AN ALTERNATIVE PROOF AND APPLICATIONS OF
A THEOREM OF E. G. EFFROS

Fredric D. Ancel

1. Introduction. We present an alternative proof of a theorem of E. G. Effros.
Our Theorem 1 is a version of Theorem 2.1 of [8]. Our proof of Theorem 1is of a
topological nature, whereas the proof of Theorem 2.1 in [8] has a more analytic
character.

Theorem 2.1 of [8] has become a well-known and valuable tool in the study of
topological homogeneity and properties of continua. It has been exploited by
topologists in many ways beginning with the papers [15], [10], and [13]. Part of
the justification for presenting our alternative proof of Effros’ theorem is that
our proof may be more accessible to the topologists who use the result.

Section 2 of this paper presents the statement of Theorem 1 preceded by the
basic definitions needed to understand it. In particular, the concept of micro-
transitivity, which is essential to Theorem 1, is introduced.

The proof of Theorem 1 appears in Section 3. The proof of Theorem 2.1 in [8]
relies on the concept of a Borel section and on theorems concerning its existence.
Instead of using these ideas, our proof employs an ingenious technique which
was introduced by Homma in [12], and which played an important role in the
study of tame and wild embeddings in manifolds in the 1960’s and 1970’s.

The proof in Section 3 was independently discovered by Torunczyk (unpub-
lished). He refers to this result as the Open Mapping Principle. This name is in-
spired by comparison with the fundamental result of functional analysis known
as the Open Mapping Theorem. Indeed, there is a strong resemblance between
the proof in Section 3 and the proofs of the Open Mapping Theorem found in
standard functional analysis texts. (For instance, see [7, Theorem 1, p. 55].) We
reinforce this comparison by showing, in Section 4, that the Open Mapping The-
orem is an easy corollary of our Theorem 1.

Section 4 also contains a deduction of Theorem 2.1 of [8] from Theorem 1.
This deduction requires some argument because Theorem 2.1 of [8] involves is-
sues which at first glimpse don’t appear to be covered by Theorem 1.

In Section 5, the notion of micro-homogeneity is introduced. Theorem 1 has
implications that relate the homogeneity and micro-homogeneity of a topolog-
ical space. Theorem 2 sets forth conditions under which these implications are
valid. Limitations to the applicability of Theorem 1 in this context are illustrated
by two examples. Some questions concerning the relation between homogeneity
and micro-homogeneity are posed.

At one point, the proof of Theorem 1 relies essentially on a result of Haus-
dorff. Hausdorff’s theorem, which appeared in [11], says that a metrizable open

Received October 2, 1985. Revision received January 14, 1986.
Partially supported by a grant from the National Science Foundation.
Michigan Math. J. 34 (1987).

39



40 FREDRIC D. ANCEL

image of a complete metric space has a complete metric. Though this result is of
a fundamental nature, it has not been reproduced in any of the standard topol-
ogy texts. In order to provide the reader with easy access to a modern proof of
this classical result, we have appended such a proof as Section 6.

The appearance of Homma’s technique in the proof of Theorem 1 suggests
that Theorem 1 may have applications to tame and wild embeddings in mani-
folds. This is indeed the case. In [3] (now in preparation), the notion of a micro-
unknotted closed embedding is introduced and is related to Theorem 1. It is
shown that a fame closed embedding of a k-manifold in an #-manifold is micro-
unknotted if and only if & # n— 2. The micro-unknottedness of wild embeddings
is also explored. It is shown that some wild embeddings of S?into S? (such as the
Alexander Horned Sphere [1]) are micro-unknotted, while others (e.g., a certain
Fox-Artin wild sphere [9]) are micro-knotted.

I would like to express my gratitude to Charles Hagopian for first telling me
the intriguing statement of Effros’ theorem and for not telling me a proof, to
David Bellamy and Henryk Torunczyk for helpful and stimulating conversations
on topics related to this paper, and lastly to Judy Kennedy for encouraging me to
write the paper. (See [14].)

2. Basic definitions and the statement of Theorem 1. A topological group is
a group G endowed with a topology which makes the following two functions
continuous:

(g,h)~gh:GXxG—>G and g-g ':G-G.

An action of a topological group G on a topological space X is a continuous
function

(g, x)—gx:GXX—-X

such that (idg)x=x for every xe X and g(hx)=(gh)x for g,he G and xe X.
Observe that for each g e G, the map x~ gx: X —» X is a homeomorphism whose
inverse is the map x - g 'x: X - X.

We introduce some useful terminology. Suppose a topological group & acts on
a topological space X. For H, KC G and Y C X, define

HK={hk:he H and ke K},
H '={h ':heH), and
HY=f{hy:he H and ye Y}/.
In addition, for ge G and x € X define
gH=\{glH, Hg=H{g}, gY={glY, and Hx=H{x}.

Suppose a topological group G acts on a topological space X. The action of G
on X is transitive if Gx = X for each x € X. The action of G on X is micro-transi-
tive if for every x € X and every neighborhood U of idg in G, Ux is a neighbor-
hood of x in X. (In this paper, a neighborhood of a point in a topological space
means a subset of the space which contains the point in its interior; a neighbor-
hood ne=d not be an open set.)
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A subset of a topological space is nowhere dense if its closure has empty inte-
rior. A topological space is of the first category if it can be represented as the
union of a countable collection of nowhere dense subsets. A topological space
which is not of the first category is of the second category. Recall that a metric on
a topological space is complete if every Cauchy sequence with respect to this
metric converges. The Baire Category Theorem asserts that every complete met-
ric space is of the second category. (See [6, Theorem 4.1, p. 299].)

