ALGEBRAIC APPROXIMATION OF MAPPINGS
INTO SPHERES
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1. Introduction. Let X C R" and Y C R” be real algebraicsets. Amap f: X > Y
is said to be a polynomial map if it is the restriction to X of a polynomial map
from R” to R?. We say that a map f: X — Y is entire rational if there exist poly-
nomials f; and g; in R[ x4, ..., x,], g,-_l(O)ﬁX= @g,i=1,..., p,such that f(x)=
(Sfi(x)/g1(x), ..., [r(x)/gp(x)) for x in X. Very little seems to be known about
polynomial and entire rational maps between real algebraic sets, their classifica-
tion, the relationship with other classes of maps, etc. In this paper we address
some of these questions for entire rational maps, mostly in the case Y=8%=
{yeR! |y12+ .-+ +y#,1=1}, the unit sphere. A different behavior of polyno-
mial and entire rational maps is often a characteristic feature.

We denote by R(X, Y) the set of entire rational maps from X to Y. If X and
Y are compact and nonsingular, we denote by §(X, Y) the set of smooth (i.e.,
C*) maps from X to Y equipped with the C* topology.

THEOREM 1.1. For each positive integer n, the set ®(S",S*) is dense in
&(S", S*), provided that k=1, 2 or 4.

This theorem contrasts with a result of Wood [18] saying that every polyno-
mial map from S” to S¥ is a constant map if n=2"> k.

We note that in Theorem 1.1, S$” cannot be replaced by an arbitrary compact
nonsingular real algebraic set.

EXAMPLE 1.2, It is shown in [13] (cf. also [5]) that for each pair (n, k) of
positive integers there exist a nonsingular real algebraic set X, a smooth diffeo-
morphism ¢, ;: X — S"x S¥, and a point sp in S* such that Y= en k(S" X {50})
is a smooth submanifold of X which cannot be isotoped in X to a nonsingu-
lar algebraic subset of X. It follows, by using Thom’s isotopy lemma [1], that
oy ks X — S* where w:S8"xS*— S¥ is the natural projection, cannot be ap-
proximated by entire rational maps from X to S*. If k=1, 2, or 4, then ToPn, k
is not homotopic to an entire rational map. The last observation follows from
the next theorem.

THEOREM 1.3. Let X be a compact nonsingular real algebraic set and let
f: X - S* be a smooth map. If k=1, 2, or 4, then the following conditions are
equivalent: - '

(i) f can be approximated in the C® topology by entire rational maps from
X to S*.
(ii) f is homotopic to an entire rational map from X to S*.
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We do not know whether the assumption “k =1, 2 or 4” in Theorems 1.1 and
1.3 is necessary.

We shall more closely examine maps into S' and S2. Given a compact non-
singular n-dimensional real algebraic set X, we denote by H2'8(X, Z,) the sub-
group of H, (X, Z,) of homology classes represented by k-dimensional algebraic
subsets of X ([2], [3], [5], [6]) and by H}i; “(X, Z,) the subgroup of H" %X, Z,)
of cohomology classes corresponding, via Poincaré duality, to homology classes
in HF'(X,Z,).

THEOREM 1.4. Given a compact nonsingular n-dimensional real algebraic set
X and a smooth map f: X — S, the following conditions are equivalent:
(i) fcan lfe approximated in the C* topology by entire rational maps from
XtoS'.
(ii) For any regular value y of f the homology class represented by f “Y(y) in
H,_1(X,Z,) belongs to H¢,(X, Z,).
(iii) f*(u) belongs to Hbs(X,Z,), where f*: H\(S',Z,) > H\(X, Z,) is the
homomorphism induced by f and u is a generator of H'(S', Z,).

COROLLARY 1.5. Let X be a compact nonsingular one-dimensional real alge-
braic set. Then ®(X, S) is dense in §(X, S").

Proof. By definition, H;;g(X ,Z,)=H(X,Z,). The conclusion follows from
Theorem 1.4. O

There are no such neat results for maps into S2. However, we have the fol-
lowing.

