THE SAMELSON SPACE OF A FIBRATION

John Oprea

Introduction. If G is a compact connected Lie group, then there exists a real
graded vector space Pg such that A(Pg) = H*(G; R), where A denotes the ex-
terior algebra. Moreover, if G acts smoothly on a connected manifold M, then
there is a graded subspace P C P; and an algebra isomorphism A®@ A(P) =
H*(M;R) which makes the following diagram commutative:

A® AP)—> A(Pg)

=1 . l:

H* (M; IR) — H* (G; IR)

The map w* is induced by the orbit map w: G - M, w(g) =g x (for fixed x e M)
and AR A(P) —» A(Pg) denotes projection onto A(P). (See [12, p. 312]).

The action of G on M gives rise to the Borel fibration M - MG — BG, and it is
well known that the orbit map w corresponds to the “transgression” 9: QBG - M
via the homotopy equivalence 2BG = G. The commutative diagram above then
provides an isomorphism Im d* = A(P).

Because these notions are extensions of the classical Lie theoretic approach of
Samelson, we say that P is the Samelson subspace of the action.

It is natural to ask if analogous results hold for arbitrary fibrations ¥ — E - B
and the associated “action” FXQB — F. This question was answered in [16],
where it was shown that F has a rational decomposition F X K with K C QB and
H*(K)=Im(d*: H*(F) - H*(2B)). The space K is called the Samelson space of
the fibration because of the obvious analogy to the classical result stated earlier.
In fact, the classical theorem is simply a special case of the rational decomposi-
tion described above.

The purpose of this paper is to present rational versions of various topological
results within the unifying framework of the Samelson space method. In particu-
lar, we obtain an elementary proof of the Transgression Theorem [3] and a gen-
eralization of the Allday-Halperin inequality [1].

The main result of [16] forms the starting point for this paper, so we recallit in
Section 1. Although minimal model theory was the fundamental tool of [16], it
shall not be emphasized here. It is hoped that, by stating the results of this paper
in customary topological language, a wider audience will be introduced to the
efficacy of the Samelson space technique. Furthermore, with the exception of
some results on rational holonomy [6] and on elliptic spaces ([13]; [4]), all the in-
gredients for the results of this paper were present years ago. It seems only right,
then, to approach this work in the spirit of classical homotopy theory.
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In the first three sections all spaces are assumed to be rational and simply con-
nected with finite betti numbers (unless stated otherwise). Therefore, it shall be
understood that all homology, cohomology, and homotopy is to be taken with
rational coefficients.

1. Basic structure theorems. We begin this section by recalling the main result
of [16]. The proof given in [16] relies on minimal model theory, so we shall sketch
a topological argument here.

RATIONAL FIBRE DECOMPOSITION THEOREM (RFDT). If F>E—>B isa
fibration, then there is a subproduct K C QB and a space F such that F=3F XK
and H*(K) =1Im(d*: H*(F) - H*(QB)).

Sketch of Proof. Recall that, subject to our conventions, 2B has the homo-
topy type of a product of Eilenberg-MacLane spaces K(Q, n). Consider the com-
position

T (2B) 2 7 (F) 2> H (F),

where 9 arises from the transgression in the dual Puppe sequence d: 2B — F and
h is the Hurewicz map. Let the Samelson space K be the maximal subproduct of
QB such that A#9dy restricted to w,(K) is an isomorphism onto Im(43dy). By dualiz-
ing to cohomology and then representing the basis corresponding to Im(4d;), we
obtain a map F— K which is surjective on =,. If F§ denotes the homotopy fibre
then clearly 7.(F)=7.(F)®7.(K). Furthermore, the holonomy of the fibra-
tion, FX QB — F, provides a composition

FXK->FxQB—-F

which induces an isomorphism on w,. Hence F= & X K. The reader is referred to
[16] for a proof of the final assertion of the theorem. Ol

Certain applications of the RFDT present themselves immediately. In particu-
lar, various global conditions on the fibre F impose corresponding restrictions on
any such decomposition. As a typical example of a fibre condition, we recall that
a space X is said to be quasifinite if its homology is finite dimensional. We then
have the following obvious result.

COROLLARY 1. If F is quasifinite, then the Samelson space K has the homo-
topy type of a product of odd spheres.

