w) and v=g(z)—gw).
Now,

a0 a0
LO(u,v))= E;L(MH_EJL(U)’ L(u)=—i, L(v)=0.

Thus L(0(u,v))=—i(a0/du). So
a6
[ 2o

L(f¢)=— SW)D(w) do(w)

and

1 a"6
(S = | =iy T8 ouDowy o).

Now,

1
(Lf)g= ) SC 0(u, v)(LS)(w)D(w)da(w).
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But

1 d d
”7‘_—25(:0(“9 U){(al("'l(—a“;)+az(—lﬁ>>f(W)}D(W)d0’(W)
S ; 9 . 7 D(w)d
=3 Jo{ (a(=15 ) +oa( =i ) Jotw )] o DO o,

using integration by parts and Lemma 5.2.
But this last expression may be rewritten as

1 a0
= [ =D oDy do ).

(We have the extra minus sign since L, (#)=—L,(u)=+1i.) So

"B(u v)

(L= | =iy S)D(w) do(w).

Also, for f,,

= d
|, £6(8) expli(ku+ ) do(§) = (—i)=-0(u, v),
C ou
and

1 a"6
[t

fg"qs-———— — o S(W)D(w)da(w).

Hence, the first part of the proposition holds. In an analogous way, one can

obtain
_ _ 1 0"0(u,
(F'e=D' ) =Terg=— | ("o SO9)D ) do o)

This concludes the proof of Proposition 5.1. ]

6. More Functional Calculus

Returning to formula (5.1), we would like to show that if ¢;, ¢, € CF(R?),
or are of the form x/y* exp(—x2—y?), then

6.1) b1(L)p2(L) = ($262)(L).

First we have the following proposition.

PROPOSITION 6.1. If F(zy,2,) is an entire function which decreases rap-
idly in a conic sector |z;—Z,| < M|z, +Z,|+ M’ (if (h—g)(2), 8(2)) = (21, 22),
then ¥ is contained in this sector), then

| Fh—8)@), 8@)D@)do(2) = | _F(z,2)do(2).

Proof. We first claim that if ¢(w)=(h—g)og~(w) then
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M [ F6on Mo deom=[ _F(th-8)@), 8)D@) doz).

Indeed,
d¢ _ d(heg~")(w)
aw aw )

d(w)=hog (Ww)—W,

Let w=g(z), and substitute into the left-hand side of (i). We have ¢(w) =
(h—g)(z) and do(w) =|—J,(z)|do(z) = —J,(z) do(z), since |d,g|*—| 3, g|* >
0. Also note that

d(hog =" ) (W) _3(hog™)(w)
aw w=g(2) aw w=g(z)‘
Using the chain rule, and letting
d(hog™! d(hog™!
P (hog™’) ’ Y= ( g ) ’
aw w=g(z) ow w=g(2)

we have the following system of equations:
oh
oh _x%  y%
0z 0z 0z
dh ag ag
=X—=+4Y—,
8z 0z 0z

which implies that Y= —(D(z)/J,(z)). Substituting these expressions for Y,
¢(w), and do(w) into the left-hand side of (i), we obtain the right-hand side.
For the second part of the proof, we want to show that

[ F@on, 922 dowy = _Fow, ) dow)
C aw C

(this is done in Coifman-Meyer [CM2]). We write ¢(w) = w+r(w) for some
r with small Lipschitz norm. Let ¢,(w)=w+tr(w) (0<t<1), and let

a
0= _F(@00), W) 5k do(w)
Then

d
LI = FG 00, 90N S doto0) + [ F (6,00, 9) o dlo ()

d
[ 3 LF (@), W) r(w)) o)

=0.

So J(0) =J(1), which is what we needed. (The first part of the proof seems
to be the nonlinear part of the calculation, while the second part is the lin-
ear one.) L]
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Now, we would like to show (6.1). We need to show that
1
v SC ki((h—g)(z)—(h—g)(w), g(z)—g(w))D(w)
(6.2) ka((h—g)Y(w)—(h—g)(z'), g(w)—g(z")) da(w)
1
=pks((h—g)(Z)—(h—g)(Z'),g(Z)—g(Z’))-

Here, fori=1,2,
kitu,0) = | _¢i(&) expli(ut+vE) do(8),

and k3 is associated in an analogous way to ¢, ¢,. The left-hand side of (6.2)
is