THEOREM 1.6. Let X be a compact nonsingular real algebraic set and let
f: X — 8? be a smooth map. If f*: H*(S%, Z) - H*(X, Z) is the zero homomor-
phism, then f can be approximated in the C* topology by entire rational maps
from X to S2.

The case of maps from surfaces to S2 deserves special attention. Given a closed
smooth n-dimensional submanifold Y of a compact smooth 2n-dimensional man-
ifold X, we denote by #,(Y, Y; X) the modulo 2 self-intersection number of Y in
X [10, pp. 132-133].

THEOREM 1.7. Let X be a nonsingular two-dimensional real-algebraic set.
Assume that X is compact, connected, and nonorientable as a smooth manifold.
Then ®R(X, S?) is dense in &(X, S?) in each of the following cases:

(i) There exists an algebraic nonsingular curve C in X such that

#(C,C; X)=1.

(i) H{®(X,Z,)=H\(X,Z).
(iii) The genus of X (as a smooth surface) is odd.

We should mention that the assumption “X is nonorientable” in Theorem 1.7
is essential. Indeed, in [8] we generalize Loday’s result [14], concerning poly-
nomial maps, showing that every rational map from S % S! to S? is null homo-
topic. Thus ®R(S'x S, S?) is not dense in &(S'x S, $%). On the other hand
there exists a nonsingular real algebraic set X diffeomorphic to S!x S! such that
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®R(X, S?) is dense in (X, S?) [8]. We do not know if there exists a nonsingular
two-dimensional real algebraic set X such that X is compact, connected, and
nonorientable as a smooth manifold and ®(X, S?) is not dense in §(X, S?). We
note that, in general, condition (ii) of Theorem 1.7 is not satisfied [13].

All theorems stated in this section are proved in Section 2 by making use of
some results on Grassmannians and algebraic vector bundles.

2. Entire rational maps into Grassmannians. Let us start with a description of
affine real algebraic models of the Grassmannians over F, where F =R, C, or H
(the quaternions). Since the case F = R has been considered in [2] and the other
cases are similar, we shall give only a short, uniform treatment of all three cases.

Let d(F)=dimg F, that is, d(R) =1, d(C) =2, and d(H)=4. On the (right)
F-vector space F” we define the inner product by

n
(x,.J">= ‘E]yixi’
i=
where x = (xy, ..., xp) and y = ()1, ..., Yn). For z in F, Z denotes the conjugate of
z. Let M(n, F) be the space of all » X n matrices with coefficients in F. We iden-
tify, using the canonical basis in F”, elements of M(n,F) with (right) F-linear
endomorphisms of F”. An F-linear endomorphism A4: F” — F” is said to be self-
adjoint if A =A* where A*: F" - F”" is the F-linear endomorphism defined by
the condition {(Ax, y)={x, A*y) for all x and y in F”. If A is identified with the
matrix (a;;), then A* corresponds to (@;;). Recall that each F-vector subspace V'
of F” of dimension p determines the F-linear orthogonal projection A: F" - F”
onto V. This map satisfies the conditions: 4% =4 =A* and trace 4 =p. Con-
versely, any F-linear map A: F” — F” satisfying these conditions is the orthog-
onal projection of F” onto the p-dimensional F-vector subspace A(F") of F".
For p < n define

Gnp(F)=[AeM(n,F)|A*= A= A*, trace A=p]}.

The above remarks imply that G, ,(F) can be considered as the Grassmannian
of p-dimensional F-vector subspaces of F”. Canonically identifying M (n, F) with
R9F)72 gne can consider G, ,(F) as a real algebraic subset of R? (F)n? Moreover,
one checks easily that G,, ,(F) is nonsingular. We shall always regard G,, ,(F) as
a real algebraic nonsingular set with real algebraic structure described above.