Proof. K is a product of K(Q, n)’s, and it is well known that H(K(Q, 2i)) isa
polynomial algebra and is therefore infinite dimensional. The assumption about
F then implies that K =T1K(Q, 2i+1) =II1S**1, O

The simple observation of Corollary 1 has an interesting refinement due to Fe-
lix and Thomas. Because their proof is not readily available, we include it here.

COROLLARY 2 [6]. If H,.(F) is a finitely generated H.(Q2B)-module via the
holonomy FxX QB — F, then H*(F) is nilpotent if and only if the Samelson space
is a product of odd spheres.
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Proof. If H*(F) is nilpotent then, by the argument above, no K(Q, 2i) is in-
cluded in K. Hence, K =TIS**!.
Conversely, assume K =II1S**! and let 7; = Ker 38*. Define ideals

I,= n—l’H+(F)

and note that, because 9* is an H,.(Q2B)-module map, each /; is an H,({2B)-mod-
ule. Denote the finitely generated H,(2B)-module A (F)/Im 3, by R and note
that the submodules J,, orthogonal to 7,, form a strictly increasing sequence. Be-
cause R is finitely generated there exists an N such that Jy=R. Hence, Ix=0.
Now, Im 3*= H*(K) = A(xy, .., X,;) so (Im 8*) *!=0. Therefore, (H(F)) *'c
I, and (H*(F))"+tDN =0, O

EXAMPLE. The free loop space AS> = Maps(S!, S3) splits as a product
S3xQS3, so it is clear that H*(AS?) is not nilpotent. In fact, the fibration ob-
tained by pulling back the path fibration over K (Q,4)xS3 by the inclusion
S3 - K(Q, 4) x S has Samelson space K(Q, 2).

COROLLARY 3 (cf. [10, Theorem 5-2]). If all cup products in H*(F) vanish
and F does not have the homotopy type of an odd sphere, then the Samelson
space is trivial for every fibration having fibre F.

EXAMPLES. (i) If F= AS?, the free loop space on S2, then the cup structure of
H*(F) is trivial (although the Massey product structure is highly non-trivial).
See [20] for details.

(ii) Let F=(S"VS")U, e*"~ !, where a = [iy, [i}, i2]].

REMARK. Corollary 3 has the following refinement: If all spherical cup prod-
ucts are trivial in H*(F) and F is not an odd sphere, then K is trivial. For in-
stance, if F is the sphere bundle of the vector bundle over S*x S3 obtained as a
pullback of the tangent bundle of S by a degree 1 map S3x S>3 — S, then Fis a
manifold of dimension 11 with a cohomology basis in degrees 3, 3, 8, 8, and 11. By
Poincaré duality there are nontrivial cup products, but the two degree 3 elements
are the only spherical co-cycles and their product is zero. Hence, the Samelson
space for F always vanishes. (See [1] or [17, pp. 90, 115] for a minimal model de-
scription of F and a calculation of H*(F).)

Recall that the Gottlieb group (or evaluation subgroup) of a space X is defined
by G.(X)=U Im(9s: 7.(QB) — 7,.(X)), where the union is taken over all fibra-
tions X — F — B. Clearly, then, the Samelson space is a spatial model for the
complement of the kernel of the Hurewicz map restricted to G,.(X). Hence, if
K is trivial for any fibration having fibre X, then G,.(X) C Ker A. The next result
is then an easy consequence of the RFDT and is the rational part of Theorem 4-1
of [10].

COROLLARY 4. If X is quasifinite and x(X) #0, then G,.(X) CKer A.

Proof. If K is nontrivial then K =TIS%**!, so x(X)=x(Y)-x(K)=0 (where
X =Y XK is a fibre decomposition for some fibration). |
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REMARK. In [5], Felix and Halperin showed that if X has finite category (e.g.,
if X is quasifinite) then G,,(X) = 0. A simple way to see this is the following: Let
X — F — B be any fibration with 94 0 and take K’ C 2B such that

Jy: To(K’')=>Im 9y C 7o (X).

Now by the Mapping Theorem of [5] (which, in fact, also has an elementary
proof along these lines), we have cat K’ < cat X < c. Because cat(K(Q, 2i)) =,
it is clear that K’=TII1S**!. Since this holds for arbitrary fibrations, the result
follows.