1
— | =) @)=, 8@) = Wka(w—(h—g)("), W —g(z")) do(w),
by Propositim} 6.1. Now: ki((h—g)(z)—w, g(z)—W) =(¢))"(2x, =2y); u=
x+iy, where ¢, =¢,(§)exp(i(§(h—g)(z)+£g(z))); and
ky(w—(h—g)(z"), w—g(2")) = ($,)"(2x, —2y)4n?,

where ¢, = ¢, (£)exp(—i((h—g)(z’) +Eg(z’))). Thus, the left-hand side of
(6.2) is:

472 - .
[ @@y axay
1 -~
‘-;r‘jicmszdxdy
1
=pSC¢1($)¢z($)exp(i($((h—g)(z)_(h_g)(zf))

1 +£(g(z)—g(z')))) do(z)
= ;gks((h—g)(Z)-—(h—g)(z’),g(Z)—g(z’))-

This finishes the demonstration of (6.1). Ul

7. L?> Boundedness and Extension to More General ¢

In this section we define ¢ (L) for more general ¢, and extend the results in
[CM2] about L? boundedness. We define Q,, (0 <M < 1) to be the sector on
C? given by

(Im )2+ (Im )% < M*((Re i#)> + (Re §)?),
with #=¢+i¢" and 0 =9+ iy’
PROPOSITION 7.1. Let L be as before. Suppose a, and a, are as in Sec-
tion 3, or (more generally) that n» and m have small Lipschitz norms (see



A Functional Calculus for a Scalar Perturbation of d/dz 311

also Section 8). Then, for any 0 <M <1, if x: Qu— C is bounded and holo-
morphic then the operator x(L) is bounded on L*(R?). x(L) is defined in
the following way: We let

X = xexp(—e(@*+9%), (i, D) ey,
and x(L)(f)=lim,_ o x (L)(f) in the weak sense.

Proof. We will show that |x.(L)|.2 ;2= c|x|r~,,» ¢ independent of e. We
use formula (5.1) for x.(L). Let k.(z, w) be the kernel of x (L), and let
k%(z, w) be such that k (z, w) = (1/72)k2(z, w)D(w). Let T§ be the opera-
tor defined by k2. We have:

() |k, w)=c//lz—wl*
(i) |(8/82)k2(z, w)|+|(8/02)k (2, w)| < c,/|z—w]?, and similarly
for |(3/dw)k2|+|(8/aw)kI);
(i) 7.°(D)=cx(0);
(iv) (T.°)"(D)=cx(0); and
V) x(L)f(z) = A(z, w)(Lf)(w)D(w)do(w), where
|A(z, w)|=c3/|z—w|.
The constants c;, ¢,, c3, ¢ depend only on M (in particular, not on ).

Once we have (i) through (v) we are done. (v) shows weak boundedness of
DT.°D; if f, g are supported in a cube Q € C then

KD(2)x (L) f(2), 8| = c|OI*|&lo] VS |-

(i) and (ii) show that k2 is standard, and (iii) and (iv) complete the require-
ments of the 7(b) theorem [DJS] for T.°, since Re D(z) =1if m and 5 have
small Lipschitz norms.

To show (i) and (ii), we repeat the argument in [CM2]:

X = Xx exp(—e(@#*+ %)),
and let ¢,(¢) = x.({/2). Calculate the inverse Fourier-Laplace transform of

b (&, 1):

1
Delit, 6) = 75 | ,expUi(TE+ M) (&, ) d .

Then &, (i, 7) is holomorphic in the sector Q,,, M’< M, and we have

|® (i1, D) = c| x| a=@,pa [+ 7"
Also,

19208, (@, 0)] = Ca sl 0y ) (|HP+|P) /2912,

This can be obtained in the usual way. We change the contour of integration
to change 7 and ¥ in exp(i(iié + 0n)) to be real. By the definition of x,, we
are permitted to do this in each variable separately. Once we have done this
rotation, using Cauchy’s theorem again, we see that the symbol ¢ associated
with &, (i, 0) satisfies
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anf COl,B
la d O'IS (|£|2+In|2)(a+5)/2 :
We then do the usual real variable argument. Now,
h(z)—h(w) (h~2g)(z)—(h—2g)(W)>
2 ’ 2i

=<I>f(x—s+l7£§lf2_”ﬁi’l,y_t+ ("_Zm)(Z);i(n—Zm)(W)>’

k?(z,w)=<b6<

where z =x+iy and w=s+if. (From the first section on functional calcu-
lus, # corresponds to (#+wv)/2 and ¥ to (u—v)/2.) We obtain (i) and (ii)
from the fact that n and m are Lipschitz with small norm.