Recall that a topological space is separable if it has a countable dense subset.

By a (complete) metric group we shall mean a topological group whose topol-
ogy is induced by a (complete) metric.

Suppose p is a metric on a topological space X and S C X. The p-diameter of S
is the number supf{p(x, y): x, ye€ S} and is denoted p-diam(S).

THEOREM 1. Suppose that a separable complete metric group G acts transi-
tively on a metric space X. Then the following are equivalent.

(A) G acts micro-transitively on X.

(B) X has a complete metric.

(C) X is of the second category.

3. The proof of Theorem 1. Throughout this section, we suppose that G is
a complete metric group which acts transitively on a metric space X. For each
x € X, define the map +v,: G— X by v,(g)=gx for ge G.

LEMMA 1. The following are equivalent.

(a) G acts micro-transitively on X.

(b) vx: G— X is an open map for every xe X.
(€©) vx:G— X is an open map for some xe X.

Proof. First assume (a). We shall prove (b). Let x € X. To see that v,: G— X is
an open map, let U be an open subset of G, and take g e U. It suffices to show
that v,(U) is a neighborhood of v,(g) in X. Since g ~'U is a neighborhood of
idg in G, and since G acts micro-transitively on X, then g ~!'Ux is a neighbor-
hood of x in X. It follows that Ux = v, (U) is a neighborhood of gx = v,(g) in X.

Obviously (b) implies (c). To see that (c) implies (b), assume that v,: G— X is
an open map for some particular x € X. Let z € X. We shall show that v,: G — X is
also an open map. Since G acts transitively on X, there is an 4 € G such that Ax=
Z. A homeomorphism 7: G — G is defined by the formula 7(g) =gh for ge G. It
is easily verified that vy, = y,o7. We conclude that ~, is an open map.

Finally we prove that (b) implies (a). Assume (b). Let xe X and let U be a
neighborhood of idg in G. Then v, (int(U)) = (int(U))x must be an open subset
of X. Since x e (int(U))x, then Ux is a neighborhood of x in X. This establishes
(a). ' ]

Proof that (A) implies (B). Suppose that G acts micro-transitively on X. Fix
x € X, and consider the map v,: G — X. The transitivity of the action of G on X
implies that +, is surjective, and Lemma 1 implies that v, is open. Thus, X is the
image of G under an open map. Now the existence of a complete metric on X
follows directly from a theorem of Hausdorff [11] which states that a metrizable
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open image of a complete metric space has a complete metric. Because the proof
of Hausdorff’s result is non-trivial, and because it can’t be found in standard
topology texts, we have given a sketch of it in the Appendix. O

Proof that (B) implies (C). Here we simply invoke the Baire Category The-
orem. O

Proof that (C) implies (A). We begin with two definitions. X is G-countably
covered if for every x € X and every neighborhood U of idg in G, there is a se-
quence {A;} of homeomorphisms of X such that {4;(Ux):i=1} covers X. The
action of G on X is weakly micro-transitive if for every x € X and every neigh-
borhood U of idg in G, cl(Ux) is a neighborhood of x in X.

The following three lemmas obviously entail that (C) implies (A).
LEMMA 2. If G is separable, then X is G-countably covered.

LEMMA 3. If X is of the second category and is G-countably covered, then G
acts weakly micro-transitively on X.

LEMMA 4. If G acts weakly micro-transitively on X, then G acts micro-transi-
tively on X.

Proof of Lemma 2. Suppose G is separable. Let x € X and let U be a neighbor-
hood of idg in G. Then the collection {gU: g € G} covers G. Since G is a separa-
ble metric space, there is a sequence {g;} in G such that {g;U:i=1} covers G.
Then {g;Ux:i =1} covers X, because G acts transitively on X. As multiplication
on the left by g; defines a homeomorphism of X, we conclude that X is G-count-
ably covered. O

Proof of Lemma 3. Assume that X is of the second category and is G-count-
ably covered. Let x € X and let U be a neighborhood of idg in G. We must show
that cl(Ux) is a neighborhood of x in X. '

There is a neighborhood V of idg in G such that V~!'Vc U. By hypothesis,
there is a sequence {4;] of homeomorphisms of X such that {#;(¥Vx):i=1} covers
X. Since X is of the second category, then for some i =1, cl(A;(Vx)) must have
non-empty interior. Consequently, cl(¥Vx) has non-empty interior. As any non-
empty open subset of cl(¥x) must intersect Vx, it follows that thereis a ge V
such that gx eint(cl(¥x)). Consequently, x € g ~!(int(cl(¥Vx))) =int(cl(g ~'¥x)) C
int(cl(V ~'Vx)) Cint(cl(Ux)). We conclude that cl(Ux) is a neighborhood of x
in X. C

Proof of Lemma 4. Suppose that G acts weakly micro-transitively on X. Let
p be a metric on X, and let ¢ be a complete metric on G.

Let xoe X and let U be a neighborhood of idg in G. We must show that Ux is
a neighborhood of x in X. To this end, let Uy be a neighborhood of ids in G such
that (cl(Up)) ~!(cl(Up)) C U. Since G acts weakly micro-transitively on X, there
is an open subset My of X such that xge My C cl(Uyxo). We shall prove that
My C Uxy.

Take yge My. We -must produce a g € U such that gxo= yo.
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In the special case that G is locally compact and Uy is chosen to have compact
closure, we could proceed as follows. Since My C cl(Upxg), there is a sequence
{g;} in Uy such that { g;x¢} converges to yo. Then some subsequence of { g;} would
converge to a g e cl(Up) such that gxy= yo. Unfortunately, in the general case,
there is no guarantee that { g;} or any of its subsequences converges in G. Instead,
a more complicated strategy must be adopted.