If F is quasifinite and, for some fibration, the Samelson space is nontrivial,
then (as shown in the proof of Corollary 4) x(F)=0. The fact that this result
follows immediately from the RFDT indicates that an elementary proof of the
various Transgression Theorems of Becker—-Casson-Gottlieb may be obtained
as well. The Transgression Theorem (see [3], [7], or [2]) was proved originally
using the Lefschetz transfer for fibrations, but our proof relies only on the RFDT
and the H,(2B)-module structure of H,.(F) (see [6]). We note here, however, that
the Samelson space technique yields only the rational portion of the Transgres-
sion Theorem. It is hoped that a modification of the method will allow a proof
for any coefficients.

TRANSGRESSION THEOREM. Let F— E — B be a fibration with F quasifiniie.
Suppose that f: E — E is a fibre preserving map which induces the identity on B
and g: F— F. If the Lefschetz number of g is nonzero, then

0=9*: H*(F)—> H*(Q}B).

Proof. We shall show that A(g) # 0 implies the triviality of the Samelson space.
Suppose F=F x K with K =TIS*+!,

From the proof of the RFDT we see that the H,(K)-module structure of H,(F’)
has the form a-(1® b)) =a® b, where ae H,(K) and be H,(F). This follows
because the decomposition F= & X K is accomplished through the holonomy
Fx QB — F. Now, because (g, f,id) is a map of fibrations (which is the identity
on the base), the naturality of the holonomy ([14, p. 98]) implies that g, is a map
of H,.(QB)-modules. Therefore, for a € H,(K) and b e H,(F) we have

g2:(a®@b)=g.(a-(1®b))=a-g.(1¥ D).

Now let ¢;®b; e H,(K)RXQ Hy(F) C H,(F) be a basis element (p+¢g =n), and
note that

8+(ai®b;)=a;-g+.(10bj) =a; 'lg'vgjgak@ by,

where a;X® b, are basis elements with a, € H,.(K), be H,.(F). Because we are
interested in computing the trace of g,, we need consider only the term with
k=0, £=j (i.e., 1®b;). The coefficient v¢/ =; occurs in the trace of

Bu: Hy(F)— H,(F) &> Hy(F) 5> Hy(F)

and, since a; has no effect on v, is the same for each basis element of H,(K).
Therefore, we have
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tr(g,) = 20 dim Hp(K)'tr(gn—p)-
p=

Therefore, the Lefschetz number is computed as

Ag)= X (—1)'trg,
n=0
= 2 (=1)" ¥ dim H,(K)-tr g,
n=0 p:()
= 3 2 (=DPdim Hy(K)-(=1)""Ptrg,_,
p=0n=p
= E ("l)pdime(K)' 2 (_l)n_ptrgn—p
p=0 n—p=0
=x(K)-A(8).
If X is nontrivial, then x(K) = 0. Therefore, A(g) =0 as well. This contradiction
completes the proof. d

REMARK. The argument given above applies to the E,-term of the Serre spec-
tral sequence for a map of fibrations (g, f,id). If the Lefschetz number of E is
defined, then the Hopf Trace Theorem yields the formula A(f) = x(K)-A(g).
See [3] for applications of this formula.

The Transgression Theorem may be applied to the action of a compact Lie
group on a quasifinite space. If an equivariant self-map of the space is provided,
then there is induced a self-map of the associated Borel fibration which restricts
to the identity on the base. Hence, according to the Transgression Theorem, if
the Lefschetz number of the equivariant self-map is nonzero then the orbit map
is homologically trivial. (See [3] for example.) As in the introduction, this result
uses the correspondence between the orbit map and the transgression provided
by the homotopy commutative diagram,

w
G—F

i

Recently [11], Gottlieb has defined a new invariant of a group action called the
trace of the action, denoted by tr(G, F). The following result generalizes the re-
marks above.

TRACE THEOREM [11]. If G is a Lie group which acts on a compact manifold
F, then tr (G, F) # 0 implies w,=0: H,(G) —» H,.(F).

