HOLOMORPHIC FUNCTIONS ON THE POLYDISC
HAVING POSITIVE REAL PART

John N. McDonald

Let D denote the open unit polydisc in C" and let
®n={f | f is holomorphic on D", Ref>0, and £(0)= £(0,0,...,0)=1}.

Of course @, is compact in the topology of uniform convergence on compacta.
Thus, it follows from the Krein-Milman theorem that @, is the closed convex
hull of its extreme elements. In the case N =1 the extreme elements of @y are
easily found via Herglotz’s theorem. For N > 1, however, a complete description
of the extreme elements of @y is not known, although Forelli has found a nec-
essary condition for a member of ®5 to be extreme. (See [1].) Forelli [1] and
McDonald [3; 4] have also constructed several examples of extreme elements of
@,.

In this paper, we study certain faces of the convex set ®». We recall that a face
F of a convex set S is a convex subset which satisfies: (¢, x, ¥) € (0,1) X SX S and
cx+(1—c)y e F together imply x, y € F. For our purposes, it is important to note
that an extreme point of the face F is also an extreme point of S. For each xe S
there is a smallest face & (x) containing x. &(x) is simply the union of all line seg-
ments from S which contain x as a relative interior point. If S is a compact con-
vex subset of some locally convex vector space, then the closed faces will always
contain extreme elements. Faces of the form &(x) are, however, not closed in
general, but, if it can be shown that F(x) is finite-dimensional, then F(x) will
necessarily be closed. Furthermore, if it is known that F(x) is finite-dimensional,
then it follows from a theorem of Carathéodory that x can be written as a finite
convex combination of extreme elements of S. (See, e.g., [5].)

Our main result is that F(G) is a finite-dimensional face of 5 when G is
of the form G=(1+g)/(1—g), where g is a rational inner function satisfying
g(0) =0. We also show that each member of F(G) is the Cayley transform of a
rational inner function and that the set of extreme elements of sets of the form
F(G) is dense in the set of extreme elements of @, . Finally, we study some par-
ticular examples of faces of the form F(G).

1. The main result. In this section g will denote a rational inner function on
D" which satisfies g(8) = 0. It is known that g must have the form

1) g=MQ"/Q,

where Q is a polynomial having no zero on D”, where

Q*(Z)=Q*(le-"szN) = Q(l/zl’ cevy I/ZN)s
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and where M is a monomial such that AM/Q* is a polynomial. (See [6, Th. 5.2.5].)
The notation 6(g) will be used to denote Hj-v=1 (d(j)+1), where d(j) denotes the
degree of the monomial M in z;.

When F is a function on D and ¢ belongs to TV ={(£}, &2, ..., En) | || =1
for j=1,2,..., N}, the expression F; will indicate the function defined on D'by
Fr(z)=F(z¢). If Fy happens to have radial limits at almost every point of the
unit circle 7!, the function given by F¢(z) for z e D! and by lim, _, ;- Fe(rz) for
z € T will also be denoted by F¢. Finally, in the case of the inner function g above
it is important to observe that g; is a finite Blaschke product.

We are now ready to state our main result.

THEOREM. Let G=(14g)/(1—g). Then the (real) dimension of the face F(G)
is =6(g)—2.

Proof. It will be shown that every function in F(G) is of the form

_1+g+v/Q
=1 p
where v is a polynomial which vanishes at # and satisfies

) F

»

3) Mvo=v in TV

The theorem will then follow from the fact that the set of polynomials satisfying
(3) and vanishing at @ is a real vector space having dimension 6(g)—2.

To verify (2) it should first be observed that a function F in @5 belongs to F(G)
if and only if F is of the form F= G+ U, where U is holomorphic on D" and,
for some a>0, G—aUe ®n. Let ¢ e TV. By the classical theorem of Herglotz

E+z
Gi(2) = | T du(® =4"(2),
£—z
where p is a positive measure on the circle. (¢ of course depends on {.) Likewise
F§~= G;—+ Ug—'-: I.Lif. Then

4) m << p

because

a 1
G= m(G+U)+m(G—aU).

Put A=p;—pu; then Uy = M. By (4) g =1 almost everywhere with respect to A.
Thus, letting u = (1 —g)U, it can be asserted that

£E+z

£—z

Hence, u; is bounded in the disc D' because g; is holomorphic on D'. Conse-
quently, u; has radial limits a.e. on 7.

