A NEWLANDER-NIRENBERG THEOREM
FOR MANIFOLDS WITH BOUNDARY

David Catlin

The Newlander-Nirenberg theorem [7] states that if M is a manifold with an in-
tegrable almost complex structure, then M is actually a complex manifold. Thus,
about any zo € M there exist coordinate functions z, ..., Z, such that the almost
complex structure defined by z,, ..., 2, coincides with the given almost complex
structure on M. If M is a manifold with smooth boundary such that the almost
complex structure extends smoothly to the boundary, then it is natural to ask if
the assumption of integrability still implies the conclusions of the Newlander-
Nirenberg theorem. Hill [4] has constructed counterexamples showing that such
a theorem does not hold in general. In this paper we show that the analog of the
Newlander-Nirenberg theorem does hold if the boundary of M is pseudoconvex
near Zg.

We now state precisely what we mean by an almost complex structure that ex-
tends smoothly to the boundary. Suppose that M is a manifold of real dimension
2n with smooth boundary, and let U be a neighborhood in the relative topology
of M of a given boundary point z,. We shall say that an almost complex structure
is defined in U if there exists a subbundle £ of fiber dimension n of the complexi-
fied tangent bundle CT(A7) such that for each z € U, £, N &£, =0. The structure
is said to be integrable if £ is closed under brackets; that is, if L’ and L” are arbi-
trary sections of £, then [L’, L”] is again a section of £.

‘Observe that if N is a smoothly bounded complex manifold, then the bundle
T'1.9 of holomorphic tangent vectors defines an integrable almost complex struc-
ture which is called the complex structure of N. To show that M possesses a com-
plex structure, it suffices to construct, in a neighborhood U of each point z, € M,
a set of smooth functions fi, ..., f,, with linearly independent differentials such
that each function f; is “holomorphic” with respect to the almost complex struc-
ture, that is, such that L f; =0 for every section L of £. In fact, if we view f=
(f1, ---» ) as a coordinate map into C”, then the bundle £ satisfies f, £ =719,
which is the complex structure of C”. Thus near z, we may view M as a complex
manifold with smooth boundary.

On an integrable almost-complex manifold, the usual d-formalism carries
through with no changes. If ££ denotes the p-fold product £,®---@® L., then
AZ-? is the space of alternating tensors on £2@ £7. Because of the integrability
assumption, it follows that if w is a section of A”*? then dw can be written as a
sum ow + dw, where 0w € A?*+1.9 and dw € A?-9+!. From this one also obtains the
familiar identity d-9 = 0.

Now suppose that r(z) is a boundary-defining function for M. This means that
r<0onM, bM={zeM;r(z)=0}, and dr(z) # 0 when z € bM. We say that bM
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is pseudoconvex if the form ddr(L, L) is nonnegative for all L e £,NCT,(bM),
z € bM. In this paper we will prove the following result.

THEOREM. Let M denote a 2n-real dimensional manifold with smooth bound-
ary. Let zy be a given point in bM and suppose that there is a neighborhood U of
zo such that MNU has an integrable almost complex structure that is smooth
up to the boundary bM N\ U. Suppose further that, with respect to this structure,
bM NU is pseudoconvex. Then there exist a neighborhood U, of zo with U,Cc U
and functions fje C*(U,), j=1,...,n, such that 3f;=0, j=1,...,n, and such
that the differentials of f; at zo are linearly independent, j=1,...,n. Thus, M is a
smoothly bounded complex manifold near z,.

Proof. The main idea is to adapt the proof of Theorem 5.2.10 of Hérmander
[5], which is the result of Grauert that if a complex manifold admits a strongly
plurisubharmonic exhaustion function, then it is a Stein manifold; in particular,
there are globally defined functions which form a local coordinate system near
any given point. In our case the point in question will be in the boundary of
an integrable almost complex manifold. Since Hormander’s proof is based on
weighted d-estimates, it must be modified so that the solutions of the d-equation
are smooth up to the boundary. This means we must combine Hormander’s proof
with Kohn’s proof of the existence of smooth solutions (up to the boundary) of
the d-equation on pseudoconvex domains [6]. Since this was already done by the
author in [3], we will not need to prove any new d-estimates.

The first step is to show that we can replace the local assumption that bM is
pseudoconvex near zo with the stronger assumption that M is smooth and pseu-
doconvex everywhere. To do this, we first choose a sufficiently small neighbor-
hood U of z3, where we can easily construct a smooth strictly plurisubharmonic
function A on U (this means that dd\ is a positive definite form on £, z € U). We
can also assume that a smooth Hermitian metric is defined in U N M.