(iii) and (iv) follow from Proposition 6.1.

Finally, (v) follows from considering the symbol x.({)/¢ instead of x . ({)
and applying a similar argument from pseudodifferential operators to the
one used to obtain (i) and (ii).

It remains to show that lim,_ o x.(L)f exists in the weak sense, that is,
given f, pe L>(R?), lim,_¢ | x.(L)fp exists. This is equivalent to showing
that

lim | X.(L)/(2)p(2)D(z) do(2)

e—0

exists. We will show that the above sequence is Cauchy, that is,

*) [ xo (@ @D@) = | X6 f)P()D(2) >0

as €, €, — 0. Since we know that |x.(L)|,2 ;2 is uniformly bounded, to show
(*) it suffices to take £, p in some dense class in L2.

In order to define an appropriate dense class, we digress a bit to define
an operator 7:

1 ] ~
(@)= 5- | exp(FU-D@E+2@DuD do(c).

Note that 7u is well defined if ©# has compact support. It is easy to show that
the set of 7u, where u has compact support, is dense in L*(R?).

We now return to (*). We set f=7¢ and p =7y, where ¢,  have compact
support and are in Z2. Then

1
== {{ K-2)@) - (- (W), 82) —g ()

2
" (r$)(W)(1¥)(2)D(z) D(w) do(z) do(w),
where

(w0 = | (X=X (E)exPli (ut +VE)) do ().

By Proposition 6.1 (applied twice),
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m=c|_{ | c=x)®explittz—me+=we)

d(W)Y(z) do(w)do(z) d(£).
So

() =c|_lxg=x)©)l(-2D]¥ (28| do(§)

3 1/2
= C(Scl(xq —xez)(E)I2|¢(—2g)|2> l¥],—0

as €, e; — 0, by dominated convergence theorem. This concludes the proof
of Proposition 7.1. O

8. Restrictions Forced on rm and 5 Assuming
L/L and L/L Are Bounded on L?

We have obtained a functional calculus for L =a,d,+a,0;, assuming that
the partials of m and 5 are small, and making implicitly the assumptions of
(i) in Proposition 8.1 below. All of the above are satisfied if, for example, we
place the restrictions on a, and a, described in Section 3. In this section, we
wish to show that bounds on a;,a, and L? norms of L/L and L/L are all
that is needed to estimate the bi-Lipschitz norms of 2A—g, g, the Lipschitz
norms of m and 7, and the distance of D away from 0.

In Proposition 8.1 below, we assume there are constants ¢; > 0, ¢, >0,
¢c3>0, and 1> ¢4 >0 such that

a

<1-—cy.
a) 4

[o o]

1
laa<cr, [aslo<ca, N?f

<c3, and
[+ o]

We define b, and b, using (3.5a) and (3.5b) (see Proposition 8.1 for more
details), and assume that there exist c¢s > 0and c¢s> O such that L/L and L/L
have L2 norms bounded by cs and c¢ (resp.). We use the following form for
L/L and L/L:

1
- B _ .
(a,(z) +a2(2))b1(z)B+b2(z)

~ ~ 1
7 =Bi@B+by(2) p

(not the integral kernel form obtained in Section 4). Now, let’s solve (2.4)
and (2.5) to obtain:

| | b

g a,0g
9z a9z’
dh—g) _ byah—eg)
ez b, oz
oth—g) _ L(l_ﬂé)“
a9z a; a 52 ,
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dg 1 (1_ b &)‘1
32 51 52 a] )
<a(h~g) a(h—g)>il [ 1 ( _ 51)( a 51>_1 !
+ — =}— 1+".:.—‘ 1__',.—
0z 0% a, bz a b,

() 025 "
a0z oz b, a a; b,

A similar expression can be obtained for D. Proposition 8.1 proves that
11/65). < d5 and | b, /b, | <1—d, (0 < d, < 1), where d; and d, depend only
on the constants cy, ..., ¢ mentioned above. Hence, we conclude that A—g
and g are bi-Lipschitz, m and » are Lipschitz, and D stays away from 0, with
all quantities estimated in terms of ¢, ..., cg.