From our previous discussion, it should not be surprising that the Samelson
space approach applies to this situation as well. In actuality, because the defini-
tion of the trace is somewhat complicated, we shall prove a version of Gottlieb’s
result in which the trace is replaced by an invariant known as the fibre number.
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Gottlieb demonstrates that if G is a compact, connected Lie group which acts on
a closed manifold F in an orientation preserving manner, then the trace tr(G, F)
is equal to the fibre number ®(G, F). )

We now give the definition of the fibre number. If F5E 5 B is a fibration (of
integral spaces) with H(F;Z)=0 for i>n and H"™(F;Z)=1Z, then

Im(i*: H'(E; Z) —» H"(F; Z))

is a subgroup of Z with generator & (non-negative). We write & = ®(p) and
say that ®(p) is the fibre number of the fibration p. For the Borel fibration
F— FG — BG associated to an action of G on F, the fibre number is denoted by
(G, F). Finally we note that, although the fibre number is an integral invariant,
rational homotopy methods are still well suited to determine whether it is trivial
or not. In the following we return to our rational conventions.

FIBRE NUMBER THEOREM. If &(G, F)#0, then w,=0: H.(G) > H.(F).

Proof. First, note that we have the usual equivalences G =1]; K(Q, 2i—1),
BG =]1;K(Q,2i). We may apply the RFDT to F— FG — BG, the Borel fibration
associated to the action, to obtain the Samelson space X with Im w, = H,(K). By
construction, K =[], K(Q, 2j—1) with JC I. Define BK =11, K(Q, 2/) in imita-
tion of the classifying space BG and note that there is an “inclusion” BK - BG
such that K =QBK — Q2BG = G is the Samelson space inclusion. We may use € to
construct a pullback diagram of fibrations:

K ——— G
W ‘w
-F F-
TR

We know that @* is surjective (by the construction of K), so it is immediate that
the fibration

KSFLFEK

is totally noncohomologous to zero. Hence, the Leray-Hirsch theorem implies
that H*(F) = H*(FK)YQ@ H*(K) as H*(FK)-modules. This isomorphism is in fact
an algebra isomorphism, because the surjection @* has an algebra splitting
H*(K) —» H*(F) induced by the map F — K constructed in the proof of the RFDT.

Suppose K is nontrivial. Then, if H"(FK) were nontrivial, by taking a nonzero
element and forming the cup product with a nonzero element of #*(K) we would
obtain a nonzero element of H*(F) in a degree greater than ». Since H'(F)=0
for i > n this is impossible, so H"(FK) =0. Now, the pullback diagram provides
the equality i*=j*r*, so in degree n we must have i*=0. By definition of the
fibre number, (G, F) =0, in contradiction to assumption. Thus X is trivial and
w.=0. 0l
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The following simple consequence of the RFDT provides an example of the
effect of the vanishing of the Samelson space on the structure of a fibration.

PROPOSITION 5. Let F— E — B be a fibration with F {-connected, B k-con-
nected and k ={. Suppose Hj(F)=0 for j=k+¢+1. If the Samelson space is
trivial, then the fibration is totally nonhomologous to zero.

Proof. The Serre sequence and the homology suspension provide a commuta-
tive diagram,
Hi_1 (2B)

\5*
—H;(E) — H;B) — H_;(F) — H;_(E) —

-4

for i< k+¢+1. Now 3, =0 because the Samelson space is trivial, so
H.(F)— H.(E)
is injective by exactness. 1

COROLLARY 6. If x(F) # 0, then any fibration with fibre F satisfying the con-
ditions above is totally nonhomologous to zero.

2. The homotopy Euler characteristic. If 7,(X) is finite dimensional, then the

homotopy Euler characteristic is defined to be
xx(X)=3 (—1)" dim 7;(X).
=

If =,.(X) and H,(X) are both finite dimensional, then X is called elliptic and
there are strong restrictions on its structure (see [13]). In [1], Allday and Halperin
applied the Borel fibration to study compact Lie group actions on elliptic spaces
and obtained the inequality x,(X) < —rk(G). Here, because G =IIS? !, the
rank of G may be defined by

rk(G) = —x.(G) = (# of factors in [1§**! = G).

Of course, the definition of rank may be applied to any space K =II1S**! and it
is natural to ask if the Allday-Halperin inequality may be generalized, in terms

of the Samelson space, to arbitrary fibrations.

THEOREM 7. If F is elliptic, then for any fibration with fibre F,
X+ (F) = —rk(K).

Proof. First note that rk(K) is defined for the Samelson space because F'is,
in particular, quasifinite. The product decomposition F = F X K yields the equal-
ity x-(F) =x-(F)+ x.(K). Because F is elliptic, so is F and by [13], x.(F) =0.
Hence, x,(F) = x.(K) = —rk(KX). Ol

COROLLARY 8. If Fis elliptic and x .(F) =0, then the Samelson space is triv-
ial for every fibration with fibre F.
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REMARKS. (i) An alternative proof of Corollary 8 consists of using Halperin’s
observation that x,(F) =0 if and only if x(F) > 0, and then applying the results
of Section 1.