Because Re U; vanishes almost everywhere on T, so does Re((1 —Z:)uy)=0,
that is, Reu; = Re(g; u;). In other words uy+ iy = gy uy + g iy, hence

us(2) = | (8:(8) — gr(2)) T dN(H).
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(1—gur=(g— Dy =(1—-8;) 8 Uy
because g; g, =1 in T, which means that

S) gcily=u; a.e. in T
By (1), g; =M. O /Q; in T'. Thus, by (5),
(6) M Qcur=Qru; a.e.in T\

Put v = Qu, and let k& be the degree of the monomial M. Because v is holomor-
phic in DV, v =37, v, there, where the fth term of the series is a homogeneous
polynomial of degree £. Then I¢_, ve(¢)e’!’ is the Fourier series of the bounded
function v¢, and SEZL o M(E) Tk o($)e'™ is the Fourier series of M. v.. Hence,

by (6),

Q) v($)=0 if £=k,
while
(®) v ($) =M (v (§) f 1=f=k-1

The constraint (7) means that v is a polynomial. Then (3) follows by (6), or by
(7) and (8). Finally, (2) follows from

v/Q _
1—g o

U. L]

2. Corollaries and examples. In this section G and g will continue to be as in
Section 1.

COROLLARY 1. Let Fe §(G). Then F is of the form F= (1+ f)/(1—f), where
f is a rational inner function.

Proof. By (2),

1-g
where v is a polynomial satisfying (3), or (equivalently) satisfying
(10) Mv*=v
and vanishing at 0. Let f be the Cayley transform of F, that is,
a1 S=F-1)/(F+1).
Then |f|<1in DY because Re F> 0 there. By (9), (10), and (11),
e 2g+v/0Q
24v/Q
_2MQ*+v
2Q0+v
_ MQQ*+v¥)

20+v '’
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which implies that the radial limit of f is unimodular. Thus f, like g, is a rational
inner function. Furthermore F=(1+1)/(1—f). O

If g is a rational inner function such that G =(1+g)/(1 —g) is an extreme ele-
ment of @y, then of course the dimension of F(G) is 0. But the following shows
that the bound 8(g)—2 for the dimension of F(G) can be attained.

COROLLARY 2. If g is continuous on DV, then the dimension of F(G) is
o(g)—2.

Proof. If g is continuous on D®, then without loss of generality we may as-
sume that |Q| = % there. (See [6, Th. 5.2.5.].) This means that if v is a polynomial
and if Mv* is too, then M(2Q*+v*)/(2Q+v) is bounded by 1 in DV, provided
|v| <1 there. In other words, if v vanishes at # and satisfies (10), and |v| <1in
DN, then the right side of (9) belongs to F(G). It follows immediately that the
dimension of F(G) is 6(g)—2. |

COROLLARY 3. Let G and g be as in Section 1. Then every element of F(G)
can be written as a convex combination of at most k extreme elements of F(G),
where Kk <6(g)—1.

Proof. By our main result, there is a real vector space W of holomorphic func-
tions on D" of dimension = &(g)—2 such that F(G) = (G +W)N®y. It follows
that §(G) is a compact convex subset of @x. Also, a result due to Carathéodory
implies that each G| € F(G) can be written as a convex combination of at most
6(g)—1 extreme elements of F(G). |

Since F(G) is a face of @y, it follows that the set ex F(G) of extreme elements
of F(G) is contained in the set ex @y of extreme elements of ®@y. Thus,
ex®n2 U exF(G),
GegG

where G consists of all members of @y of the form G = (1+g)/(1—g), where gis
a rational inner function.

COROLLARY 4. Ugeg ex F(G) is dense in ex ®y.

Proof. Let He ®@y. We can write H = (1+h)/(1—h), where £ is holomorphic
on DV, vanishes at 0, and satisfies |#| =1. By [6, Theorem 5.1] we can find a se-
quence {g,} of rational inner functions which vanish at 8 and converge uniformly
on compact subsets of D™ to A. Let G, = (1+g,)/(1—g,). By Corollary 3 there
are extreme elements Fy,, Fo,, ..., Fyinyn of F(G,) such that

G,=ayFintoz, Fop+ --- +al’(n)nF!’(n)ns

where a/ =0 and ¥ of =1. It follows that A belongs to the closed convex hull
of Ugeg exF(G).