It is at this point that we exploit the technique introduced by Homma in [12].
Roughly speaking, we shall alternate between moving xy toward yg and y, toward
X0, planning ahead at each move so that the subsequent move is possible and is
close to idg in G.

We now give the details. First, set Vo= Up. Invoke the weak micro-transitivity
of the action of G on X to obtain an open subset Ny of X such that yge NoC
cl(Vo o).

We shall construct eight sequences:

sequences {g;} and {A;} in G,

sequences {x;} and {y;} in X,

sequences {U;} and {V;} of neighborhoods of idg in G, and
sequences {M;} and {NV;} of open subsets of X.

These eight sequences are constructed to satisfy the following thirteen prop-
erties.

(1;) gieU;_;. (2;) hieVi_.

(3:) xi=gixi-1. (4)) yi=hiyi-1.

(5:) xieN;i_. (6:) yvieM,.

(7)) Uigi---&1C Up. . (8)) Vihi---h C V. _
(9;) o-diam(U,-g,----gl)<2"'. (10,) o—diam(V,-h,----h,)<2"’.
(11;) x;e M; Ccl(U;x;). (12;) yie N;Ccl(Viy:).

(13;) p-diam(M;) < 1/i.

The construction of the eight sequences proceeds by induction. We already
have Uy, Vy, X0, Yo, My, and Ny. Let i =1 and inductively assume that for 1 < k<
i—1, we have gy, hg, Xi, Vi, Uk, Vi, My, and Ny satisfying (15) through (134).

(6;-1), (12;—;) and (11;_,) imply that

Yic1i€eM;_1NN;_;Ccl(Ui—1xi-y1).

Hence, there is a g;e U;_, such that g;x;_, € N;_;; so (1;) holds. Set x;=g;xi_1;
then (3;) and (5;) hold. (7;—;) and (1;) imply that g;,g;_;---g1€ Up. It follows
that we can choose a neighborhood U; of idg in G so that (7;) and (9;) hold.
Since G acts weakly micro-transitively on X, we can find an open subset M; of X
satisfying (11;) and (13;). So far, we have g;, x;, U;, and M; satisfying (1;), (3,),
(52, (7)), (99, (11;), and (13;).

(55, (11;), and (12;_,) imply that

xi€ Ni_1NM;Ccl(Vi_1yi-1).

Hence, there is an A; € V;_; such that A; y;_;€ M;; so (2;) holds. Set y;=h; yi_1;
then (4;) and (6;) hold. (8;_;) and (2;) imply that A;h;_,---h1€ Vy. It follows
that we can choose a neighborhood V; of idg in G so that (8;) and (10;) hold.
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Since G acts weakly micro-transitively on X, we can find an open subset N; of
X satisfying (12;). We have now completed the verification that the eight se-
quences can be constructed as desired.

For each i=1, set g;=g;---g; and set A;= h;---h;. From (1;), (2;), (9;), and
(10;), we deduce that {g;} and {A4;} are Cauchy sequences with respect to the met-
ric o on G. Since ¢ is a complete metric, it follows that {g;} and {4;} converge to
elements g and A (respectively) of G. (7;) and (8;) imply that {g;] C Up and {/4;} C
Vo. Therefore, gecl(Upy) and Aecl(Vy) =cl(Up). Now the choice of Uy insures
that A 1ge U.

It follows from (3;) and (4;) that x; = §; xo and y; = k; y, for each i = 1. Hence,
fx;} converges to gxo and {y;} converges to Ayy. For each i =1, since (6;) and
(11;) imply that x; and y; € M;, then (13;) implies that po(x;, y;) <1/i. We conclude
that gx¢= hye. Thus, # 'ge U and (h'g)xo=yo. O

4. The Open Mapping Theorem and Effros’ theorem. In this section, we illus-
trate the strength of Theorem 1 by deriving two known results from it. The first
is the fundamental proposition of functional analysis known as the Open Map-
ping Theorem. (See [7, Theorem 1, p. 55].) (We thereby provide further justifi-
cation for Torunczyk’s name for Theorem 1: the Open Mapping Principle.) The
second is Effros’ theorem (Theorem 2.1 of [8]).

Recall that a Frechet space is a topological vector space whose topology is in-
duced by a complete metric.

THE OPEN MAPPING THEOREM. Suppose A: E— F is a continuous linear
map between Frechet spaces. If A is surjective, then it is an open map.

Proof. We regard E as a topological group with respect to vector addition, and
we define an action of E on F by

x,Y)~AX)+y: EXF->F.

Assume that A is surjective. Then E acts transitively on F.

It suffices to prove that E acts micro-transitively on F. For then, according to
Lemma 1, the map x— A(x)+0: £ — F is open.

In the special case that E is separable, micro-transitivity follows directly from
Theorem 1. In the general case, without the separability hypothesis, we can’t use
Lemma 2. However, we shall still follow the outline of the proof that (C) implies
(A) in Section 3. We shall give a direct proof that F is E-countably covered. We
shall then invoke Lemmas 3 and 4 to complete the proof.

To prove that F is E-countably covered, let y € F and let V' be an open neigh-
borhood of 0 in E. Since the sequence {iV:i =1} covers E, and since A is surjec-
tive, then the sequence {A(iV):i =1} covers F. For each i =1, define the homeo-
morphism k; of F by h;(z)=i(z—y) for ze F. Then h;(A(V)+y)=A(V) for
each i =1. Hence, {h;(A(V)+y):i=1} covers F. This proves F is E-countably
covered. We now invoke Lemmas 3 and 4 to conclude that £ acts micro-transi-
tively on F. [
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We now introduce definitions needed for the statement of Effros’ theorem (The-
orem 2.1 of [8]). For the remainder of this section suppose that a topological
group G acts on a topological space X.

