CURVES LENGTH-MINIMIZING MODULO » IN R”

Jeff Abrahamson

Introduction. Several vertical pegs inserted between two horizontal glass plates
can bound strips of soap film which have certain length-minimization properties.
Such strips often meet in threes at new junctions distinct from the original peg
boundaries. The possibility of such junctions makes the problem of finding the
film with a given peg boundary less tractable. Such triple boundary points can be
studied conveniently using arithmetic modulo 3. In particular, Taylor [6] studied
certain soap film singularities by classifying the singularities of area-minimizing
2-dimensional surfaces modulo 3 in R”

A general theory of surfaces modulo v, for any positive integer », has devel-
oped and been applied in more classical settings ([4], [7]). Yet for general posi-
tive integral » there have been no complete classifications of singularities, even
in the 1-dimensional case of curves length-minimizing modulo » (defined below).
(While a necessary condition on the interior has been known for some time [1],
no sufficient condition was known.) We characterize both the interior and the
boundary singularities (Theorem 4 below).

THEOREM. A set of unit vectors with tails (resp., heads) at a common point,
say the origin, minimizes length modulo v if and only if the sum of the vectors
has length less than or equal to v — N, where N is the number of rays comprising
the cone:

N
E U; <v—N.

i=1

We begin by showing that the necessary condition on the interior derived from
a first variational argument is sufficient as well. Then, by considering points on
the boundary as interior points of other curves, we extend our theorem to the
exterior.

As immediate corollaries, we have the following.

COROLLARY. Let v=3. If N=2, the cone is length-minimizing if and only if
|ty +uy| < 1. A cone length-minimizing modulo 3 with 3 rays is planar and equi-
angular.

Thus, a cone with 2 rays is length-minimizing modulo 3 if and only if the angle
between the two rays is greater than or equal to 2x/3. Three rays is the case of
singularities arising from soap films between parallel plates.

COROLLARY. Let v =4. The only nontrivial case is N =3, and it follows from
the condition |u,+ u,+us| <1 that a cone in R? with 3 rays is length-minimizing
modulo 4 if and only if no included angle exceeds .
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The necessary condition on the interior is well known in a broader context
by the methods of geometric measure theory; the results here, however, rely on
much simpler methods. The sufficient condition, as well as the necessary condi-
tion on the exterior, are to my knowledge new and have not appeared before.

The first section of this paper contains definitions. Section 2 gives a complete,
but surprisingly simple, classification of singularities.

The Undergraduate Research Opportunities Program (UROP) at MIT provided
partial support for this research. The work was carried out under the supervision
of Frank Morgan, who, along with Eric Lander, provided invaluable assistance.

1. Definitions. A curve is a finite collection of nonconstant, continuous maps
with positive integral multiplicities of the unit interval into R”._We call a com-
ponent map of a curve a basic curve, and we call the curve linear if each of its
basic curves is linear. In addition, we will allow ourselves the slight abuse of no-
tation and refer occasionally to a segment of a linear curve as a synonym for a
basic curve. (So as not to worry about the parameterization of curves, we will
assume that linear curves are parameterized linearly. It will be clear that our re-
sults are invariant under certain changes of parameterization.)

Given a curve, we assign to each point in R” a (boundary) multiplicity equal
to the number of times it occurs as the image of one minus the number of times
it occurs as the image of zero (cf. Figures 1 and 2). Notice that a point can occur
with multiplicity zero. (In fact, only finitely many points may have nonzero mul-
tiplicities.)

+/

+/
Figure 1 The least length directed curve joining three points.

Let P be the free Z module whose basis is the set of points in R”. The boundary
of a basic curve fis f(1)— f(0) (as an element of P). The boundary of a curve
is the sum of the boundaries of the basic curves counted with multiplicity. Two
curves have the same boundary modulo v if the difference of their boundaries
is in »P. Note that the definition of boundary is equivalent to stating that the
boundary is the set of points with boundary multiplicity not equal to 0 modulo ».
It thus insists that the boundary be finite (and thus bounded as well).

The length of a curve is the sum of the lengths of each of its component maps
times the multiplicity of the map. We may now define a curve to be length-mini-
mizing modulo v if there is no curve with the same boundary modulo » having less
length. The existence of such curves follows easily from a compactness argument.
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Figure 2 A curve length-minimizing modulo 3 with the same boundary
modulo 3 as in Figure 1.

Our interest is to determine the conditions under which a given curve is length-
minimizing modulo ».

We define a node to be a point in the image of {0, 1} with boundary multiplicity
an integral multiple of » (cf. Figure 2). A cone is a curve composed entirely of
unit rays all beginning or all ending at the origin.

2. Classification. Clearly, if a curve is length-minimizing then every subset of
it is as well. Moreover, no curve (of positive length) without a boundary can
be length-minimizing. In fact, only linear curves may be length-minimizing. We
should note that, according to our definition, a curve with a node at the origin
and boundary on the unit circle composed both of segments directed in and of
segments directed out does not minimize length modulo », except in the trivial
case that they all lie in a line. For otherwise one segment directed in and one di-
rected out may be replaced by a single, shorter segment.

An important condition for length minimization is that the tangent cones to
the nodes be length-minimizing.

