PETTIS’ LEMMA AND TOPOLOGICAL PROPERTIES
OF DUAL ALGEBRAS

B. Chevreau and J. Esterle

1. Introduction and results. Let JC be a separable, infinite-dimensional com-
plex Hilbert space and let £(JC) denote the algebra of (bounded, linear) oper-
ators on JC. As is well-known, £(3C) is the dual space of @!(3C), the Banach
space of trace-class operators on JC. A dual algebra @ on JC is a unital subal-
gebra of £(3C) which is closed in the weak* topology arising from the above
duality. The study of (nonselfadjoint) dual algebras has received considerable
attention since S. Brown used them to solve (positively) the invariant subspace
problem for subnormal operators (cf. [5]). We recall the basic definitions and
properties and refer to [4] for a detailed treatment and bibliography.

A dual algebra @ is said to have property (A,) if, for every [L] in Qg the pre-
dual of @ (Qg = €,/Lg), there exist vectors x and y in 3C such that [L]=[x&®y]
(recall that x®y is the rank one operator x®y(u) = (u, y)x). More generally,
given an integer n, we say that @ has property (A;/,) if any [L] in Qg can be
written as

n
) [L]= X [x;:®)i] for some x;,y; in 3C.
i=1
Furthermore, @ is said to have property (A,/,(r)) if it has property (A,/;) and
if for any C > r the decomposition (*) can be realized with

3 Iallyd = CILLL.

It is clear that properties (A;/,) and (A,/,(r)) make sense for arbitrary weak*-
closed subspaces of £(J3C), and we will use them freely in that context.

Recall that the weak operator topology (WOT) on £(JC) is the one defined by
the seminorms 7 — |(7x, y)|, x, y € 3C. As is well known, the weak operator to-
pology is weaker than the weak* topology, and it is easy to see that if @ has prop-
erty (Ay/,) then both topologies coincide on @. This latter condition has taken
on increasing importance in recent years in the theory of dual algebras, espe-
cially in applications to the invariant subspace problem. For instance, in [2] it
was shown that a Cyo-contraction 7"—with spectrum containing the unit circle
T and such that the weak* and weak operator topologies agree on @7 —has a
nontrivial invariant subspace. (As usual we denote by @+ the dual algebra gener-
ated by 7)) Later in [8] the hypothesis “7 € Cyo”’ was removed. In that same paper
analogous results were obtained with the condition “(1) (@7, w*) =(Qr, WOT)”
replaced by “(1”) @r="W¢”, where W+ denotes the WOT closed algebra generated
by 7. In connection with these conditions we recall that only recently it has been
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shown that they are not automatically satisfied. Indeed, the first example of an
operator 7 such that (1) is not satisfied was given in [15] (a somewhat concep-
tually simpler example was produced later in [6}), while still more recently, [16]
exhibits the first example of an operator 7 in £(JC) such that A W.

In the present note we prove that a dual algebra (in fact any weak* closed sub-
space of £(JC)) on which the weak* and weak operator topologies agree is neces-
sarily WOT closed. This is obtained as a consequence of our main result, which
we now state.

THEOREM 1. Let @ be a weak* closed subspace of £(3C) on which the weak*
and weak operator topologies agree. Then Q has property (A,/,(r)) for somen
and r.

Note that the equality of the weak* and weak operator topologies on @ says
exactly that for each [L] in Qg there exists n=n,; such that

nL)
(*) [L]1= _El [xi®y;] for some x;, y;,

i=
that is, in the terminology of [8], that every [L] in Qg is of finite length. In other
words, Theorem 1 says that if each [L] is of finite length then the lengths can be
bounded by the same number with a “control” on the norms of the vectors realiz-
ing (*).

In the case where we already know that the lengths of all the elements in Qg are

bounded by m, we obtain control on the norms in (*) but at the expense of doub-
ling the length.

THEOREM 2. Let Q@ be a weak™ closed subspace of £(3C) with property (A/pm).
Then @ has property (A/2m(r)) for somer.

At least for n =1, Theorem 2 is the best possible in this generality since [3] pro-
vides an example of a dual algebra having property (A;) but not property (A(r))
(thus answering in the negative a question of [10]). In relation to the “lengths”,
we mention that for every integer p there exist singly generated dual algebras
having property (A/,) but not (A,/,_;, (cf. [7]).