For each x € X, the set Gx ={gx: g € G} is called the orbit of x under the ac-
tion of G. Notice that distinct orbits are disjoint. The set {Gx: x e X} of all or-
bits is called the orbit space determined by the action of G on X, and is denoted
X/G. The natural projection w: X - X/G is defined by the formula n(x) =Gx
for xe X. X/G is given the quotient topology: a subset U of X/G is an open sub-
set of X/G if and only if = ~!(U) is an open subset of X. The natural projec-
tion w: X —» X/G is an open map; indeed, if ¥ is an open subset of X, then so is
Y (w(V))=GV.

Let x € X. Define the map v,: G = Gx by v,(g) =gx for ge G. According to
Lemma 1, G acts micro-transitively on the orbit Gx if and only if v,: G — Gx is
an open map.

Let xe X. Set Gy,={ge G:gx=x}. G, is a subgroup of G called the stabi-
lizer subgroup of x. Let G, act on G by multiplication on the right. The orbit
space of this action, G/G,, is the set {gG,: g € G} of left cosets of G, in G. Let
wx: G —> G/G, denote the natural projection; thus, n,(g) =2G, for ge G. As
noted above, 7, is an open map.

X

Let xe X. For g, he G, gG, = hG, if and only if gx = hx. Hence, for g, he G,
7 (g) = m(h) if and only if v,(g) =v,(h). It follows that a bijection

2% G/Gx""Gx

is defined by the formula ¥,(gG,) =gx for g€ G. SO Yyomy=vx. ¥y is contin-
uous, because v, is continuous and w, is an open map. Since w, is continuous,
then v, is an open map if and only if v, is an open map. These observations en-
tail the next lemma.

LEMMA 5. Let x € X. G acts micro-transitively on the orbit Gx if and only if
¥x: G/Gy— Gx is a homeomorphism.

Recall that a topological space X is Ty if for each pair of distinct points x, y € X,
either x ¢ clf y} or y ¢ clfx}.

EFFROS’ THEOREM (Theorem 2.1 of [8]). Suppose a separable complete met-
ric group G acts on a separable complete metric space X. Then the following are
equivalent.

(A) Foreach xe X, y: G/G,— Gx is a homeomorphism.

(B) Each orbit is of the second category (in itself).

(C) Each orbit is a Gs subset of X.

(D) X/GisTy.
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Proof. It is convenient to add a fifth condition:
(*) G acts micro-transitively on each orbit.

Lemma 5 establishes the equivalence of (A) and (*). The equivalence of (B)
and (*) follows from Theorem 1.

Since X has a complete metric, then according to a theorem of Mazurkiewicz
[6, Theorem 8.3, p. 308], a subset of X is G; if and only if it has a complete met-
ric. Hence, (C) is equivalent to the statement that every orbit has a complete met-
ric. The latter statement is equivalent to (*) by Theorem 1.

The equivalence of (C) and (D) is the content of the following lemma. O

LEMMA 6. Suppose a topological group G acts on a separable complete metric
space X. Then each orbit is a Gs subset of X if and only if X/G is a Ty space.

Proof. First assume that each orbit is a G subset of X. To prove that X/G is
Ty, suppose that x, ye X and w(x)ecly/gin(y)} and w(y)eclx/cin(x)}. We
shall show that n(x) = w(y).

We assert that Gx Cclx(Gy). Indeed, suppose there is a g € G such that gx ¢
clx(Gy). Then gx has an open neighborhood U in X which is disjoint from Gy.
Since n: X — X/G is an open map, it follows that «(U) is an open neighborhood
of w(gx)= w(x) in X/G which is disjoint from n(Gy)= w(»). This contradicts
the hypothesis that w(x) e clx,g{w(y)}. Our assertion is proved. A similar argu-
ment proves that Gy C cl x(Gx). We conclude that GxU Gy Cclx(Gx)Nclx(Gy).

Gx and Gy are both dense subsets of clx(Gx)Ncly(Gy), because Gx is dense
in cly(Gx) and Gy is dense in cly(Gy). Our hypothesis implies that Gx and Gy
are both G; subsets of clxy(Gx)Ncly(Gy). clx(Gx)Ncly(Gy) has a complete
metric, because it is a closed subset of the complete metric space X. One version
of the Baire Category Theorem [6, Theorem 4.1, p. 299] states that in a complete
metric space, the intersection of two dense Gj’s is dense. Consequently, GxN Gy
must be dense in clxy(Gx) Nclxy(Gy). In particular, GxNGy = O. It follows that
Gx=Gy. So w(x)=wnw(y).

In [8] there is a short and elementary argument establishing the opposite direc-
tion of this proof. (See the proof of (4)=(3) on p. 41 of [8].) For completeness,
we recall the idea.

The separable metric space X has a countable basis of open sets {U;}. We as-
sert that {7 (U;)} is a countable basis of open sets for X/G. Each «(U;) is an open
set because 7w: X — X/G is an open map. Furthermore, if xe X and V is a neigh-
borhood of n(x) in X/G, then the continuity of # implies that n(x) e w(U;) CV
for some i=1.

Now assume that X/G is 7. Let xe X. Set

[ w(Up) if w(x)en(Uy),
| X/G—w(U;) if w(x) ¢ w(U;).

The fact that X/G is Tp implies that N {V;: i=1} = {w(x)}. Hence,
Ni{n 7 '(V):i=1}=7""(7(x))=Gx.