Thus

and

PROPOSITION 8.1.

(i) Suppose there are constants (not all independent) ¢; >0, ¢, >0, c3>
0, and 1> c4> 0 such that |a;|. < cy, |a2] < €2, |1/a1]0 < €3, and
laz/a1]0 <1—c4.

(ii) Consider the operator Q= (14+B~'M(a, /a)))”}, where M(a, /a,) de-
notes multiplication by a, /a,. Assume that Q(1) and Q(B~(1/a,))
are in L, and that |Q(1)| > 0.

(iii) Using assumption (ii), we can define b, and b, by (3.5a) and (3.5b),
and b, and b, are in L*. Assume that |b,/b|. <1 and |1/b,| . < .
(iv) Let cs be the L? norm of the operator

L 1
—_ = B = p
7 (a1(z)B+ay(2)) 5 ()B4 5,2)

and let cg be the L* norm of the operator
L 1
al(z)B+a2(Z) .

Then there exist d, > Q, d, >0, d3~> 0, and 0 < 514 <l1, depending 01~1/y on
Cly «+.5Cg, such that ||b1"°° < dls ubZHOO < dz, "1/b2ﬂco < d3, and ubl/b2"°0 <
1—d,.

§=(51(z)3+52(z»

Note that the point of this proposition is that the quantities d,, ..., d4, whose
existence is assumed in the hypotheses (ii) and (iii), depend only on ¢y, ...,
Cg-

We first prove the following lemma.

LOCALIZATION LEMMA. Let e,(2),e,(2),e3(z), es(z) be bounded func-
tions, and either |e4 /3] <1 and |1/e;3|e < o or |e; /e4] <1 and |1/e4]o <
co. Define the operators S = e,(z)B + e,(z), T = 1/(e3(z)B + e4(z)) on L.
Then |ST |y =Sz, Tz, |2 for any fixed zo in C at which ey, ..., e4 are continu-
ous, where S;y=e,(z9)B+e5(z¢) and T;,=1/(e3(z¢) B+e4(z¢))-
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Proof. Choose f in L? of norm 1 and define f;(z) = kf(k(z—z;)), where
the factor k preserves the L? norm. Write

STf— S Ty Jx = STf i — ST, Ji + STy S — Sz T2y Jx-
However,

ISTzOfk 20 zokaZ \I(S Szo)( f)k"z_*o

as k — co. We use the fact that B commutes with translation and dilation and
hence so does Tz, for z, kept constant. The first part of STf; —S;, T, f can
be handled in a similar way, so we have

|STfx =Sz Ty Sil2— 0

as k — oo, and the conclusion of the lemma follows. U

The proof of Proposition 8.1 is now almost immediate. From (iv) and the
localization lemma, we have:

@ 611(20)(&_'/5)+ciz(<7.o) <cs:
b1 (zo)(E/€)+ Dy (2¢)
bi(z0)(E/£) +by(zy)

b l .

®) 0 @NE/E) +a(20) |~ CF

Here we have used Plancherel’s theorem. (a) and (b) hold for almost all z,
and £ in C. From (b), we can find the desired d, and d, to control || and
|53] - From (a), we obtain 1/||5,|—|b,|| < ds, and these constants depend
only on ¢y, ..., cg. The rest of Proposition 8.1 follows easily. 0

9. Conjugation to the Coifman-Meyer Case

In this section, we see how the operator L arises by conjugation from the
operator ad, considered by Coifman and Meyer in [CM1] and [CM2].

Let Tf = Uzad,Uz-1, where U;h=hog; g and a will be determined in a
moment, so that 7= L. Now

af __.og' of __ 3z
a U =(— —_1 op 1
() =( z)( EZogE )
SO
afog~' _ afog ' _
T — X o — og |,
J=riag (a 0z Btz oz )
But
0z ! 1 dg 0g ! 1 dg g |? ag
0 = ——— d 00 = ——— h =|-—
0z ST ooz T Taz BT T, MNP laz‘ oz
Therefore
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Hence, Tf = Lf if and only if

From the above system,

SO

which shows that this g is the same g we had before. Thus

— g\ -1
a—'(alp/ 62) 4
makes 7= L.