We postpone the proofs of Theorems 1 and 2 until the next section, and now
give the promised corollary.

COROLLARY 3. Let Q@ be a weak* closed subspace of £(3C) on which the
weak* and weak operator topologies agree. Then Q is WOT closed. In particular
a weak* closed subspace with property (A,,,) for some n is WOT closed.

REMARK. The last assertion of our corollary (with »=1) answers positively
Question 2 of [11] and Conjecture 6.1a of [1].

Proof. In view of Theorem 1, we have to show that a weak* closed subspace
of £(3C) with property (A,/,(r)) is WOT closed. The argument is well known to
anyone working in the area; we give it for completeness.
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Since any [L] in Qg is WOT continuous, it extends uniquely to a WOT con-
tinuous linear functional (still denoted [L]) on Wg, the WOT closure of Q.
Moreover, for any B in Wg we will have (B, [L])=X/L, (Bx;, y;) whenever

m
(*) [L]1= '21 [xi®y:}] in Qq.

i=
Fix C>r; for any [L] we obtain (*¥) with m=n and 3L, |x;||»:| = C|IL]]-
We then have, for any B in “‘Wg and any [L] in Qgq, |{B,[L1)|=<C]|B||IL]]|-
This shows that [L] — (B, [L]) is a bounded linear functional on Q4. Therefore
there exists A € @ such that (B, [L])=(A, [L]), [L] € Qg. In particular, for every
x,y €,

(Bx, ) =(B, [x®yD=<(A, [x®y])=(Ax, ),
that is, B=A. Hence W5 = Q. O

2. Proofs of Theorems 1 and 2. Our proofs are based on Pettis’ Lemma, and
we first briefly review the material necessary to state it. A Polish space is a sepa-
rable topological space whose topology can be defined by a complete metric. A
Souslin space (also called analytic space) is a Hausdorff topological space which
is the image of a Polish space under a continuous map. We refer to [9] and [14]
for more details. Recall that a subset Y of a topological space X is said to be
meager in X if Y is contained in a countable union of closed subsets of X each of
which has empty interior. Pettis’ Lemma can be stated as follows.

PETTIS’ LEMMA [13]. Let X be a (Hausdorff) topological vector space and let
Y be a subset of X which is a Souslin space (when equipped with the relative to-
pology). If Y is non-meager in X then Y —Y is a neighborhood of 0 in X.

We now turn to the proof of Theorem 1. Let @ satisfy (@, w*) =(Q@, WOT);
for n, p e N we introduce the subset &, , of Qg:

Fn,p= {[L] € Qa |3(x)) (»i), 1 =i =<n, satisfying

(L1= 3 (@] and 3 bellyl <p].

i=1

Clearly, &,,, is a Souslin space as the image of the complete separable metric
space

- {«x,-) )3 3 Jxliyil Sp}

under the continuous map ((x;), (¥:)) =2 [xi®y:].
On the other hand, the hypothesis easily implies

U s:Ftr,p: Qa-
n,p

Since a countable union of meager subsets is meager and since Qg is non-mea-
ger in itself by the Baire category theorem, there exists ng, po such that F,,, p, is
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non-meager. By Pettis’ Lemma we obtain that Fng, po— Fn,, p, contains some closed
ball of radius p > 0 centered at the origin of Qg. Since &, o — Fry, pp is contained
in Fang, 2p9, an easy computation shows that @ has property (A, /2ngs (2P0 /p)),
thus concluding the proof of Theorem 1. We note that Theorem 1 could also be
proved via an easy adaptation of the proof of [12, Theorem 1.3].

To prove Theorem 2 we observe that if @ has property (Ay/,;) then U, F,,, , =
Qg. Therefore F,,, , is non-meager for some p (in fact for all p). Thus, for in-
stance, F,, 1 — F,,,1 contains some close ball of radius p, and it follows that @ has

property (Ai/2m,(2/p)).

We have learned from C. Pearcy that P. G. Dixon has also proved Theorems 1
and 2 using similar arguments.
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