Vi
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Since each V; is either open or closed in X/G, then each « ~1(V}) is either open or
closed in X. Thus, each = (V) is a G; subset of X. We conclude that Gx is a G;
subset of X. OJ

5. Homogeneity implies micro-homogeneity. In this section, we introduce the
concept of micro-homogeneity. Theorem 1 can be interpreted as a relationship
between the homogeneity and micro-homogeneity of a topological space. We es-
tablish conditions under which this relationship is valid in Theorem 2. We pre-
sent two examples which illustrate limits to the validity of this relationship, and
pose several questions concerning this relationship.

Suppose X is a topological space. Let 3C(X) denote the homeomorphism group
of X. The natural action of 3C(X) on X is defined by the formula (4, x) — A(x):
JC(X) X X - X. A topology on IJC(X) is admissible if it makes JC(X') a topolog-
ical group and makes the natural action of JC(X) on X continuous.

Suppose X is a topological space. For UC 3C(X), a subset Z of X is U—
homogeneous if for all y, z € Z, there is an A€ U such that A(y)=z. X is homo-
geneous if it is JC(X)-homogeneous. Suppose JC(X) is endowed with an admis-
sible topology. X is micro-homogeneous (with respect to the topology on JC(X))
if for every neighborhood U of idy in 3C(X), each point of X has a U-homoge-
neous neighborhood. Thus X is micro-homogeneous if and only if, for every
neighborhood U of idy in JC(X), X is covered by U-homogeneous open sets. In
the case that X is a compact metric space with metric p, we observe that X is
micro-homogeneous if and only if, for every neighborhood U of idy in JC(X),
there is an € > 0 such that if x, ze X and p(x, 2) < ethen A(x) =z for some he U.
This is proved by taking e to be a Lebesgue number of a cover of X by U-homo-
geneous open sets [7, Theorem 4.5, p. 234].

The next lemma connects these homogeneity notions with the transitivity con-
cepts of previous sections.

LEMMA 7. Suppose X is a topological space and 3C(X) is endowed with an ad-
missible topology. X is homogeneous if and only if 3C(X) acts transitively on X.
X is micro-homogeneous if and only if 3C(X) acts micro-transitively on X.

Proof. The first assertion is immediate. We prove the second.

Suppose X is micro-homogeneous. Let U be a neighborhood of idx in JC(X)
and let xe X. Then x has a neighborhood N in X which is U-homogeneous.
Hence, Ux D N. This proves that JC(X) acts micro-transitively on X.

Now suppose that JC(X) acts micro-transitively on X. Let U be a neighbor-
hood of idy in 3C(X) and let x € X. There is a neighborhood ¥V of idy in JC(X)
such that ¥V ~!c U. Then Vx is a neighborhood of x in X. If y, z € Vx, then
there are g, # € V such that g(x) =y and A(x) = z. Hence, heg 'eVV ! Cc U and
h-g~!(y) = z. Consequently, Vx is U-homogeneous. This proves X is micro-
homogeneous. O

Lemma 7 makes it clear that Theorem 1 applies to the notions of homoge-
neity and micro-homogeneity. Indeed, suppose X is a metric space of the second
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category, and suppose JC(X) is endowed with an admissible topology which
makes it a separable complete metric group. In this situation, Theorem 1 implies
that if X is homogeneous then X is micro-homogeneous. To take advantage of
this observation, we must find admissible topologies which make homeomor-
phism groups into separable complete metric groups. In the next paragraph we
introduce a homeomorphism group topology which has these qualities when the
underlying space is a locally compact separable metric space.

Suppose X and Y are Hausdorff spaces, and suppose 9 is a set of maps from
XtoY. For KCXand UCY, set (K, U)={[fe M: f(K)CU]}. Recall that the
compact-open topology on I is the topology which has a subbasis consisting
of all sets of the form (K, U) where K is a compact subset of X and U is an open
subset of Y. The complemented compact-open topology on M is the topology
which has a subbasis consisting of all sets of the form (K, U) where K is a com-
pact subset of X and U is an open subset of Y, as well as all sets of the form
(X—V,Y—L) where V is an open subset of X and L is a compact subset of Y.
Observe that if X is compact then the compact-open topology on 9 and the
complemented compact-open topology on 9 coincide.

The admissibility of the complemented compact-open topology is studied in
[4]. In particular, Theorem 3 of [4] tells us that if X is a locally compact Haus-
dorff space, then the complemented compact-open topology on 3C(X) is admis-
sible. (Warning: In [4], the term admissible has a weaker meaning than it does
here. In [4], admissible means only that the natural action of 3C(X) on X is con-
tinuous; it does not entail the continuity of the group operations on JC(X).)
When X is not locally compact, the complemented compact-open topology on
JC(X) may not be admissible. However, for any Hausdorff space X, the comple-
mented compact-open topology on JC(X) is a lower bound of all the admissible
topologies on 3C(X). In other words, when X is Hausdorff, every admissible
topology on 3C(X) contains the complemented compact-open topology. This is
established by the proof of Theorem 3 of [4], although the statement of Theorem
3 asserts it only for locally compact X.

By introducing one-point compactifications, the next lemma establishes a basic
connection between the compact-open topology and the complemented compact-
open topology.

LEMMA 8. Suppose X and Y are locally compact Hausdorff spaces. Let X*=
X Ufoox} and Y*= Y Uf{coy} denote the one-point compactifications of X and Y,
respectively. Suppose I is a set of maps from X to Y, and 9 is a set of maps
Jrom X* to Y* with the following two properties.

