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1. Introduction. Let £(3C) denote the algebra of all bounded linear operators
on a separable infinite-dimensional complex Hilbert space JC. Let A= (A4, ..., 4,)
and B = (B, ..., B,;) denote n-tuples of operators and let R = R 45 denote the ele-
mentary operator on £(JC) defined by

n
R(X)= > A;XB;.
i=1
Let § denote a 2-sided ideal of £(3C) (g # £(3C)). The purpose of this note is to
draw attention to the range inclusion problem for elementary operators, which
asks for a characterization of the structure of an elementary operator R 45 whose
range is contained in g,

(1.1) Ran R, C 4.

(We note that if g {0}, then it is impossible to achieve the identity Ran R 45 =
9, this is because each nonzero ideal contains &F, the ideal of finite rank opera-
tors, and if & C Ran R,4p, then Ran R4 5= £(3C) [2, Thm. 2.3].)

It is easy to illustrate sufficient conditions for the range inclusion (1.1). If for
each i, A;e § or B; e g, then clearly (1.1) holds. This condition is not, however,
necessary for range inclusion, as shown by the following.

EXAMPLE 1.1. For 1 =p =, let C, denote the Schatten p-ideal [5, p. 91].
Suppose 1< p,g <o with 1/p+1/g=1, and let Ae C,\ €, and Be C,\ Cy; then
for every X e £(3C), AXBe C, [5, p. 92]. '

For T e £(3C), let s(T) denote the sequence of s-numbers of T [5, p. 59]; in
the case when T is compact, the s-numbers are the eigenvalues of (7*7T)Y2 ar-
ranged in decreasing order and repeated according to multiplicity. For an ideal
9, let J denote the ideal set of § (see, e.g., [3; 6; 7; 8]); thus T e § if and only if
s(T) e J [3; 8]. For example, if §=C,, thenJ=/, (1 <p=<o). The range inclu-
sion (1.1) for n» =1 has been characterized by Loebl and the author [3] as follows.

THEOREM 1.2 [3, Thm. 5.6]. Let A, Be £(3C) and let § be an ideal of £(3C).
The elementary multiplication operator S =S4, defined by S(X)=AXB (X €
L£(3IC)), satisfies Ran S C g if and only if the product sequence s(A)s(B) belongs
to J.

(Note that Example 1.1 follows from Theorem 1.2 and the fact that /,-/,C/;.)
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In the general case, let S;(X)=A4;XB; (1<i=<n). Clearly, if Ran S;C g for
each i (as explained by Theorem 1.2), then Ran R C g. Once again, this sufficient
condition is not necessary, as the following example from [3] shows.

EXAMPLE 1.3. Let {e,},;=; denote an orthonormal basis for JC and let M and
N denote the compact normal operators defined by Me, = (1/n /2ye, and Ne,, =
(1/n)e,. Let AiI=M®N, BiI=N®M, A,=—MPO0, B,=—NDPM; let R(X)=
A XB;+ A, XB,. Using a 2 X 2 operator matrix calculation and Theorem 1.2, itis
not difficult to check that Ran RC ©C; while Ran S;Z C, (i=1,2).

In this example, it is interesting to observe that R admits an alternate represen-
tation, R=S4;5;+ Sa, By, where Ran Sy, 5; CC; (/=1, 2); indeed, let A]=2M DO,
B{=N®0, A5=0®N, B5=N®M, and S{(X)=A;XB/ (i=1,2).

This example suggests consideration of the following possible properties of a
given elementary operator R=R p=>7_; Sa,B;*

p
(1.2) R= _21 Sa;B;s

1=

where for each i, Aie § or B/e §;

k
(1.3) - R= 2 Sy,

i=1
where for each i, Ran S5, C J;
(1.4) Ran RC g.

Clearly, (1.2) = (1.3) = (1.4), and we are interested in the extent to which re-
verse implications are possible.

QUESTION A. Does (1.4) = (1.2)?
QUESTION B [3]. Does (1.4) = (1.3)?
QUESTION C. Does (1.3) = (1.2)?