Let r(z) denote any defining function for bM in U. The argument of Range
in [8] applies without change to the case of an integrable almost complex man-
ifold to show that, for suitably chosen positive constants ¢ and 5, the function
—e ~M—r)7is a bounded strictly plurisubharmonic exhaustion function in M NU.
By using this function in the same way as in the lemma in §4 of Bell [2], one ob-
tains the following proposition (this result was first obtained by Amar [1]).

PROPOSITION 1. There exists a neighborhood V of zo (in the relative topology
of M) such that V C C U, and such that if N=V N\ M then N has smooth pseudo-
convex boundary. Thus N is a small open subset of M N\ U such that its boundary
is smooth and pseudoconvex and coincides with the boundary of M near 2.

By working on the manifold N, we can apply the machinery of the -Neumann
problem and obtain smooth solutions of the d-equation. For any f e L2(N), we
define the weighted norm

(1) If]2 = §N |fPe~*av,
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where ¢ is a smooth function on N and dV is the volume form of the metric on
N. If we assume that the neighborhood was chosen to be sufficiently small, then
we can assert that there exist smooth sections Lq, ..., L, of £ on N such that at
eachzeN, L, ..., L, form an orthonormal basis of £,. Let wl, ..., w” denote the
corresponding dual basis of AL9, For a =X} _; ax@*, we define

@ leef2 = jN k§l|ak|2e—¢dv.

We perturb A somewhat so that it satisfies d\(zg) # 0, N (z¢) =0, and so that A
is still smooth and strongly plurisubharmonic on N. Let x(7) denote a convex
function such that x(n) =0 for n <0 and x(n) > 0 for > 0. For arbitrary parame-
ters s, ¢, and b, define

(3) @s,1,5(2) =SN2Z) +tx(NMz)— D).
We may assume that U was chosen to be sufficiently small so that there are smooth
coordinates (xj, ..., X,,) defined on N. (Thus N is diffeomorphic to a smoothly

bounded domain in R2?%) With respect to these coordinates we define weighted
Sobolev norms for any nonnegative integer m by

"fl;zn,s,t,b= E "Daf”gzos,,’bs

|a|=m

where

alel
D¢ = .
o [0
ax {1+ 9x352n

Similarly, if g=X%_; gx@* then
n
rzn,s, b= > X "Dagk"is,,,b-

la|=m k=1

lel

Let H™(N) and H{ ;,(/N) denote the spaces of functions and (0, 1)-forms re-
spectively, such that (1) and (2) are finite.
In Proposition 2.2.3 of [3], the author proved the following result.

PROPOSITION 2. Let N be a smoothly bounded manifold that admits an inte-
grable almost complex structure. Suppose that bN is pseudoconvex and that there
exists a smooth strictly plurisubharmonic function \ on N. Suppose that ¢, p, is
defined as in (3) and that the function x used in (3) is C™+2, Then there exist con-
stants s(m) and C,, such that if s =s(m) and t =0, and if g is a 3-closed form in
H{ 1y(N), then there exists a solution ue H™(N) of du =g that satisfies

“ )2 5.0 6=<Cn(1+s+1)*"|gl% 5.1,

The solution u#, which depends on the choice of s, ¢, and b, is the d-Neumann
solution corresponding to the weight function ¢, , ;. We wish to point out that
Proposition 2.2.3 of [3] was actually only proved when N is a smoothly bounded
complex manifold and when x is smooth. However, by inspecting the proof, it
can be easily verified that the proof only requires that N have an integrable almost
complex structure. Similarly, the proof of (4) only involves derivatives of the
weight function ¢y , , up to order m+2. Thus it suffices to choose x e C"*2(R).
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Holomorphic coordinates are used in Hormander’s argument in [5]. Of course,
we do not yet know if they exist in a neighborhood of z,, but we can prove that
they exist up to infinite order at z,.

PROPOSITION 3. There exist smooth functions ¢ (z), k=1, ..., n, defined in a
neighborhood z,, such that the forms 3¢y, k =1, ..., n, vanish to infinite order at
Zo, and such that the differentials of ¢y, ..., $, at o are linearly independent.

Proof. Suppose by induction that for a given positive integer m we have found
coordinate functions ¢(z), ..., {,(z), defined for z near z, and which map z,to
the origin in C”, and vector fields L1, ..., L}, also defined near z,, such that: (i)
for all z, Li(z),...,L,(z) form a basis of £,; and (ii) in the {-coordinates, each
vector field L} can be written as

. 0 J J
LJ ag’_] +:§—:la (Z) ag—: +1§1b (g‘) aft

where the functions a’ and bJ , I, j=1,...,n, vanish to order m at the origin in
C". (This is trivial when m —1 .) It follows that if L is any section of £, then the
coefficient of d/d¢; in L must vanish to order at least m.

