Invariant Diagonal Operator Ranges

BEN MATHES

Introduction

It is a well-known fact that a subspace M of a Hilbert space JC is invariant
under a set § of operators on JC if and only if M+ is invariant under the set

*={T*: Te §8}. There is no similar statement for operator ranges. Indeed,
if @ is the algebra of operators that are lower triangular relative to an ortho-
normal basis & = {e, €;, ;, ...} of JC, and if Lat,;,, @ denotes the lattice of
operator ranges invariant under @, then

Lat;, @ =Lat @ = {M: M a closed invariant subspace of @}.

On the other hand, Lat,,, @* properly contains Lat @* (for the proofs of
these assertions, we refer the reader to [1], [2], and [9]). All of the invariant
ranges of these algebras may be obtained as ranges of diagonal operators.
The purpose of this paper is to replace @ with small subalgebras, the com-
mutants of certain strictly cyclic weighted shifts, and then characterize the
ranges of diagonal operators invariant under these smaller algebras. In a
paper to appear as a sequel to the one in hand, we will investigate the ranges
of diagonal operators that are invariant under the adjoints of these smaller
algebras. Our results suggest that the difference between the ranges of diag-
onal operators invariant under these smaller algebras and those invariant
under their adjoints is the same difference seen when passing from @ to @,

Preliminaries

Assume for the moment that @ is the commutant of the unilateral shift op-
erator S, that is, the operator defined by Se;=¢; ., (i=0,1,...). We assert
that there are no nontrivial invariant ranges of diagonal operators under Q.
By nontrivial, we mean ranges other than the obvious invariant closed sub-
spaces of all lower triangular operators. This may be seen by assuming that
D =diag(d;) is invariant under @, then proving that there exists m =0 and
e > 0such that d; =0 for all 0 <i < m, and d; = e¢ whenever i = m (there is no
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loss of generality in assuming that (d;) is a positive sequence). The existence
of m such that d;=0 for all 0 <i <m and d; > 0 whenever i = m follows im-
mediately from the fact that S leaves the range of D invariant. The fact that
the range of D is invariant under @ gives us that the map A~ Dg'AD is a
bounded homomorphism of @ into @ (JC), where D, is the restriction of D
to its cokernel and @3 (JC) denotes the algebra of (bounded) operators on JC
(see 2]). If one writes down the matrix of D 'S"D, the fact that

sup| Dy "D < o

n=1

is easily seen to imply that

d;
sup
n=1 d1+n
i=m

< oo,

which gives us the existence of ¢. This is the essence of the argument used in
[10] to construct a range invariant under S but not under Q.

If we look at the commutant of weighted shift operators, then the story is
completely different. We will see that some of these algebras have an abun-
dance of invariant ranges that are ranges of diagonal operators. An opera-
tor Q is called a unilateral weighted shift with weight sequence (w;) (relative
to the basis &) provided Qe;=w;e; ., (i=0,1,...). We will always assume
that the weights are all nonzero. A unilateral welghted shift operator is said
to be strictly cyclic if there exists x € JC such that {Bx: Be @} = JC, where @
is the strongly closed algebra generated by Q (note that Q is also the commu-
tant of Q). A survey of weighted shift operators is presented in [11] where a
proof of the following fact may be found: If Q is a unilateral weighted shift
with a monotonically decreasing weight sequence of positive numbers (w;),
then Q is strictly cyclic if and only if

kT Be 7

* ©
) i‘g Eo[ﬁiﬁk—i] =%
where By =1and 8, = wy_ Wi _5---wo (K =1). If (w;) is an arbitrary sequence
of positive (nonzero) numbers, then (%) is a sufficient condition that Q be
strictly cyclic. In [3] an example of a strictly cyclic weighted shift that does
not satisfy (*) is given, so (*) is not a necessary condition for strict cyclicity
in general.

If Q is a strictly cyclic unilateral weighted shift, then Q induces a bounded

bilinear form ¢g: JC X 3C — JC defined by

oo

SDQ(x’y)_ E {E(X el)(y’ek t) B }ek'
K=0 BiBr—i

The following lemma is taken from [7] and sheds some more light on the
condition (*).