REMARK 2.1. One can consider the category of real algebraic varieties and
regular maps in the sense of Serre [15] (Serre considers algebraic varieties over
an algebraically closed field but his definitions make sense over any field). One
shows easily [6] that if X and Y are algebraic subsets of R” and R”, respectively,
then a map from X to Y is regular if and only if it is entire rational. The Grass-
mannians G, ,(F) have the natural structure of a nonsingular abstract real alge-
braic variety. One can identify this abstract real algebraic structure with the
affine structure described above (cf. [6]).

The results of this paper depend on the knowledge of the structure of algebraic
vector bundles over real algebraic sets. We shall briefly recall a few definitions
and properties. Details can be found in [4] and [6].
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An analytic F-vector bundle ¢ =(E, n, X)) of rank p over a real algebraic set
X is said to be an algebraic ¥-vector bundle if the total space E is a real algebraic
variety in the sense of Serre [15], the projection n: E — X is a real regular map in
the sense of Serre [15], and there exists a Zariski open covering {U;} of X and,
for each i, a commutative diagram

Li

U; xF? x~}(U)

v, /-

Ui

where ¢; is a real algebraic isomorphism which is F-linear on each fiber. One can
define in the natural way the notions of a homomorphism, monomorphism, iso-
morphism, etc., of algebraic F-vector bundles. The experience shows that the
class of all algebraic vector bundles over X is too large ([5], [6]). We shall only
consider so-called strongly algebraic vector bundles ([4], [6]). An algebraic F-
vector bundle £ over X is said to be strongly algebraic if there exists an algebraic
F-vector bundle » over X such that the direct sum £¢@®y is algebraically isomor-
phic to a trivial F-vector bundle over X. Note that the total space of a strongly
algebraic F-vector bundle over X is an affine variety.

EXAMPLE 2.2. The natural F-vector bundle vy, ,(¥) = (E(vyp, p(F)), 7, Gp, p(F))
over G, ,(F) defined by

E(vn,p(F))={(4,x) € Gy p(F)XF" | Ax=x}, w(4,x)=A

is strongly algebraic ([4], [6]). More generally, if f: X — G, ,(F) is an entire ra-
tional map, then the pullback vector bundle f*v, ,(F) is strongly algebraic. In
fact, each strongly algebraic vector bundle over X is of this type ([4], [6]).

We need to collect a few results concerning strongly algebraic vector bundles.

PROPOSITION 2.3. Let X be a compact nonsingular real algebraic set.

(1) If & is a strongly algebraic F-vector bundle over X, then every smooth sec-
tion of £ can be approximated in the C* topology by algebraic (i.e., reg-
ular) sections.

(2) If & and v are strongly algebraic F-vector bundles over X and ¢: &£ — 7 is
an algebraic monomorphism of ¥-vector bundles, then ¢(£) is a strongly
algebraic vector bundle over X. Moreover, if rank £ =p and n=X X F" is
a trivial F-vector bundle, then the map f: X — G,, ,(F) defined by f(x) =
p(e(&y)) forall x in X, where &, is the fiber of £ overxand p: X XF" > F"
is the natural projection, is entire rational.

(3) If & and v are strongly algebraic F-vector bundles over X, then the F-vec-
tor bundle Hom (&, n) is strongly algebraic.

(@) If a continuous F¥-vector bundle ¢ over X is stably C?® isomorphic to a
strongly algebraic ¥-vector bundle, then £ is C 0 jsomorphic to a strongly
algebraic F-vector bundle.

Proof. See [4] or [6].
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EXAMPLE 2.4. Every continuous F-vector bundle over the unit z-sphere S” is
c’ isomorphic to a strongly algebraic F-vector bundle (cf. [9] for F=R or C and
[17] for F = H and Proposition 2.3(4)).

The next result plays an important role.