Since £ is integrable, it follows that [L{, L}] is a section of £. If we let b~’ de-
note the terms of order m in the Taylor polynom1a1 of bf at the origin, then mod—
ulo terms of order m or more, the coefficient of 8/3¢; in [L}{, L}] equals

d »; 0

bi— %
as; ' 9%
which must vanish identically since it is of order m—1. It follows that for each
I=1,...,n, 27_, E,‘d(‘i is a d-closed (1, 0)-form in C?%, and therefore there exists
a smooth function g; that satisfies

g i .
=b/, i=1,...,n.
as; !

We may assume that the function g; is homogeneous of degree m+1. In fact the
homogeneity of b} implies that the Taylor series of g, contains no term of the
form {*§{# with |a+B|# m+1and a0, and we may obviously discard from g;
all terms of the form ¢#.

Thus we have shown that, modulo terms of order at least m+1,

by,

d n ag, d
Li=—+ —+
AL 12=:1 as; 9y
Now define coordinates wy, ..., w,, by

wj=§‘j_gj(g‘)’ j=19-“:n
In the w-coordinates, the vector field 6/65‘,- can be expressed as

n aw, -1 J, .
gl 3% (5w ))——wj+gl 3% (&~ Y(w ))——_
_ 9 K9 ., & 98,
= gl as“,“ (w ”—w,- 5_;1 3%, (& (w ))a_,
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which modulo terms of order at least mz+1 equals

d noag; m0g;
L (w )——-- E L (W) ——
aw,- j=10%; ow; 1 9&; 6wj

since { ~!(w)=w+terms of order m+1. Slmllarly, the vector field

ag;

()=

as;i s“
modulo terms of order m+1, transforms into

ag;

= ( )

ow 6w,

We conclude that, modulo terms of order m+1,
L= _i_ & ag; d
aw; = Ow; dw;
Now set
n o 0g;
L” Lr+ E J L,’.
i=1 i

Then the coordinates wy, ..., w, and the vector fields L}, j=1,..., n, obviously
satisfy properties (i) and (ii) with respect to m+1. By induction we obtain, for
each m=1,2, ..., coordinate functions ¢/, ..., ¢ and vector fields LY, ..., L},

defined near zo, Wthh satisfy (i) and (ii). Since ¢ *! differs from §}” by terms of
order m+1, it is clear that the formal power series of ¢/ converges to a formal
power series ¢ as m approaches infinity. By the classical result of Borel, there is
a smooth function {;(z) defined near z, which has this as its series. Since {; — {}"
vanishes to order m+1, we see from (ii) that L}’ §; vanishes to order at least m at
zo for j, k=1, ..., n. Hence (i) implies that if L is any section of £, then Lt‘j van-
ishes to order m at z,. This holds for all m, so we conclude that L{; vanishes to
infinite order at zy. This completes the proof of Proposition 3. O

It is now a matter of adapting Hormander’s argument in [5]. Recall that
dN(z9) # 0 and A\ (zp) =0
If we work in the coordinates ¢, ..., {, given by Proposition 3, then X satisfies

Mz(s“))=Re< 3 a5+ ) a,,m“,)+ S ¢ GE+0(P).

iJj=1 i j=1

Without loss of generality we may assume that a,, 7 0. Since \ is strictly plurisub-
harmonic, it follows that [c; ;]1, 1=<i, j <n, is positive definite. Define new co-
ordinates w=(w;, ..., w,) by w;=¢;, i=1,...,n—1, and

2 ajg‘j+ 2 aljg.tg‘j

i,j=
It follows that if w is close to the origin, say |w|< g, then

) Aw)—Rew,=c|w|?, |w|<bo,

for ¢ a small constant.
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Let ¥(n), n€ R, and denote a smooth real-valued function satisfying v(n) =1,
"7<1 and 1//(71) =0, n=2. Define ¥, (w) =y(7|w|). Foralli=1,...,n and 7=
2647}, set gl=3v!, where

/ 2
vi(w) =V, (w)w;edT" 108,

and where A is a positive constant still to be chosen.

We want to choose a weight function in the form ¢; , ; to obtain a solution of
du=g!. Set m=n+2 and define x(n) =5"*3, =0, and x(y) =0, n<0. Thus
x € Cm+2(R). With this choice of x, we deﬁne qos,t,b as in (3). We set s =s(m)
(the constant occurring in Proposition 2), t = ¢(7) = 7, where M =2m+9, and
b=b(r)y=5772, where c is the same constant occurrlng in (5). Now set ¢o(7)=
®s(m), 1), b(r)- Let u; denote the solution of du = g; given by Proposition 2 for this
choice of the weight function.

We first study how rapidly | g,fllv,(,) approaches zero. Define

= {z € N; w(z) satisfies |w|< 7~Tand AN(w) < §772}.

The inequality (5) implies that if z e IT; then

IeA(TZIOg T)Wn, < T(AC/Z).