(ii) The assumption of ellipticity is essential for Theorem 7, as is shown by the
example of AS3. Clearly, x.(AS?) =0, but the Samelson space may be nontrivial
(as we have seen earlier).

By combining Corollary 8 with Proposition 5 we obtain the following result.

PROPOSITION 9. Let F be {-connected and elliptic with x.(F)=0, and sup-
pose H,(F) is the top dimensional homology. Then any fibration with fibre F
over an (n—{)-connected base is totally nonhomologous to zero. In particular, if
F is 1-connected, then any fibration over S" is totally nonhomologous to zero.

Recall that a space is formal if its homotopy type is determined by its coho-
mology algebra. A more precise minimal model definition may be found in [21],
for example. Many homogeneous spaces are known to be formal. Since they are
elliptic as well, it should not be surprising that arbitrary formal elliptic spaces
should behave very much like their homogeneous counterparts. We verify this in
the case of the following result.

THEOREM 10. If F is elliptic, then F is formal if and only if x.(F)= —rk(KX)
for some fibration with fibre F.

Proof. Suppose x,(F)= —rk(K) for some fibration. Then, since F=F XK,
we must have x,(5) =0. By the main theorem of [13], this implies that F is for-
mal. Now K =TIS%*1is clearly formal and any product of formal spaces is for-
mal, so F must be formal as well.

Conversely, suppose F is formal. From [4] it is known that F is hyperformal;
that is, H*(F) is a polynomial algebra truncated by a Borel ideal. This charac-
terization of F implies that it is amenable to the techniques of [12, Chapter II,
§§4, 5]. From these methods we obtain a decomposition F=F X K, where K isa
certain (maximal) product of odd spheres. Now, by [12, Theorem XI, p. 152], the
formality of F implies that x,(F) = —rk(X).

Finally, we need only realize K as a Samelson space for some fibration having
F as fibre. Simply take the product fibration

FxXK—->FxPK—>*xK,
where K =T1K(Q, 2/) such that K =QK and PK — K is the path fibration. [

COROLLARY 11. If x.(F) = —1, then F is formal if and only if the Samelson
space is nontrivial for some fibration with fibre F.

EXAMPLES. (i) The homogeneous spaces of [12, Chapter X1, §4] satisfy x, =
—rk(K) for the fibration described in the proof of the theorem. Because x, # 0in
general we obtain many examples of spaces with nontrivial Samelson spaces. In
particular, U(n)/U(k) is formal, so it has a nontrivial Samelson space for some
fibration.
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(ii) On the other hand, the homogeneous spaces of [12, Chapter XI, §5] have

x= = —1, but are not formal. By Corollary 11, their Samelson spaces must always
be trivial.
(iii) By minimal model methods, a nonformal 7-manifold with x, = —1 may be

constructed as the orbit space of an almost free circle action on X = S5%x .83 x §3.
For the reader familiar with this approach we outline the construction. Model a
Borel fibration

X > X xs1ES' - BS!
by the KS extension (with differentials below):

A(e) —» A(e,x,y,z,w) — A(x,y,z,w)
de=0 De=0=Dx dx=0 dy=x?

le|]=2  Dy=x? dz=0 dw=0
Dz=¢e? x| =2
Dw=ex ly|=|z]|=|w|=3.

Because Dz =e?2, the map H*(BS') - H*(X x s1ES') is not injective. Hence, there
are no fixed points for the associated circle action on X, and therefore S' acts al-
most freely (i.e., with finite isotropy). The Vietoris—Begle theorem then provides
a (rational) equivalence X xs1 ES'= X /S!. Note that x, = —1, but the nonzzro
Massey product ew —zx shows that X/S ! is not formal. Furthermore, it can be
shown that X/S! has the (rational) homotopy type of a manifold of dimension 7.
This is, of course, the first dimension in which a nonformal simply connected
manifold may occur.

3. Fibred suspensions and coformal maps. In [8], Gottlieb studied the non-
rational situation of a fibration F— F — B in which F and B are compact CW
complexes and E is a suspension £ X. His main theorem (restricted to the ration-
als) may be restated as follows.