The main result of this note implies a strong negative answer to Question C
(and so also to Question A): in Theorem 2.1 we prove that if A and B are each
linearly independent modulo the ideal §, then R,45 admits no representation of
the form (1.2). As Example 1.1 shows, elementary operators R4p exist with 4, B
each independent modulo § and Ran R45C &, so the negative answer to Ques-
tion C follows. Thus the focus of the range inclusion problem shifts to Ques-
tion B, which remains open; an affirmative answer to Question B, together with
Theorem 1.2, would effectively solve the range inclusion problem.

Although (1.2) fails even for elementary multiplications S4p, it does hold for
S4p in a strong sense if we restrict the ideal §: Loebl [7] calls an ideal § muiti-
plicatively prime if Ae § or Be § whenever Ran S45C g (so that Syp clearly sat-
isfies (1.2)). In [7] Loebl showed that among the norm ideals of £(3C) (in the
sense of [5, Chap. 3] and [10]), the only multiplicatively prime ideals are {0} and



THE RANGE INCLUSION PROBLEM FOR ELEMENTARY OPERATORS 453

J(3C), the ideal of compact operators on JC. The ideal & is also multiplicatively
prime [7], and Loebl conjectured that among non-norm ideals it is the only mul-
tiplicatively prime ideal. In [6], Lin showed that there exist other non-norm mul-
tiplicatively prime ideals, for example, § =Ux-o C,«. In Section 3 we include
a result communicated to us by Salinas [9] which shows that an ideal is multi-
plicatively prime if and only if it is prime in the sense of [8]; thus multiplicatively
prime ideals exist in abundance.

Note that an ideal g is (multiplicatively) prime if and only if A € § whenever
AXBe § for all X e £(3C) and {Bj} is independent modulo g (i.e., B¢ §!). We
say that a (necessarily prime) ideal  is strongly prime if it satisfies the following
condition:

If R,p is an elementary operator with Ran RC g, and if B is

(1.3) independent modulo g, then AC J.

We will show in Proposition 3.2 that an ideal g is strongly prime if and only if
R has some representation as in (1.2) whenever Ran R 5 C §. We also say that an
ideal g is strong if each elementary operator R with Ran R C § has the structure
of (1.3); thus from Proposition 3.2 it follows that an ideal is strongly prime if
and only if it is both strong and prime.

Since (1.5) is apparently a much stronger condition than that defining a (multi-
plicatively) prime ideal, it is perhaps unclear that strongly prime ideals actually
exist; however, the following results of Fong and Sourour [4] provide important
examples of such ideals. The first result, which shows that {0} is strongly prime,
is the basic ingredient in the proofs of our results.

THEOREM 1.4 [4, Thm. I]. If {B,, ..., B,} is linearly independent and R 45 =0,
then each A; =0.

THEOREM 1.5 [4, Thm. II1]. If {By, ..., B,} is independent modulo X (3C) and
Ran R 45 C X (3C), then each A;e X (3C) (i.e., I (IC) is strongly prime).

For another example, a result of Apostol and the author [1, Prop. 5.2], togeth-
er with Proposition 3.2, shows that & is strongly prime (Corollary 3.3 below).
The preceding results motivate the following question.

QUESTION D. Which prime ideals are strongly prime? Is every prime ideal
strongly prime?

Although non-prime ideals cannot be strongly prime, there is a “mixed” ana-
logue of primeness valid for arbitrary ideals.

THEOREM 1.6 [1, Cor. 3.5]. Let § be an ideal of £(3C). If B is independent
modulo X (3C) and Ran Ry C §, then AC §.