To show that the formula (5.1) is obtained by conjugating the Coifman-
Meyer formula, Uz(¢(ad,))U;-1, we do the following. Let
aq G,

1
e —MFZ—’ where M=aB_l<z>-

Then
- d
#(ad)f =] | 6(&)exp(i(q(z)—q()E+@—ME) do(£) =L f(w) do(w).

Hence
Ug(¢(ad; ) Ug-1f

=Uc $(£)exp(i((go8(2) — qoF(u))E

_ d
+<g(z>—g(u»s)>da(£)( g

ow

)oé(u)pfda(u),

using the change of variables u = g~!(w). Now dq/ow =1/a, so
aq 1 1 dg
ow a-g  pa; 07

Hence

Now, remembering D,

p=9h—8) 3¢ 9dgilh—g) 10g
T 0z 9z 9z 0% a; 07’

so the weight factors in the expression for U;¢(ad,)U;-1 and formula (5.1)
match.
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It remains to show that gog = h— g. It suffices to show that the other equa-
tion in system (2.4) is satisfied (here, g-g = z, so we need s — g, not A itself).
We need to show that
d(go? Ago2

(g-8) ta, (g-8) '

l=a
oz 07

The right-hand side is:

dqg _0g 0dq _og dg _dg 0dq _0g
(az gaz+62': gaz)+a <a~ az+82 6z>

Now (dq/dz)°g=1/(a-g), so
aq _0g 9q BE (a dq _9g dq _ag)
1

)

0z T 725;°8 %z 9z 837 T2 58 %z

1 aog(ag/az) dg , a°g(—(1/p)) dg dg _< a 32 | a, ag)
= — — —+ — —— -+ o —
0 aeg 0z a-g a0z 0z aeg 07 Q-8 0%

(using the equations connecting a, a,;, and a,), and hence

1/10g1% |og|? /13gd3g 19dgag

O==\ |5z —|==| )Fe8l -5~

p\ |0z 0z p0dZ 0z p 0z 0F
-._.pp_ .

10. Appendix

To prove Lemma 4.1, we first calculate the following. Let R, be a circle of
radius @ > 0, centered at the origin of R?, and let R, be the circumscribed el-
lipse with major axis b and minor axis @, b =a. Then

SRMZ 0(2) SRZ\RIZ do@) =75

Now, suppose p is quasiconformal. Let

1
Guy=| ———rw)ydw).

c u—p(w)
Then
G| _ /@)
o o(2) |3zp|2—-|32p[2’
and
G d 1
Bu p(z):E[SC u—p(w )f(W)dO(W)
d _
= gcu_ S~ 1 (0))J,-1(v) do(v)
= —lim | /(07 (), -1(0) do () =
e—0V|u—v|=e (ll
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= —1i -1
:l—%j =lw)¢ p~ 1B ()} (U— v)zf(p (O)p-1(w)do(v)
. ~1
+?_‘,‘(‘,S-1w)¢3(p-n(u» = v)zf(p WN,-1(v)do(v)  (A)
. —1
:l_rf(l)g lw)e Be(p~ ) (U— v)2f(p (DS dofe). ()
Now
B=—li
- SWB @ (@) —p(wyz? M4 W)
_ S(w)
=P Gy
and
=i -1 —
A ELI%SUGBAu)—ptBE(p—I(u»l (u—v)zf(p ENJp=1(0) do ().

In the above, B, and B, refer to balls of appropriate radii. Now, if (in the
expression for A) the circle and the ellipse were aligned along the x and y
axes, then we could use our preliminary calculation to obtain:

_| 9% ap 7f(2)
az J,(z)

But our picture is rotated, so we must let Z =e "%z to rotate to standard pic-

ture, where
0= l ar i"l 9
—2%8\ 57/ 5z

_ (% [\ @)
A= (6z/6z> J,

(see [A]). Hence

Since
_ 3G 3G a
_(G )= uozt w7
we have
J _ S(w)
9 Ve s@r—atm” 0N = =00 | e )

dp/0 0p/0z 0p/0Z
+7rf(z){ p/0z _ 8p/3z dp/ z},
J,  0p/dz J,
and the expression inside { } is 1/(dp/3z). The second part of Lemma 4.1
follows in the same way. O
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