THEOREM. If the compact fibration F — =X > B is nontrivial, then
(Qa)s: Ho (AL X5 Q) = HW(QB; Q)
is injective.
COROLLARY. The transgression 8*: H*(F; Q) > H*(QB; Q) is injective.

Proof. If (2«a), is injective, then the fibration QX X —» QB S5 Fis totally non-
homologous to zero. By the Leray-Hirsch theorem,

H*(QB; Q)=H*(QXX; Q)YRQH*(F; Q)
as modules, so 3* is clearly injective. O

Now let us consider the rational implications of these results. If F decompases
nontrivially as & X K, then it is plain that Ker 9* 0. Hence F = *, and we have
the following.
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COROLLARY 12. F=K. Hence x(F)=0.

THEOREM 13. If F5 X % B is a fibration with F and B nontrivial and quasi-
finite, then the inclusion of the fibre is inessential.

Proof. Because F=K, thereisa map o: F— QB with do =id. Theni =i(do) =
(id)o = *, since id = *. 0]

REMARK. The “usual” way to construct fibrations F— XX — B is to apply
the Hopf construction. In particular, if G is an H-space then the multiplication
G x G5 G induces

GLG*xGH TG,

where * denotes the join and m({g, ¢, h)) ={u(g, h), t). This fibration is of the
desired type since G* G = X(GAG). In this case it is clear that, even integrally,
the inclusion of the fibre is inessential. Theorem 13 expresses the fact that, ra-
tionally, this is the general case. There are examples (see {8]) of integral fibra-
tions F— X X — B with essential fibre inclusions, but they are constructed from
Moore spaces M (G, n) with G finite and therefore rationally trivialize.

We are now in a position to give a short proof of an integral result which was
originally obtained as a consequence of the transfer for fibrations ([3]).

COROLLARY 14. If
FLyxs B

is a nontrivial compact fibration with H,(B; Q) #0, then a € [ X, B] has infinite
order.

Proof. If o were of finite order, then the (nilpotent) group localization
[X, @B]=> [ X, QBo]

gives e, (a) =e-a =0. The bijections [ X, 2By] = [ Xy, 2Bg]l =[¥X X, Bo] then im-
ply g =0 as well. However (as we have seen), iy is inessential, so if o were as
well then this would imply @By = Fy. As can be readily seen, the assumption on
H,.(B; Q) forces QB to have infinite dimensional cohomology. This then contra-
dicts the compactness (i.e., quasifiniteness) of F. O

Finally, we mention the following non-existence theorem for compact fibra-
tions F—» X X — B.

PROPOSITION 15. There do not exist compact fibrations F — X X — B if either
B is a product of odd spheres or B is a wedge of odd spheres.

Proof. For B a product or wedge of odd spheres, we have QB =I1K(Q, 2/).
This is obvious for the product and follows for the wedge from Lie algebra mod-
el methods [21] or the homology decomposition approach of [18]. Hence, any
subproduct X C QB has infinite dimensional cohomology. In particular, F=K
(the Samelson space) cannot be quasifinite. |
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Now we turn to another situation where the Samelson space is nontrivial. Re-
call that a space is coformal if its homotopy type is determined by its homotopy
vector spaces together with its Whitehead product (see, e.g., [15] or [21]). Spheres
and Eilenberg—-MacLane spaces are coformal. Similarly, a map between coformal
spaces is coformal if its homotopy class is determined by its effect on the under-
lying Whitehead algebras. The following theorem was proved in [19].

THEOREM 16. If p: E — B is a coformal map, then the homotopy fibre F has a
decomposition F =X XY, where Y is a subproduct of QB and

T(Y) =Im(9y: mu (QB) - 7 (F)).

COROLLARY 17. The coformal decomposition of F coincides with that of ihe
RFDT.

Proof. For a coformal space, the kernel of the Hurewicz map consists of
“Whitehead products” (see, e.g., [15]). Because Y is a product of K(Q, n)’s, the
Hurewicz map is injective on 7, (Y). Recall that the Samelson space K is charac-
terized as the spatial model of that part of Im d; on which 4 is injective. Since
7+(Y)=1Im 9y and 4 is injective on 7,.(Y), then Y =K. O]

COROLLARY 18. If F— E 5 B is a fibration with p coformal and py not sur-
Jective, then the Samelson space is nontrivial.