LEMMA 1. A cone of kv (k> 0) segments is length-minimizing modulo r only
if k=1.

Proof. If k#1, then some subset of » segments would lie in a halfspace not
containing the node, violating our assumption of length minimization. ]

The following fundamental lemma leads the way to our main result, Theo-
rem 4.

LEMMA 2. Consider a cone C centered at the origin with unit rays designated
by uy, u,, ..., uy (see Figure 3). If C minimizes length modulo v, then |37 u;| <
v —N.

Proof. Let C’(t) be the linear curve with the same boundary as C, except with a
node at some point = = ¢7 (¢ # 0, 7 an arbitrary (unit) vector) and assigning the
boundary multiplicity » — N to the origin (see Figure 4). Let /(¢) be the length of
C’(t). Then /(0) denotes the length of C itself, and

N
I(t)=@—=N)|tr|+ X |u;—t7]

i=1

N
=(w—N)t+ [u;2—2tr-u,-+t212]1/2,

i=1
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Figure 3 The original cone in Lemma 2.

ﬁ\

Figure 4 The new structure formed in Lemma 2.

Taking one-sided derivatives,
N 27 -u; — 2172

I')=(w—N)— .
()= ) El 2(1—2¢7-u; +t272)1/2

Thus, N
I'Q)=w~—-N)— X 7-u;

i=1
N
=(w—-N)—7-> u;.
i=1
Since 7 was arbitrary, let us choose it so that 7 is parallel to ¥ u;. Then //(0) =
(v —N)—|X u;|, which is greater than or equal to 0 by hypothesis. O
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Where N = » (a node), the cone is length-minimizing modulo » only if
|=N_;u;|<0. Thus, in order for a cone to be length-minimizing modulo » it is
necessary that the vector sum of the rays equal 0. In fact, it is sufficient as well.

THEOREM 3. If N = v then the cone is length-minimizing modulo v if and only
(fE U; = 0.

Proof. By Lemma 2, a zero vector sum is a necessary condition for minimiza-
tion modulo ». ‘

To show sufficiency, consider a length-minimizing comparison curve C. We
may assume C is linear. We shall begin by showing that C has at most one node,
which then must be at the center. For the sake of the following discussion, con-
sider a boundary point of multiplicity d as |d| separate boundary points.

Clearly, we may assume that C contains no circuits. If C has m nodes (m=2),
then at least two of them must have only one segment (of arbitrary multiplicity)
not extending to the boundary, for otherwise C would contain some circuit, con-
trary to our hypothesis. Furthermore, since no segment may have multiplicity
greater than or equal to »/2, each of these nodes must have segments extend-
ing to more than »/2 boundary points. Together, then, they must extend to more
than » boundary points. C, however, has only » boundary points, so it may not
have even two nodes. Therefore, C has exactly one node.

To show that the one node must be at the center, let us consider creating the
comparison curve C by moving the node from the center along the x-axis (as in
Lemma 2). Then the vector sum of the rays will have a negative x component that
can only equal 0 when the node is at the origin. Since the initial orientation of the
cone with respect to the x-axis was arbitrary, C is the original cone. O

We thus have a necessary and sufficient condition on the interior points for any
curve to be length-minimizing modulo ». Moreover, it follows immediately that
any boundary point which is the junction of N >» segments cannot minimize
length modulo ».

We generalize our theorem to all exterior points as well with our main result.

THEOREM 4. Given a cone of N segments (counting multiplicities), it is length-
minimizing modulo v if and only if |$M.;u;|<v—N.

Proof. By Lemma 2, if the cone is length-minimizing then |2/, #;|<v—N.
To prove the converse, suppose |2/ u;| < v— N. If N3 v —1, then some set of

v — N vectors will satisfy
N

14
2 u=— % u.
i=1 i=N+1

Then the » vectors form a cone. Furthermore, X 7_; #; = 0, and so the cone is
length-minimizing. Moreover, any subset of it is length-minimizing as well, and
in particular our original cone.

If N=v»—1, on the other hand, then consider the cone created by doubling the
multiplicity of the original cone. Clearly
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2N N
Yu| =2 Y u|<2(v—N)=2r—2N.
i=1 i=1
Thus, it is length-minimizing modulo 2». By the following lemma (Lemma 5),
then, so is the original cone modulo ». 1

LEMMA 5. A cone is length-minimizing modulo v if the cone with all multi-
plicities doubled is length-minimizing modulo 2v.

Theorem 4 provides us with a local characterization of all curves which mini-
mize length modulo ».

Our results for curves defined as finite collections of images of the unit interval
actually give a complete description of the interior and boundary singularities in
the general class of length-minimizing flat chains modulo » with finite boundaries
in R”. (For definitions and examples see [2, §4.2.26] and [3].) At an interior singu-
larity, a length-minimizing flat chain modulo » can be viewed as a stationary vari-
fold with integer multiplicities. Work of Allard and Almgren [1, §5] shows that
such singularities are isolated points where a finite number of line segments meet.
Hence, our results apply. At a boundary singularity, say the origin, adding to the
varifold its image under the map x — —x yields a stationary varifold. Again, by
[1, §5], the stationary varifold —and hence also the original one — consist locally
of a finite number of line segments, and our results apply.
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