LEMMA 1 [7]. Forall 0<i=<k, let \;; be complex numbers such that

oo k
o(x,y)= X [ 2 {x, ey, ek—i»\ki}ek

k=00i=0
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defines a bounded bilinear form ¢: 3Cx 3C— 3C. If ICR®,IC is the Hilbert
space tensor product of 3C with itself, then there exists (1 € B(I X, IC, IC)
such that o(x,y)=Qx®y) for all x,y € IC if and only if

k
sup 3 [Agil? < oo
k=1i=0

A bounded bilinear form ¢:3C x JC — JC for which there exists 2 €
®B(IC®,IC, IC) such that p(x,y) =W x®y) for all x, y € IC is called a weak
Hilbert-Schmidt map (see [5]). Thus a paraphrase of the principal result in
[3] is that there exists a strictly cyclic weighted shift Q such that ¢ is not a
weak Hilbert-Schmidt map.

We will now explain the reason for fussing whether ¢ is or is not a weak
Hilbert-Schmidt map. If @ is any norm closed subalgebra of ®(JC), then
there is a sublattice of Lat,/, @, which we denote Lat., @, that consists of
those invariant operator ranges that induce completely bounded homomor-
phisms (see [8]). It is an open question whether or not one has Lat;,, @ =
Lat., @. If ¢ is a weak Hilbert-Schmidt map and @ is the commutant of
0, then there is an explicit description of Lat., @ in [7]. Namely, one can
make the identification

@=(M,:ye 30},
where M, is the operator defined by

My (x) =po(x, ).

This association of @ with ¢, is denoted in [7] by @ ~ (3C, ¢p). An element
ran(T) of Lat,/, @ then gives rise to a bounded bilinear map ¢ defined by

or(x,y)=T5 'oo(Tx, ),

where T} is the restriction of 7 to its cokernel. The result in [7] states that
ran(7’) is in Lat, @ if and only if ¢7 is a weak Hilbert-Schmidt map. This
gives a concrete test for determining whether the range of a diagonal opera-
tor is in Lat, Q.

LEMMA 2. Assume D =diag(d;), ran(D) = IC, @ is the commutant of a
strictly cyclic unilateral weighted shift Q, and ¢ is a weak Hilbert-Schmidt
map. Then ran(D) € Lat, @ if and only if

(1) thereexists m=1such thatd; =0 forall 0 <i<mbutd;#0 fori=m,

and
(2) supgs> Ef-‘z(,[)\k,-|2 < oo, where

N - {(d,-/dk)(ﬁk/ﬁ,-ﬁk_,-) if k=i=m,
ki — 0

otherwise.

Proof. Assume that ran(D) e Lat, @. That there exists m=0 such that d;=0
for all 0 =i <m but d; #0 for i = m is an immediate consequence of the fact
that Q leaves the range of D invariant. That m =1 follows since @ has no
dense invariant linear manifolds (see [6]). Thus we have established (1).
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To establish (2), it suffices to prove that

oo k
ep(X,y)= { PECADHIGA ek—i»\ki} ey

k=0li=0
defines a bilinear form that is in fact a weak Hilbert-Schmidt map, by Lem-
ma 1. To this end, write @ ={M,: y € 3C} and let &p: @ - &B(IC) be the ho-
momorphism defined by ®p(A4) =Dy 'AD. Then it follows that

o k
q)D(My) (x) :kE—:O{ ‘E()<x’ ei)(y’ ek—i>)\kl} €k

SO ¢p is a bounded bilinear form. By hypothesis, ®p is a completely bounded
map, which implies that ¢p is a weak Hilbert-Schmidt map by Theorem 3
of [7].

Conversely, if (1) and (2) hold, then we may define a weak Hilbert-Schmidt
map by the formula

ep(X,y)= [ > {x, ey, ek—i»\ki}ek,

k=0li=0
which evidently satisfies M, D(x) = D(¢p(x, y)) for all x, y € 3C. It follows,
again from Theorem 3 of [7], that ran(D) € Lat, Q. ]

Implicit in the above proof is a condition that the range of a diagonal oper-
ator be invariant under the commutant of a strictly cyclic weighted shift,
which we now record.

LEMMA 3. Assume D =diag(d;), ran(D) # 3C, and Q is the commutant
of a strictly cyclic unilateral weighted shift Q. Then ran(D) € Lat,, @ if and
only if

(1) thereexists m=1suchthatd;=0 forall0<i<mbutd;#0 fori=m,

and
(2) forall x,ye 3,
o k 2
D 2 Ax, ey, ep_idhgi| <o,
k=0|i=0
where
N, = (d;/d)(Br/BiBr-i) if k=i=m,
ki= .
0 otherwise.