EXAMPLES. The Hopf maps S' - S*> > §?and S - §7 — §* satisfy the condi-
tions of Corollary 18. The Samelson spaces are S! and S3, respectively.

4. Extensions of the method. In this section we do not assume spaces are ra-
tional, but we require that they have the homotopy type of CW complexes. It is
our intent to show that the “Samelson space method” has a place in ordinary, as
well as rational, homotopy theory.

We recall some notation first. The Hurewicz map is denoted by

h: (X)) —> Hp(X),

while G,(X) denotes the subgroup of n,(X) consisting of elements « such that
there exists a fibration X — E —» B with o« € Im(9y: 7,11 (B) » 7,(X)).

THEOREM 19. Let X =K(x,1) with H,\(w) finitely generated. If there exists
a € G(X) such that h(«) is of infinite order, then there is a finite cover of X,
X=vYxS.

Proof. Here, the Hurewicz map has the form #: 7 —» «/[7, 7] = F®T, where
F is a finitely generated free abelian group and 7 is the (finitely generated) tor-
sion subgroup.

First, assume A () is a basis element x; of F. We can construct a left inverse to
the inclusion {a) = Z 57 by first defining 8: F®T — Z = {«) such that 6(7) =0,
0(x1) =« and 8(x;) =0, and then letting ¢ =0h: m — Z. Clearly, ¢i = identity. Let
H = Ker ¢ and note that the splitting / induces a semidirect product structure = =
HKXZ, where (h, a) — ha. (The action of Z on H is conjugation in 7.) Now, by
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the definition of G,(X), there is a fibration X — E — B and 8 € w,(B) with d4(3) =
«. The holonomy of the fibration X X QB — X induces a map c: # X m,(B) >«
which has the form c(a, b) =adys(b). When restricted to the subgroup HxXZ C
T X w3(B) (where Z = {(f3)), ¢ has the form (h, 8)~ ha. Hence, HXZ > nm=HXZ
is a bijective homomorphism, so it is an isomorphism. Let Y= K(H, 1) and note
that Y x S'= X,

If A(a) is of infinite order, but not necessarily a basis element of F, then we
may define § and ¢ as before, where we require x; to have nonzero coeflicien: &
in the basis decomposition of A(«a). We then have ¢i(a)=ka. Let p: Z - Z/kZ
be projection and denote Ker(p¢) by G. Let X = K(G, 1) be the covering of X
corresponding to G w. Clearly a € G, and it is well known [10, Theorem 6-1]
that a € G;(X) as well. Also, by definition of G, we see that A(«) is a basis ele-
ment of G/[G, G]. Hence the first part of the proof applies, and we are done.

O

REMARK. Theorem 19 is somewhat artificial in the sense that it is essentially
an exercise in group theory. The component of the proof which is hidden from
view is the fact that G;(X) is contained in the center of . Hence, it is clear ex-
actly why the action in the semidirect product H X Z is trivial. Furthermore, the
holonomy of a fibration induces a homomorphism at the fundamental group level
precisely because Im 94 is contained in the center of the fibre’s fundamental group
for any fibration.

COROLLARY 20. If X = K(w, 1) is compact and there exists o € Z(w) such that
h(a) has infinite order, then x(X)=0.

Proof. By [9, Corollary 1.13] G{(X) = Z(x) (the center of 7), so we may apply
Theorem 19. Now X =Y xS, so x(X)=0. Also, x(X)=kx(X), so x(X)=0
as well. O

REMARK. Corollary 20 is a restricted form of Gottlieb’s theorem [9, Corol-
lary 1V.3]. It and Theorem 19 apply, for example, to compact manifolds of non-
positive sectional curvature. These manifolds are known to be aspherical and to
have homologically injective free abelian centers. Also, by considering the Borel
fibration associated to a group action, Theorem 19 may be applied to homologi-
cally injective torus actions.

In [10], Gottlieb showed that, if X is a suspension, then the existence of a e
G,(X) with A(a) of infinite order implies that X has the homotopy type of an
odd sphere. (In fact, it is sufficient to assume 2(«) # 0. Also, compare Corollary
3 of this paper.) Furthermore, if A(«) is a generator of H,(X), then X is homo-
topy equivalent to one of S!, S3, 7. As a final application of the “Samelson space
method” we will derive several results in a similar vein.