THEOREM 2.5. Let X be a compact nonsingular real algebraic set and let
S X — Gy, p(F) be asmooth map. Then the following conditions are equivalent:
(i) fcan be approximated in the C* topology by entire rational maps from
X to G, p(F).
(ii) fis homotopic to an entire rational map from X to G, ,(F).
(iii) The pullback smooth F-vector bundle f*v, ,(F) is C® isomorphic to a
strongly algebraic ¥-vector bundle over X.

Proof. The implications (i) = (ii) = (iii) are well known. We shall show (iii)= (i)
using Proposition 2.3.

Let v =1, ,(F) and let £ be a strongly algebraic F-vector bundle over X which
is C° (hence also C*) isomorphic to f *~. Consider f*y as a smooth F-vector
subbundle of the trivial vector bundle ¢” = X X F”". Clearly, there exists a C*
monomorphism ¢: £ — €” of F-vector bundles mapping the fiber £, of £ onto the
fiber (f*v)x=[{x}Xvsx) of f*vy for all x in X. The F-vector bundle Hom(£,¢")
is strongly algebraic and ¢ defines the C* section s, of Hom(¢, €") satisfying
So(x)(e)=¢(e) for all x in X and e in £,. Let u be an algebraic section of
Hom(¢, €") approximating s,,. If « is sufficiently close to s,,, then u = s, for some
uniquely determined algebraic monomorphism of F-vector bundles ¢: £ - €”. It
follows that the map g: X — G, ,(F) defined by g(x) = p(¥(&x)) for x in X, where
p: X xXF" - F" is the standard projection, is entire rational. Clearly, g approxi-
mates f. O]

REMARK 2.6. A different proof of Theorem 2.5 for F =R can be found in
[12].

COROLLARY 2.7. The set ®(S", G, p(F)) is dense in E(S™, G,, ,(F)) for all
m,n, p with n=p.

Proof. 1t follows from Theorem 2.5 and Example 2.4. O
We need one more preliminary observation to prove the results of Section 1.

LEMMA 2.8. The d(F)-dimensional unit sphere S®® and the Grassmannian
G,,1(F) are algebraically isomorphic, that is, there exists an entire rational bijec-
tion $(F): S?F) — G, |(F) such that the inverse map ¢(F) ™ is also entire rational.

Proof. Note that

Gy,1(F)= {(g 1 fa

and define ¢(F): S9®) - G, ;(F) by

1 /71— i
<MFxmur=5( o« lja)

aemALﬂemeV=au—a@
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for (o, u) in S“P={(xe RxF| lx]| =1}. Then ¢(F) is a polynomial map and the
inverse map given by

&(F) 1(A)y=(1-2a,28) for A= (; I—Ba) in G, ;(F)

is also polynomial. (]
Denote by yq(r) the strongly algebraic vector bundle ¢(F)*vy, ;(F) over SIE

Proof of Theorems 1.1 and 1.3. The conclusion follows from Theorem 2.5,
Lemma 2.8, and Example 2.4. O

Proof of Theorem 1.4. The R-line bundle f*v,; is C° isomorphic to a strongly
algebraic R-line bundie over X if and only if its first Stiefel-Whitney character-
istic class wi(f*vy1) =/f*(u) belongs to Hallg(X, Z,) (5], [16]). Thus the equiva-
lence (i) < (iii) follows from Theorem 2.5 and Lemma 2.8. If y is a regular value
of f, then the homology class represented by f ~!(») in H,,_ (X, Z,) is Poincaré
dual to f*(u). Thus (i) (ii) is obvious. U

Proof of Theorem 1.6. Note that the C-line bundle f*v, over X is C? trivial.
This is so since the first Chern characteristic class of f*vy, vanishes [11]. We con-
clude the proof by applying Theorem 2.5 and Lemma 2.8. O