Returning to the range inclusion problem, note that Question B has an affirma-
tive answer if and only if every prime ideal is strongly prime and every non-prime
ideal is strong. For a prime ideal g, Question A has an affirmative answer if and
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only if g is strongly prime. The proofs of strong primeness for {0}, X (JC), and F
differ from one another considerably: the proof for {0} uses only standard func-
tional analysis, but is nontrivial; the proof for X (3C) entails Voiculescu’s theo-
rem [11] (as does the proof of Theorem 1.6); the proof for & employs an intricate
geometric construction. Thus it may be difficult to answer Question D, and it
would be interesting merely to find additional examples of strongly prime ideals.
In a different direction, we note that Question A has an affirmative answer if
we restrict the type of elementary operator under consideration. We say that an
elementary operator R is strongly representable if, whenever § is an ideal with
Ran R C g, then R admits a representation as in (1.2); R is weakly representable
if, whenever Ran R C g, then R can be expressed as in (1.3). For 4, Be £(3C),
let 745 denote the generalized derivation defined by T45(X) = AX — XB. A result
of [3] shows that if Ran T4, C g then there exists A e C such that A—\e g and
B—\e g, and clearly T4p=T,4_), p—_); thus generalized derivations are strongly
representable. In Section 4 we show that, if 4 and B each consist of mutually
commuting positive compact operators, then R is weakly representable.

ACKNOWLEDGMENT. The author is grateful to the referee for providing Lem-
ma 2.4 and the present proof of Theorem 2.1, which is considerably shorter than
our original proof.

2. On representations of elementary operators. Our main result, which pro-
vides negative answers to Questions A and C, is as follows.

THEOREM 2.1. Let § be an ideal of £(3C). Suppose A and B are each inde-
pendent modulo §. Then R 4p has no representation of the form 37, SCJ. D; where
Jor each j, either C;je g or D; e §.

We require three preliminary lemmas. For § C £(J3C), we denote the linear span
of 8 by (8).

LEMMA 2.2. Given an elementary operator R g, where A={A,,...,A,} and
B={B,,...,B,}, assume that B'’={Bn,, ..., Bn,} C B is independent. Then there
exists an integer p = k and an independent subset of B, B” = {Bn,, ..., Bn,} (2 B’),

such that for every X in £(3C),

P
Ryp(X) = _El AjXBy,,
J=

where Aj € An;, Amlmwn, (I=1,...,D)).

Proof. Let {Bn,, ..., Bn,} be a maximal independent subset of B containing
{Bny,...,Bn}. For 1=j=n, if j#n,,...,n, then there exist scalars b; , ...,b,-p
such that

szblen1+ nes +bjan .

p

Then, for X e £(3C),
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R4p(X)=AnXBy + -+ +Ay XB, + % A;XB;

Jj#n;

=Ap XBp+ -+ +Ay XBy + 5 A;jX(bj1 By + -+ +bjpBy )

J¢m
==(Anff:2 bﬂ/b)kjﬁf+' (A ‘+:2 bm/4>22;p
J#En; J#=n;
To complete the proof, let
A=A, + > bjmA;, m=1,...,p.

J#m

LEMMA 2.3. Let § be an ideal of £(3C). Suppose that for every X € £(IC),

E A; XB;= 2 C; XD;,

i=1
where {B,, ..., B,} is independent modulo g and each D;e §. Then A;=0, i=
1,...,n.

Proof. If each D; =0, the result follows from Theorem 1.4. We may thus as-
sume some D;# 0, so Lemma 2.2 implies that there exist an independent set
{Di,...,Dp} C D and operators {Cj, ..., C;} C{(C) such that

m P

> CiXDj= Y CipXDj, Xe£L(3).

j=1 k=1
Thus,

E A; XB;= E Cir XDy, XeL(3C).

i=1
Note that B'={By,...,B,,Di,...,D;} is independent: for suppose by,...,b,,
dy,...,d, are scalars with ;B\ + --- +b,B,+dD{+ --- +d, D, =0. Since each
D/e g and B is independent modulo g, then each b; =0; since {Dj, ..., D;} isin-
dependent, it follows that each d; = 0. Since B’ is independent, Theorem 1.4 im-
plies that each A4; = 0; the proof is complete. O]

LEMMA 2.4. Given an elementary operator R =R p and an ideal §, assume
that {B,, ..., By} is a maximal independent subset of B modulo §. Then R,p ad-
mits a representation of the form

R= EISCB"‘ESDJ,
J

where each J; € §. If, furthermore, for each j > k, either Bje § or A;€ g, thenin
the above representation each C; can be chosen so that C;—A; € §.