Since |w|< 7 ~!implies that ¥,(w) =1 and since all of the derivatives D%dw;, i=
1, ..., n, vanish to infinite order at the origin, it follows that
suplD"‘gﬂz < g —2+Ac
Iy
holds for any positive integer /. Finally, ¢(7)(z) = ¢(0)(z) for all 7=0 and ze
N. Thus ¢(7) is bounded below by —D for some constant D. This means that
supy e ¥ < el for all 7. We conclude that for any positive integer p and for all
a, la|=m

6) §n |D%giPe ¢ dV<7"P, 7 large.
1

|| = m,
[

Define
II,={ze N; \Nz) <5772, 7 1= |w(z)]].
For z €I1,, it follows that
S72=NMz(w))=Rew,+c|w|?=Rew,+c772,
so that Re w,, < —57 2. Hence
!eA(Tzlog r)w,,, < 7—(cA/2).

The derivatives of the terms in dg’ which involve dw;, i=1, ..., n, obviously
vanish to infinite order at z,, and so these derivatives can be estimated exactly as
above. The only term left in dg/ comes from the term containing d¥,. Derivatives
of order m of this term are of size 72+ Thus we conclude that if |«|=m then

(7) S |Dag£|26 —e(7) gy < Crp2m+2—cA-2n
;

Finally, set
II;={zeN;\z)= ST,
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Since ¥, is supported in |w|=<27~1, it follows that Re w, <27 ~! on II5. Hence

IeA(Tzlog r)w,,' < eZArlogT

holds on II;.
We conclude, as in the case of Il; and II,, that
(8) sup]Dag;'IZ < 7.2m+262A‘rlog‘rSe‘rz,

II; |a|l=m

provided that 7 is sufficiently large (for any fixed choice of 4). On the other hand,
the choice of b(7) means that

—2\m+3
infga('r)zc’<074 ) ™

I

> CIITM—(Zm+6) — C”T3.

Hence, if |a|<m, we obtain from (8) that
©) SH |Dgi|2e~#") gV < Ce™>~<"",
3

which goes to zero extremely rapidly as 7 approaches infinity. We conclude from
(6), (7), and (9) that

2 "Dag;"sa(r) < C7_2m+2—cA—2n.

|a|=m
Proposition 2 implies that u satisfies
(10) I ]E ”Dau;'"?p(r) < C1_2mM+2(m—n)—cA+2.
al=m

In order to estimate |uie —"2¢(7]|,,, it suffices to estimate (Dul)(DBe—":#(1)
for all «, B with |a|+|B| =< m. From the definition of ¢(7) it follows that

|Dae—1/zga(7)| < CTM|Ble"V2‘P(T) < CTMme—l/Z‘P(T)

if 7 is large. Hence
11) SN|Dau;|2ID6e—'/w(r)|2 dV < Cr2Mm SNIDau;'Ize —e(1) gy,

We conclude from (10) and (11) that
”uie —Vap(r) ";211 < CT4mM+2(m—n)—cA +2.

If we choose A4 so that A >c Y (4dmM+2(m—n+1)), then it follows that

lim |ule="¢™|2 =0
Recall that m=n+2> %(2}1) + 1. Thus the Sobolev lemma implies that the value
of ule ="*¢'") at z,, as well as its first derivatives at z,, tend to zero as 7 approaches
infinity. Since ¢(7)(zo) = 0 and since all the derivatives of ¢(7) at z, are bounded
independently of 7, we conclude that
lim |D%ui(z0)|=0, |a|=<I1.

7 — 00
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If 7 is sufficiently large, say 7= 7y, it follows that the functions f; = vﬁo—uio,
i=1,...,n, satisfy df; =0, are in H,,(N), and have linearly independent differen-
tials at z,.

All that remains is to show that any function f e H,,(N) satisfying df =0 can
be approximated in the H,,-norm by a function h € C*(N) satisfying a4 = 0. The-
orem 3.1.4 of [3] gives exactly this result. However it is stated and proved under
the assumption that N is a smoothly bounded complex manifold. The proof can
be easily modified to work when N is a smoothly bounded manifold with an in-
tegrable almost complex structure. In fact, it is easy to construct a smooth 1-pa-
rameter family of smooth maps Ps: N — N such that Py is the identity map and
the image of N under P; is contained in N for all 6 > 0. Now set f5(z) = f(P;s(z)).
Since the Newlander-Nirenberg theorem holds in the interior of V, it follows that
f is smooth in the interior and therefore that fse C*<(N) for all 6 > 0. Since Py is
the identity and f e H,,(IN), it follows that lim;_, | df5|, =O.

After using this new definition of f;, the proof of Theorem 3.1.4 of [3] goes
through with no other changes.

Thus each function f; can be closely approximated in the H,,-norm by #k;e
C*=(N). The Sobolev lemma implies that the differentials 4; at zy, i =1, ..., n, will
still be linearly independent. This completes the proof. ]
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