(1) Foreach fe M, thereis an f*€ I such that f*| X = fand f*(ox) = oy.

(2) If ge Osuch that g(X) C Y and g(cox) = ooy, then g = f* for some fe M.
Endow O with the complemented compact-open topology, endow I with the
compact-open topology, and set M*={f*: fe M}. Then fr f*: M — I is an
embedding. Also, if p is a metric on Y which extends to a metric on Y*, then a
metric o on M, inducing the complemented compact-open topology on M, is
defined by the formula
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o(f, g)=sup{p(f(x), g(x)): xe X}

for f, ge M. Furthermore, if X and Y are o-compact, then M* is a Gs subset
of .

Proof. For each FC I, set F*={f*: feF}.

To prove that f~ f*: O — Il is continuous, let f e I, let K be a compact sub-
set of X'*, and let U be an open subset of Y*such that f*e (K, U). We assert that
(KNX,UNYY)is open in the complemented compact-open topology on M, and
that (KNX,UNY)>*C(K, U). Both assertions are obvious in the case that K C
X; so assume ooy € K. Then ooy = f(ooxy)e U. So Y—U is compact. As UNY =
Y—(Y—-U), the first assertion follows. If ge(KNX,UNY), then g*(cox)=
ooy e U; so g*e (K, U). This proves the second assertion.

To prove that f— f*: Ot — I* is an open map, we must consider two cases.
First, if K is a compact subset of X, and U is an open subset of Y, then it is clear
that (K, UY*=(K, UYN IM*. Second, if V is an open subset of X, and L is a com-
pact subset of Y, then it is clear that X*— V is compact, Y*— L is open, and
(X—V,Y—LY*=(X*—V,Y*— LN I~

Suppose that pis a metric on Y that extends to a metric p* on Y*. The above for-
mula for o defines a metric on 9; the issue is whether ¢ induces the complemented
compact-open topology on 9. According to [6, Theorem 8.2(3), p. 270], a met-
ric o* on 91, inducing the compact-open topology on 91, is defined by the formula

o*(f, g)=sup{p*(f(x), g(x)): xe X*]
for f, ge I. For f, ge I, it is clear that o*(f* g*)=0o(/f, g). Thus, f~ f*:
(M, o) = (I, 0*) is an isometry. Since f— f*: M — I is an embedding, it fol-
lows that ¢ induces the complemented compact-open topology on 9.

We now assume that X and Y are o-compact. Then X and Y are covered by
sequences of compacta {K,} and {L,}, respectively. Since

M*={ge IN:g(X)CY and g(ox) =0y},
then
M*= (N KKn, YI:n=1})N (N {Keox}, Y*—Lyy: n=1}).
We conclude that 91* is a G, subset of IL. O

We now use Lemma 8 to establish that, under the complemented compact-
open topology, the homeomorphism group of a locally compact separable metric
space is tractable.

LEMMA 9. Suppose X is a locally compact separable metric space, and JC(X)
is endowed with the complemented compact-open topology. Then both X and
JC(X) are separable complete metric spaces.

Proof. Let X*= XU {co} denote the one-point compactification of X, and en-
dow JC(X*) with the compact-open topology. Then X *is a compact metric space,
and X is an open subset of X* We appeal to the theorem of Mazurkiewicz [6,
Theorem 8.3, p. 308] to conclude that X is a separable complete metric space.
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It is well known that JC(X*) is a separable complete metric space. Indeed,
if p is a metric on X*, then a complete metric ¢ on JC(X*) is defined by the
formula

0(g, h) =supfp(g(x), h(x)): x e X*}+supfp(g '(x), A (x)): xe X*}

for g, he 3C(X™*). JC(X™*) is separable by Theorem 5.2 [6, p. 265].

Lemma 8 applies here with JC(X) and 3C(X*) substituted for 9 and 9, re-
spectively. As X is o-compact, we conclude that JC(X) is homeomorphic to a
G5 subset of JC(X*). Now the theorem of Mazurkiewicz [6, Theorem 8.3, p. 30§]
implies that JC(X') is a separable complete metric space. O

Lemmas 7 and 9 easily transform Theorem 1 into the following generalization
of Lemma 4 of [10].

THEOREM 2. Suppose X is a locally compact separable metric space, and 3C(X)
is endowed with the complemented compact-open topology. If X is homoge-
neous, then it is micro-homogeneous.

The problem of generalizing Theorem 2 to the non-metric setting provokes the
following questions.

QUESTION 1. Suppose X is a compact Hausdorff space, and JC(X) is endowed
with the compact-open topology. Assume X is homogeneous. Must X be micro-
homogeneous?

QUESTION 2. Suppose X is a locally compact Hausdorff space, and 3C(X) is
endowed with the complemented compact-open topology. Assume X is homoge-
neous. Must X be micro-homogeneous?

One might hope to generalize Theorem 2 in a different direction, by enlarging
the homeomorphism group topology to achieve more control at infinity. The
complemented compact-open topology exerts very little control at infinity. In-
deed, as Lemma 8 shows, the complemented compact-open topology is consis-
tent with adding a single point at infinity. We now introduce two other homeo-
morphism group topologies which are potentially more useful because they are
finer at infinity. Both topologies are admissible for a wide class of spaces. Unfor-
tunately, as we shall illustrate, these homeomorphism group topologies don’t
guarantee that homogeneity implies micro-homogeneity. This situation provokes
a question.