We can now apply Milman’s converse to the Krein-Milman theorem to assert
that Ugeg ex F(G) is dense in ex ®y. (See, e.g., [5].) O

REMARK. Corollaries 1 and 4 combined with the main result of Forrelli’s paper
[1] yield the existence of a class S of irreducible rational inner functions such
that {(1+g)/(1—g)| g€ S} is a dense subset of @n.
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EXAMPLE 1. We consider the function

14+2zw
1—zw’

Go(z, w) =

By preceding discussions, F(Gg) consists of all functions of the form

1+zw+u(z,w
(12) Gz, w) = (z,w)
1—2zw

where G, € @,, where

14+zw—au(z, w) e
1—2zw

(13) )

for some positive constant ¢ > 0, and where u satisfies

(14) wu(z, w)=u(z, w)

for all (z, w) e T2. Condition (14) implies that « is of the form
u(z,w)=cz+cw,

where c is a constant. Conditions (12) and (13) can therefore be reformulated as

(15) 0 <1—|z|?|w|?+ (1—|w|?) Re(cz) + (1—|z|?) Re(cw)
and

(16) 0<1—|z|?|w|>*—a(1—|w}?) Re(cz) —a(l—|z|*) Re(cw)
respectively, where (z, w) e D?. Now (15) and (16) are equivalent to
(17) 0<1—|z[*|w|>*—(z|A—|w|>) +|w|(1—]|z]|*))|c]

and

(18) 0<1—|z|*|w]®=(|z|(A1—[w|*) +|w|(1—|z[*)a]c]|.

But (17) and (18) hold for some a > 0 if and only if
(19) |c| < I_M
2|+ |w]|

for all (z, w) e D?. From (19) it becomes clear that |c| <1 and that the extreme
elements of §F(Go) are exactly the functions of the form

14+ zw+e'%z+e ®w

Gu(z,w)=

1—2zw
_(+ez)(1+e w)
- 1—zw ’

where a € [0, 27]. —

EXAMPLE 2. Let g be an inner function on D!. For simplicity’s sake, we will
assume that g(0) = 0. We consider the element of @, defined by )



82 JOHN N. MCDONALD

_ 1+zg(w)

1—zg(w)’
It follows from the proof of Theorem 1 of [4] that F(G) consists of all functions
of the form

G(z,w)

20) Gila, w) = o O Fi(w),
where F is a function in the Hardy space H,(D") satisfying
(1) F(e®)g(e®)=0 a.e.

and

22) @m [ Fengedo=1,
and where

el 4w
el —w

Fi(w)=2x)"! S;’r ( )F(e"ﬂ)g(e“’) de.

Another consequence of the proof of Theorem 1 of [4] is that G| € ex F(G) if and

only if F is an outer function.

EXAMPLE 2(i). We now consider the case where the inner function g of exam-
ple 2 is an infinite Blaschke product

© Xy xp—WwW

gw)y=w — .
k=1 |0lkl I—OlkW
For N=1,2,... we let
N ~ —_
hN(W)=W (042 Ozk_W
k=1 Iotkl l—akw

and
en(w)=gw)/hn(w).
Next, we define
Fn(w)=g(w)+(gn(w)+g(w)hn(w))/2.

It is not hard to show that F)y satisfies conditions (21) and (22). Replacing F by
Fy in (20), we obtain the expression
hAn(w)+zgn (W)

1—zg(w) )

Gin(z, W) =Gy (z, W)+
Since the infinite set of functions {Ay(w)+zgny(W) | N=1,2,...} is linearly inde-
pendent, it follows that the face F(G) is not finite dimensional.

EXAMPLE 2(ii). Next, we consider the case where g(w)=w?2. It is not hard
to show that functions which satisfy (21) and (22) must have the form
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(23) Fap(w)=a+bw+w?+bw?+bw?.
Using (23) in (20), we obtain the expression

14+ 2bw+2az+2aw?+2bzw+ azw?
1—zw? )

Gap(z, W) =

It is clear that G, is an extreme element of F(G) if and only if e “2°F,, (%) is an
extreme element of the class Q, of non-negative trigonometric polynomials hav-
ing constant coefficient 1. The extreme elements of O, have been determined in
[3]. They are exactly the members of Q, of the form

g(e)y=Ale+ N |2 |e”+ ;)%
where [\| =|N;|=1and

2. .
A '=(2nr) ! SO le?®+ X% |e®+ N, | dé.

Two special examples of interest are as follows:

Fiss,23(w)=(1+w)%/6
and

Fij2,0(w) =(w?+1)%/2.
The corresponding members of (G) are as follows

1+ (1/3)z24+(4/3)w+(1/3)w?+(4/3)zw + zw?
1—2zw?

Giss,2/3(z, W)=

and

1+z+w2+zw?
1—zw?2

_ (1+2)1+w?)

o 1—zw2

Gi2,0(z, W)=

(Of course, Gy,2/3 and G, /3,0 are extreme elements of F(G).) We observe that

(I+zw)(1+w) 3 1 .
1—2w? = 'ZGI/G,.Z/3(Z’ w)+ 1 G1/2,0(—2, iw).

Since Gy/3,0(—2, iw) e F(G), we deduce the failure of Theorem 1 of [4] in the
case where g is allowed to depend on both z and w.

OPEN QUESTION. Is there some simple way of characterizing the extreme ele-
ments of F(G)?
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