Main Results

If Q is a unilateral weighted shift with weight sequence (w;), then Q has the
same range as the diagonal operator

[0 0 0
0 Wy 0
0 0 Wi
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We will see that a necessary condition for the range of a diagonal operator
D =diag(0,d,,d,,...) (d; # 0 for i = 1) to be invariant under the commutant
of a strictly cyclic weighted shift Q is that ran(Q) Cran(D). If Q is strongly
strictly cyclic—that is, if for all i = 0 the unilateral weighted shift with weight
sequence (W;, Wj,1, Wi42,...) is strictly cyclic—and if the sequence (w;) is
monotonically decreasing, then we will see that ran(Q) C ran(D) if and only
if the range of D is invariant under @. The following theorem completely
categorizes the ranges of diagonal operators invariant under the commutant
of such weighted shifts.

THEOREM 1. Assume Q is a strictly cyclic weighted shift with posiiive
weight sequence (w;), and let @ be the commutant of Q. Let D =diag(d;)
be a diagonal operator such that d;=0 for all 0<i<m but d;>0 fori=
m = 1. Each statement below implies all the statements that follow it:

(1) ran(D) e Lat, @;
(2) forall x,ye 3C,

%
k=0

2

k
DX, ey, ep_ i Ihi| < oo,
i=0

where
- (d;i/di) (B /BiBx—-i) If k=iz=m,
ki = e
0 otherwise,
di Biyj
3) sup —— — < oo;
i=m ditj Bib;
ji=0
(4) ran(Q™) Cran(D) and the range of D is invariant under Q.
Furthermore, if Q is strongly strictly cyclic with a monotonically decreasing
weight sequence, then the previous are equivalent.

Proof. That (1)=(2) follows immediately from Lemma 3. To see that (2)=
(3), note that the map

w ¢ k
(x, )~ {‘2 {x, ey, ek—i>)\ki}ek

k=0Li=0
is bounded bilinear and thus there exists a constant y such that

d, B (&
a‘s‘ ,BrBs—r = kgo{ig()(en ei><es—ra ek—i>)\ki}ek <v
for all s =r =m. To see that (3)=(4), let j =1in (3) and choose vy such that
d: Bi+l
<7
diy BBy
for all i = m. It follows that
d,-W,
< WoY
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for all i = m, so Dy 'QD is bounded and the range of D is invariant under 0.
If one lets i = m in (3) and chooses v such that

dm Bm MPm+j
<
m +Jj ﬁm 6_/

for all j =0, then by rearranging terms we see that

w’n+._l...w.
J J < o0,

jipo dm+j
that is, that Dg'Q™ is bounded. It follows that ran(Q™) C ran(D). Finally,
assume that Q is strongly strictly cyclic with a monotonically decreasing
weight sequence (w;), and with no loss of generality assume that wy=1. It
follows that ¢ is a weak Hilbert-Schmidt map (by Lemma 1), and by Lem-
ma 2 it suffices to prove that (4) implies

k
sup 3 [N\il? < eo.
k=1i=0

Since Q is strongly strictly cyclic, the weighted shift with weight sequence
(Wis Wi 15 Wins25 -+ ) 18 strictly cyclic. Let v;=w,,,;, ag=1, and let o} =
Vg Ug_ for k=1. It follows that

k 2
Ok
sup [ ] <o,
k=1i=0 &Cf—i

which implies that

k—m 1 2
sup Y, [ B ] < 0,
k=2mi=m| Wk=1"""Wk—m BiByx—i

To see the last implication note that

_ 2 _ 2
kE’"[ 1 Br ] _ 1 "22'"[ O —2m ]
i=m| Wk=1""Wk—m BiBr—; Wip—1"Wo i=0 | ®iOQk_2m—i

If £ =2m, then

d B 7
wi=3 g
EI kI i=m dk ﬁfﬁk i
"M k- W1 W :]2 = ”’[di Bk ]2
=1+ +
i§1|: dy  Wo Wiy p dy BiBr_i

If 1<i<m~—1, then Q' leaves the range of D invariant, which implies that
Ar—i Wr_1""* Wi

sup < oo,
k=2m dx W -Wi_;

m—lrd, . 2
k—i Wig—1°""Wg_
sup [ 3 Lk ’] < o,
k=2mi=1 k Wo Wi

and hence

Since ran(Q™) C ran(D), there exists a constant y such that
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1
dy Wiy Wi_pm
for all k= 2m. It follows that
k—m d; Bk 2 k—m 1 Bk 2
su —L < (|D]v)? su < o0,
ng-)m igm[dk ﬁiﬁk—i] (" "'Y) k22p,,1,'§,,|:wk_1 o Wiom Biﬁk—l:l
This completes the proof of the theorem. ]

COROLLARY 1. If Q@ is the commutant of a strongly strictly cyclic weight-
ed shift Q with a monotonically decreasing weight sequence, and if D=
diag(0,d,, d,,...) with d; #0 for i =1, then the range of D is invariant un-
der Q if and only if ran(Q) Cran(D).