Suppose X and Y are Hausdorff spaces, and suppose 9l is a set of maps from
X to Y. The closed-open topology on I is the topology which has a subbasis
consisting of all sets of the form (K, U), where K is a closed subset of X and U is
an open subset of Y. The fine topology on IM is the topology which has a basis
consisting of all sets of the form {#e€ 9N : A C W}, where W is an open subset of
X x Y. Now consider the following four topologies on 9. the compact-open
topology, the complemented compact-open topology, the closed-open topology,
and the fine topology. We have listed them in order of increasing size; each is
contained in the one that follows it. When X is compact, they all coincide. The
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list ends with the fine topology because, in the author’s experience, this is the
largest topology on 9N which carries useful information about X and Y in a nat-
ural way.

If X is a normal Hausdorff space, then the closed-open topology on JC(X) is
admissible. (This is easy to prove and is left to the reader.) If X is a paracompact
Hausdorff space, then the fine topology on JC(X) is admissible. (The only diffi-
culty to be faced in proving this statement is in establishing the continuity of the
group operation (A, g)— heog: JC(X) X JC(X) — IC(X) with respect to the fine
topology. The Composition Lemma A.10 [2, p. 33] is of aid here.)

There is a proposition, similar to Lemma 8, which relates a set of maps be-
tween two spaces with the closed-open topology to a set of maps between the
Stone-Cech compactifications of the spaces with the compact-open topology.
This proposition has the following corollary. Suppose X is a normal Hausdorff
space, and X is its Stone-Cech compactification. Each A4 e JC(X) has a unique
extension Bh e JC(BX). Endow 3C(X) with the closed-open topology, and endow
JC(BX) with the compact-open topology. Then A~ Bh: 3C(X) — JC(BX) is an
embedding. Furthermore, if X is o-compact, then A+~ BAh carries JC(X) onto a
G5 subset of JC(BX). Unfortunately, as Example 1 illustrates, this information is
of no value in proving that homogeneity implies micro-homogeneity with respect
to the closed-open topology.

EXAMPLE 1. The underlying space of this example is CX R where C is the
deleted middle-thirds Cantor set in the unit interval [0, 1] and R is the real line.
C x R is homogeneous because both C and R are homogeneous. Since CX Ris a
locally compact separable metric space, then according to Theorem 2, CxXR is
micro-homogeneous with respect to the complemented compact-open topclogy
on JC(C x R). We shall argue that C X R is not micro-homogeneous with respect
to the closed-open topology on JC(C X R). Since the closed-open topology is con-
tained in the fine topology, it follows that C X R is not micro-homogeneous with
respect to the fine topology on JC(C X R).

Endow JC(C x R) with the closed-open topology. Let K={0} xR and let U=
f(x,y)e CxR: |xy|<1}. Uis an open neighborhood of K in C x R which tapers
as y — xoo. Thus, (K, U) is an open neighborhood idcx g in JC(C X R). We shall
prove that CX R is not micro-homogeneous by showing that (K, U)-(0,0) =
{h(0,0): he(K, U)} does not contain an open neighborhood of (0,0) in CxR.
In fact, we shall show that (K, U)-(0,0) C K. This will suffice, because every
open neighborhood of (0,0) in C xR contains points (x, y) with x> 0. Let #¢e
(K,U). As K is a component of C X R, sois #(K). Since #(K) C U, and since X is
the only component of C X R which is contained in U, then necessarily #(K)= K.
As (0,0) € K, we conclude that #(0,0) e K.

For local compacta, the complemented compact-open topology is admissible.
However, outside the class of local compacta, the complemented compact-open
topology may fail to be admissible, and it may be difficult to find an admissible
homeomorphism group topology for which homogeneity implies micro-homo-
geneity. Example 2 illustrates these difficulties.
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EXAMPLE 2. The underlying space of this example is J X R where J is the space
of irrational numbers in the real line R. J has a complete metric because it is a
G;s subset of R; so JXR is a separable complete metric space. We shall give a
proof that the complemented compact-open topology on JC(J X R) is not admis-
sible. J X R is homogeneous because both J and R are homogeneous. However,
J X R is not micro-homogeneous with respect to either the closed-open topology
or the fine topology on JC(J X R). A proof of this fact can be obtained from the
proof given in Example 1 simply by changing all C’s to J’s. It is possible to de-
scribe an admissible topology X on JC(J X R) which makes J X R microhomo-
geneous. X contains the complemented compact-open topology and is contained
in the closed-open topology.

To prove that the complemented compact-open topology on JC(J X R) is not
admissible, endow JC(J X R) with the complemented compact-open topology, let
xeJ,andset U= (x—1,x+1)NJ. We shall indicate why one can’t find neighbor-
hoods V of id;xr in JC(J X R) and W of (x,0) in JX R so that VW C U X R. Sup-
pose such ¥V and W exist. We can assume that

V=(NKK:,M):1=i=m)N(NKIXR)=Ni, (JXR)—Lg): 1<k =<n}),

where K; and L; are compact subsets of /X R and M; and N, are open subsets of
JXR. Also we can assume that W= ((x—86,x+6)NJ) X (-0, 8) for some 6> 0.
Since id;xgre V, then K;CM,; forl1<i=<m,and Ly CN, for 1=k =<n. Let

C=(UKi:l=i=m})U(U{Li: 1=k =<n}).

C is compact. Since no compact subset of J has non-empty interior, then we
can find rational numbers p < g <r <s such that (p,q)C(x—46,x+6), (r,s)C
(x+1,0), and n(C) is disjoint from (p, q)U(r,s), where n: JX R — J denotes
projection. There is a homeomorphism g:J— J such that g((p,g)NJ) = (r,s)NJ,
gi(r,sYNJ)=(p,q)NJ, and g=id on J—((p,q)U(r,s)). Set

h=gXidre JIC(JXR).