Proof. Assume that kK < n and that B; ¢ g for some / > k. We can write

2 ciBi+J
Jj=1
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for some ¢y, ...,c, € C and some J e §. Hence

k
R p(X) = E (Aj'f‘CjA{)XBj +A; XJ+ 2 AJXBJ
i=1 j>k
FEl
Thus, among B; with j > k, the number of operators not in § has been reduced
by one; moreover, under the additional hypothesis, 4; € §, so each Ci=A;j+c;jA
satisfies C;—A; e g. [

Proof of Theorem 2.1. Assume to the contrary that

n m
Rap= 2 Sa,5,= X Sc;p;»
i=1 j=1

where A and B are each independent modulo g, while for each j, either C; or
D; is in §. By relabeling if necessary, we may assume {By, ..., B,, D;,..., Dy} isa
maximal independent subset of BU.D modulo §. By Lemma 2.4,

n m
0= 2> SuB— '21 Sc;p;
J=

i=1

admits a representation of the form
n k
0= .El Sa;B;,— ‘21 Scip;+ 2 Si,u,
i= j= p

where A;—A;e § for each i and J,e ¢ for each p. Thus, by Lemma 2.3, each
A;=0, whence each A; € §. This contradicts the assumption that {4,,...,4,}is
independent modulo . 0

3. Multiplicatively prime ideals. In this section we examine the range inclu-
sion problem for multiplicatively prime ideals. If § and £ are ideals, let £ =
{JL:Je g, Le L}; for SC L£(3C), let (8) denote the 2-sided ideal generated by 8,

n
(8)= { 2 A,‘X,‘B,‘i n=1, A;,B;ie £(3C), X;e S}.
i=1
Note that if O is an ideal, then £ C 9 if and only if (§L£) C M. Recall from [B]
that an ideal g is semiprime if, for every ideal 9 such that 99 C g, then 9 C g; Jis
irreducible if, given ideals 9 and X with INK C g, then 9C Jor X C g. An ideal
g is prime if, given ideals 9 and X with X C g, then 9C g or X C g. It is not
difficult to check that g is prime if and only if it is semiprime and irreducible [8];
a characterization of prime ideals in terms of characteristic sequences is given in
[8, Thm. 3.7].
The following result is due to N. Salinas, who has kindly allowed us to include
it here; we have simplified part of the original proof somewhat. For T e £(3C),
we denote ({T}) by (T).

THEOREM 3.1. An ideal § is multiplicatively prime if and only if it is prime.

Proof. Suppose § is prime and assume AXBe g for every X e £(3C). Then
(YAX)Y(WBZ)=Y(AXWB)Z e § (X, Y, Z, We £(3C)), whence (A4)(B) C g.
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Since g is prime, (A)C g or (B)C g; thus Ae g or Be g, so § is multiplicatively
prime.

Conversely, suppose § is multiplicatively prime; we will show that § is semi-
prime and irreducible. Indeed, suppose g is an ideal and 99 C g; then for Ae 9
and X e £(3C), AXA=A(XA) e §. Since g is multiplicatively prime, then 4 € g;
thus 9 C g, so § is semiprime. Next, suppose 9 and X are ideals such that SN XK C
9. We seek to show that 9 C g or KX C §. Suppose to the contrary that there exist
Aed\g and Be X\ g. For every Xe £(3C), AXBe 9NXK, whence AXBe J;
since g is multiplicatively prime, 4 € § or B € §, and this contradiction completes
the proof. _ ]

The next result provides several characterizations of strongly prime ideals and
is thus helpful in studying Question D and the range inclusion problem for prime
ideals.

PROPOSITION 3.2. Let § be a prime ideal. Then the following are equivalent:
(1) Whenever R is an elementary operator with Ran RC g, then R has
a representation as in (1.2);
(2) Whenever R is an elementary operator with Ran RC g, then R has
a representation as in (1.3);
(3) Whenever R = R p satisfies Ran RC g, then A or B is dependent
modulo §;
(4) g is strongly prime.

REMARK. To see the content of Proposition 3.2, consider § = {0}. It is obvious
that g satisfies property (1); the fact that g satisfies (4) is Theorem 1.4.