Proof of Theorem 1.7. (i) Let £ be a continuous R-line bundle over X whose
first Stiefel-Whitney characteristic class w;(£) corresponds, via Poincaré dual-
ity, to the homology class represented by C in H;(X, Z,). Since w;({¢) belongs
to H;lg(X ,Z,), we may assume that £ is a strongly algebraic R-vector bundle
([5], [16]). Note that the second Stiefel-Whitney characteristic class wy(§®£) =
wi(E)Uw(&) of E@E corresponds, via Poincaré duality, to the intersection of
the homology class represented by C with itself. Thus wo(§@ £) is different from
zero and the R-vector bundle ¢@ ¢ is not C° trivial. Clearly, £®C is a strongly
algebraic C-line bundle over X which is not C?° trivial. Since H*(X,Z)=Z,,
every continuous C-line bundle over X is either C? trivial or C° isomorphic to
EXC [11]. It suffices to apply Theorem 2.5 and Lemma 2.8.

(ii) Clearly, there exists a closed smooth curve C in X having the band of
Moébius as a tubular neighborhood. Of course, #,(C, C; X)=1. By [5] or [16],
we may assume that C is an algebraic nonsingular curve. Thanks to (i), the con-
clusion follows.

(iii) By [5], [7], or [16], there exists a nonsingular algebraic curve C in X whose
homology class in H{(X, Z,) is Poincaré dual to the first Stiefel-Whitney charac-
teristic class of X. Obviously, #,(C, C; X)=g(mod2), where g is the genus of
X. The proof is complete since g is odd. 0J

We conclude this paper by making the following observation.

REMARK 2.9. Theorems 1.3, 1.6, and 2.5 remain true if one drops the assump-
tion “X is nonsingular,” replaces smooth maps by continuous maps, and replaces
the approximation in the C* topology by the approximation in the C° topology.



ALGEBRAIC APPROXIMATION OF MAPPINGS INTO SPHERES 125

REFERENCES

" 1. R. Abraham and J. Robbin, Transversal mappings and flows, Benjamin, New York,
1967.

2. S. Akbulut and H. King, The topology of real algebraic sets, Enseign. Math. (2) 29
(1983), 221-261.

, Submanifolds and homology of nonsingular real algebraic varieties, Amer.

J. Math. 107 (1985), 45-83.
4. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104
(1980), 89-112.

, Remarks and counterexamples in the theory of real algebraic vector bundles
and cycles. Real algebraic geometry and quadratic forms (Rennes, 1981), 198-211, Lec-
ture Notes in Math., 959, Springer, Berlin, 1982.

6. J. Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réele, Ergeb. Math., to
appear.

7. J. Bochnak, W. Kucharz and M. Shiota, Divisor class groups of some rings of global
real analytic, Nash or rational regular functions. Real algebraic geometry and quad-
ratic forms (Rennes, 1981), 218-248, Lecture Notes in Math., 959, Springer, Berlin,
1982.

8. J. Bochnak and W. Kucharz, Representation of homotopy classes by algebraic map-
pings, J. Reine Angew. Math., to appear.

9. R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222-225.

10. M. Hirsch, Differential topology, Springer, New York, 1976.

11. D. Husemoller, Fiber bundles, 2nd ed., Springer, New York, 1975.

12. N. Ivanov, Approximation of smooth manifolds by real algebraic sets, Russian Math.
Surveys 37 (1982), 1-59.

13. W. Kucharz, On homology of real algebraic sets, Invent. Math. 82 (1985), 19-25.

14. J. L. Loday, Applications algébriques du tore dans la sphére et de SP X S dans S?*+14.
Algebraic K-theory, II: classical algebraic K-theory and connections with arithmetic
(Battele Memorial Inst., 1972), 79-91, Lecture Notes in Math., 342, Springer, Berlin,
1973.

15. J. P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197-278.

16. M. Shiota, Real algebraic realization of characteristic classes, Publ. Res. Inst. Math.
Sci. 18 (1982), 995-1008.

17. R. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230
1977), 201-234.

18. R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163-168.

Vrije Universiteit Department of Mathematics and Statistics
Department of Mathematics University of New Mexico

P.O. Box 7161 Albuquerque, New Mexico 87131

1007 MC Amsterdam USA

The Netherlands