Proof. This is an immediate consequence of Theorem 1 and the fact that
ran(Q) Cran(D) implies the range of D is invariant under Q. 1

COROLLARY 2. If Q@ and Q are defined as in Corollary 1 and D is a diago-
nal operator, then ran(D) € Lat,,, @ implies ran(D) € Lat, Q.

An Example and Questions

In the search for an element of Lat,/, @ that is not in Laty, @, Corollary 2
tells us where not to look. On the other hand, the proof of Theorem 1 sug-
gests that we might have some luck investigating the ranges of diagonal op-
erators invariant under the commutant of a strictly cyclic weighted shift O
that is not strongly strictly cyclic. An example is given in [4] of a sequence
(wg, Wy, ...) such that the associated weighted shift is strictly cyclic, but the
weighted shift with weight sequence (w,, w,,...) is not strictly cyclic. With
this sequence, we now construct an example of a diagonal operator that sat-
isfies condition (4) but not condition (1) of Theorem 1.

EXAMPLE 1. Let (wg, wy,...) be a monotonically decreasing null sequence
of positive numbers such that the weighted shift Q is strictly cyclic but the
weighted shift with weight sequence (w,, w,, ...) is not strictly cyclic (see [4]).
We will construct a diagonal operator D =diag(0, d,, d,, ...), with d; # 0 for
i =1, such that ran(Q) Cran(D) but ran(D) ¢ Laty, @, where @ is the com-
mutant of Q. .

The fact that Q is strictly cyclic but the weighted shift with weight se-
quence (wy, w,, ...} is not strictly cyclic implies that

k 2
sup Y, [ B ] < o0

k=1i=0| BiBrk—i

but

Choose k; such that
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k1—1

2< ) L

Bk,

|

i=1

Wk —

]2.

1 BiBk i

Since (w;) is a monotonically decreasing null sequence,

Bn

lim 1

=0.

n—oo Whp—1 Bklﬁn—ki
Thus we may choose &k, > k; such that

2
[ 1 Bk, ] <1
Wiy—1 Bk, Bhy—k,
and )
k2l B
22+1< [ 2 }
igl Wk, —1 BiBry—i

It follows that
ka—1

hX
i=1
ik

ky—1

5|
|

1 Bk,
Wiy—1 BiBky—i

1 B,
Wiy—1 BiBky—i

2
] —1>22

I\

|

2
] >
Having chosen k,,_; such that
km-1-1

i=1
i#kjvj<m—1

1 Bkm—l
M;km-—l_1 Binm—l_i

2"1—1 <

choose &, such that

1 Bk 2 '
o < — =1,...,m—1
[ka—l 6k,-6km—kj] m—1 ( )
and - ) )
m-ll Bk
21 1< i .
El [ka—l Bi.Bkm—i]

Now let D =diag(0, d,, d3, ...), with d; = wy;—1if i = k; and d; =1 otherwise.
It is obvious that ran(Q) Cran(D), and

g[ﬂ Br; ]2> g [ di B ]2
i=1 dkj Binj—l i=1 _dkj Biﬁkj—i
izk,
kT 1 Bkj 2 i
= >27,
,'2::1 | Wkj—1 5i3k,~—i]
ik,

so ran(D) ¢ Lat, @ by Lemma 2. 3

QUESTION 1. Is the range of the diagonal operator constructed in Exam-
ple 1 invariant under @?

An affirmative answer to Question 1 clearly gives an example of an invari-
ant operator range of @& that does not induce a completely bounded homo-
morphism.
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QUESTION 2. Let Q be an arbitrary unilateral weighted shift (with a non-
zero weight sequence), @ the commutant of Q, and D = diag(d;) a diagonal
operator such that d;=0 for all 0 <i<m but d;>0 for i = m=1. What (if
any) part of Theorem 1 generalizes to this setting?

Our comments concerning the unilateral shift S at the beginning of the pre-
liminaries say that D is invariant under the commutant of S if and only if
ran(S") Cran(D). This suggests that there might be a general connection
between the invariance of ran(D) under the commutant of Q and the range
inclusion ran(Q") C ran(D).

10.

11.
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