Note also that if an ideal g satisfies (1), (3), or (4), then it is necessarily prime,
so the hypothesis on g is reasonable.

Proof of Proposition 3.2. Observe that (1) = (3) follows immediately from
Theorem 2.1. (We do not know of a simpler proof in the present case when J is
prime.) Also, since § is prime, the equivalence of (1) and (2) is trivial, as is the
implication (4) = (3). To complete the proof we will prove (4) = (1) and (3) = 4).

(4) = (1). Assume R is an elementary operator with Ran RC g, where § is
strongly prime. We seek a representation for R as in (1.2). By Lemma 2.4, R can
be written as Rcp where DC g, or as R4g+ Rcp, where B is independent modu-
lo § and D C g. In the latter case, clearly Ran R45C g, and since J is strongly
prime, it follows that A C g.

(3) = (4). Suppose A\ XB+ ---+A,XB,e§ (XeL(3)) and {By,...,B,] is
independent modulo . We seek to prove that each A4; € §. The proof is by induc-
tion on n=1. Since § is multiplicatively prime, the result is clear for n=1. In

general, (3) implies that {A4,, ..., A,} is dependent modulo §; we may thus assume
there exist scalars a,, ..., a, and J € § such that
3.2 Ai=a A+ - +a,A,+ J.

Thus, for each X,
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AzX(Bz+azB1)+ s +A,,X(B,,+a,,B1) € S.

Since {B;+a;B;}/=> is independent modulo g, then by induction 4, € g, ..., A,
9, whence (3.2) implies A, € §. Thus g satisfies (4). O

The following result provides an affirmative answer to Question A for §=
{0}, X (3C), or &F.

COROLLARY 3.3. In each of the following cases, if R is an elementary opera-
tor and Ran RC g, then R=2, Sy p;, where for each i, Aje § or Bfe J:

i) $=1(0};
(i) =K (3C);
(iii) g=F5F.

Proof. The proof of (i) is trivial.

(ii) Theorem 1.5 shows that JC(3C) is strongly prime, so the result follows from
Proposition 3.2 ((4) = (1)).

(iii) [1, Prop. 5.2] shows that F satisfies property (3) of Proposition 3.2. [

4. Positive coefficients. In this section we give an example of a weakly repre-
sentable elementary operator.

PROPOSITION 4.1. Let {A;}7— and {B;}7=, be sequences of commuting posi-
tive operators in X (3C). Then R4p is weakly representable; moreover, if Ran R 4p
is contained in an ideal §, then Ran Sy 5. C § for each i.

Proof. It suffices to prove that Ran Sy 5, C g. Since the A;’s are commuting
and compact, there exists an orthonormal basis {e,,} relative to which A;e,, =
®im€m With a;,, =0, i =1, ..., n. Similarly, there exists an orthonormal basis {f,}
such that B; f, = B;, fp with 8;, =0, i=1, ..., n.

Let {Sx(A1)}i=1 denote the sequence of s-numbers of A;; thus there is a se-
quence {my}g - of distinct positive integers such that s, (A4;) = o, m, (K=1). Sim-
ilarly, there is a sequence {pi}r— of distinct positive integers such that sz (B;) =
B1, p,- Let I =<({fp,}¥=1>. Define a partial isometry X such that Xf, =ep,, k=
1, and X =0 on 9U+. Then

Rap(X) fp, = 2 AiXB; fp,

n
= (El o, mklgi,pk>emka k=1,
i=

and R45(X)=0 on 9" .
Since R4p(X) € g, then {X7=| o m, Bi, p, }k=1€ J (the ideal set of ¢ [3; 8]). Since

n
O41,mkf31,pk = E O‘i,kai,pk,
i=1

then s(A;)s(By) = {a1,m, B1,p,} €J, so Theorem 1.2 implies Ran Sy, 5, C g. The
proof is complete. U]

QUESTION 4.2. If A and B each consist of commuting compact normal oper-
ators, is R4p weakly representable?
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Example 1.3 offers some positive evidence concerning this question, but it also

shows that we cannot expect Ran S4, g, C J as in the positive case.

[
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