THEOREM 21. Let X be a simply connected n-dimensional complex with
H,(X) finitely generated. If oo € G,(X) has h(a) € H,,(X) of infinite order, then
there exists A€ Z such that X[1/X\]1=S"[1/\].



THE SAMELSON SPACE OF A FIBRATION 139

REMARKS. (i) Here, [1/\] denotes the localization obtained by inverting the
primes which occur in the prime factorization of A.
(ii) By the remark following Corollary 4, we see that n» must be odd.

Proof of Theorem 21. Because o € G,(X), there is a fibration X - E —» B and
Bem,1(B) =7,(2B) with 3;(8) =o€ 7,(X). We denote the respective repre-
sentative maps by 98, a: " —» X.

Let ¢ denote a generator of Z = w,(S") = H,(S") and note that

h(a) = h(oy(e)) = o (A(1)) = ae(t).
Also, let H,(X) = F®T, where F is the free part of H,(X) with basis { f;, f2,.--,
fx} and T is the torsion part. Because /() has infinite order, it may be written as
h(a)=M[1+ -+ + N S+, some \;#0.

Without loss of generality, we may assume \; # 0. For notational convenience
denote A\; by A.

According to the Samelson space method, we wish to construct a left homo-
topy inverse for «: S” — X. In general this cannot be done, but it is possible after
[1/X]-localization. To see this, we begin by using basic properties of localization
and the Hopf-Whitney classification theorem to obtain the following chain of
isomorphisms:

[X[1/X], S"[1/X]]1=[X, S"[1/\]]
=H"(X;Z[1/\])
= Hom (H,(X), Z[1/\]).

Define 8: H,(X)— Z[1/X] by 6(f1)=(1/N)¢, 0(f;)=0 for i=2 and §(¢)=0 for
teT. Let ¢: X[1/N]— S"[1/\] denote the homotopy class corresponding to § by
the isomorphisms above. Also, let &: S"[1/A] — X[1/\] denote the localization
of «. We then compute, using ¢, =20,
D Ox(t) = du(a (L)1)
= (h(a)®1)
=d (M S1+ -+ N S HE)RT)
=X-(1/N)¢
=t.
Because [S”[1/A], S"[1/A]]1=Z[1/\], we see that ¢& = identity.
Now, let i: Y — X[1/\] denote the inclusion of the homotopy fibre of ¢ into
X [1/A] and note that ¢& = id implies that mx(X[1/\]) = 7 (YY)D 7 (S"[1/N]) =

Imiy@Im ayg.
Once again, in accordance with the general method, consider the composition

SM1/N x Y225 QB[1/ N x X [1/N]-<> X[1/A],
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where ¢ denotes the holonomy of the localized fibration. The effect on homotopy
groups is described by

cy(By X ig)(a, b) = cy(By(a), iy(D)) = 04By(a) + iy(b) = &y(a) +iy(b).

From the decomposition of 7 (X [1/\]) given above, it is then clear that cg(8y X i3)
is an isomorphism. Consequently, X[1/A\]=S"[1/\]X Y.

Now, because X is n-dimensional, H;(X[1/\X])=0 for i > n, so H;(Y) =0 for
i=1. Hence, X[1/\]=S"[1/X\]. O

COROLLARY 22. X[1/\] is an H-space. Hence, if \ is odd thenn=1, 3, or1.

Proof. The homotopy equivalence ¢: X[1/\] = S"[1/\] is a right homotopy
inverse for

s"11/215 aBr/n1 S x[1/)].

Therefore, X[1/\] is a weak retract of the H-space 2B[1/\], so is an H-space as

well. The last statement follows from standard results on localization of spheres.
O

REMARK. The results above hold for any \; # 0 in the decomposition A(x) =
MSi+ oo + N fi+t. Thus, if any of the \; are odd, then n=1, 3, or 7.

COROLLARY 23. If h(«) is a generator of H,(X) of infinite order, then X has
the homotopy type of S', S3, or S’.

Proof. If h(a) is a generator, then some \; =1. Hence Z[1/\;] = Z and the lo-
calized homotopy equivalence is actually integral; X = S”. By Corollary 22, n=
1, 3, or 7. |

REMARK. Corollary 23 does not require localization methods or the simple
connectivity of X. A proof modeled on that of Theorem 21 shows X =S", and
an argument similar to that given in the proof of Theorem 13 shows that X is
an H-space. Hence, X =S, $3, or S7 since these are the only spheres which are
H-spaces.
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