It is easy to verify that he V. Letze (p,q)NJ. Then (z,0) € W. So h(z,0) e VW.
Now 2(z,0)=(g(z),0)e(r,s) XRC(x+1,0)XR. Since UC(x—1,x+1), then
h(z,0)¢e UxR. )

We shall now describe an admissible topology X on 3C(J X R) which makes
JX R micro-homogeneous. Let KCJXR. For xeJ, let K|x=KN({x}xR);
and for VC J, let K| V=KN(VXR). K is continuous if it has the following two
properties: (1) K | x is compact for each x € J, and (2) for every x € J and every
neighborhood U of K | x in JX R, there is a neighborhood V of x in J such that
K|V CU. Appendix A of [2] is a source of information about such continuous
sets. Let X denote the topology on JC(J X R) which has a subbasis consisting of
all sets of the form (K, U) as well as all sets of the form (X — U, X—K), where K
is a continuous subset of /X R and U is an open subset of J X R. (An appropri-
ate name for X is the complemented continuous-open topology on 3C(JXR).)
Each compact subset of J X R is continuous, and each continuous subset of J X R
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is closed. It follows that X contains the complemented compact-open topology
and is contained in the closed-open topology. The proofs that ¥ is admissible

and that X makes J X R micro-homogeneous are left as exercises for the reader.
O

The existence of the admissible topology X making J x R micro-homogeneous
prompts the following question.

QUESTION 3. Suppose X is a homogeneous complete separable metric space.
Is there necessarily an admissible topology on JC(X) which makes X micro-
homogeneous?

The local compactness of R appears to be a crucial factor in the proof that the
topology X on JC(JXR) has the desired properties. Thus, in studying Ques-
tion 3, one should consider a space such as JXx ¢, (where J is the space of irra-
tional numbers in the real line and ¢, is the Hilbert space of square-summable
sequences), because f, is not locally compact. The author has been unable to
answer Question 3 for the space JX 5.

6. Appendix. We sketch a proof of the following result.

A THEOREM OF F. HAUSDOREFF. If f: X — Y is an open map from a complete
metric space X onto a metric space Y, then Y has a complete metric.

This theorem originally appeared in [11]. A modern generalization of it can
be found in [5].

Proof. By completing a metric on Y, we can regard Y as a dense subset of a
complete metric space Z [6, Theorem 6.1, p. 304]. According to a theorem of
Mazurkiewicz [6, Theorem 8.3, p. 308], it suffices to show that Y is a G5 subset
of Z.

Let p and o denote complete metrics on X and Z, respectively. For each n>1,
let 3,, denote the collection of all open subsets of X of p-diameter < 1/n, and let
‘U, denote the collection of all open subsets of Y of o-diameter <1/n.

It is easy to construct, for each n=1, a set 4, and functions «,: A4, — 3, and
At A,41— A, such that

(1) {a,(a):ae A,} covers X, and

(2) Ulapr1(b): be N;' (a)} = a,(a) for each ae A,,.

We leave this construction to the reader. Some authors call the sequence
{(an, Apy Npy): n=1} a sieve in X.

Nor is it difficult to construct, for each n=1, a subcollection V, of U, and
functions B8,: V,— A4, and u,: V,4+1— V, such that

(3) YV, is a locally finite cover of Y,

(4) each element of V, | intersects only finitely many distinct elements of V,,,

(5) VCun(V) for each Ve V,,,

6) VC f(a,(B,(V))) for each Ve V,, and

@) >\n°6n+l = Bn°ﬂ~n-
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X S > Y

Xpt1 Bri
3n-*-l < 'An+l = evn+l

l)\n ll"'n
In< S Ap < B Vn

Again, we leave this construction to the reader, with the suggestion that he ex-
ploit the paracompactness of Y.

For each open subset V of Y, let V* denote the union of all the open subsets
W of Z such that WNYC V. Then V*is an open subset of Z and V*NY = V. Fur-
thermore, since Y is dense in Z, o-diam(V*) = o-diam (V).

For each n=1, set G,=U{V*: Ve V,}. Then G, is an open subset of Z which
contains Y. Thus, YCN{G,: n=1}. We shall prove that Y is a G; subset of Z
by showing that Y=N{G,: n=1}.

Let ze N {G,: n=1}. We must show ze€ Y. For each n=1, there is a V,,e€ 9V,
such that ze V,;. Thus, N{V*:1<i=<n} is a non-empty open subset of Z for
each n=1. Since Y is dense in Z, it follows that D= YN (N {V*:1l<i<n})=
N{Vi:1<i=<nj}, for each n=1.

We shall now produce a sequence {W,: n=1} so that for each n=1, W, V,,
ua(Wai1)=W,, and W, NV, # . For each n=1, set

Jn=fWeV,: WN(N{Vi:l<i<sn+1})= D}.

J, is non-empty and finite because V,, € J, and V,,; intersects only finitely many
elements of V,. Set Jo=J;XJ,X ---. For each n=1, we make J, a compact
Hausdorff space by endowing it with the discrete topology. We endow J, the
associated product topology. Then, according to the Tychonoff theorem [6, The-
orem 1.4(4), p. 224], J- is also a compact Hausdorff space. Next, for each n=1,
set K, ={(W,.... Wp)eJ; X -+ XJp: u(W;y1) = W; for 1 <i=<nj. Then, for each
n=1, it is easy to see that K, # O, and that if (Wy,..., W,, W,11) € K,,+1, then
(W, ..., Wp)e K,. It follows that if we set L,=K,XJ,41XJp42X --- for each
n=1, then {L,: n=1} is a sequence of non-empty closed subsets of J, which is
decreasing: L, D L, D ---. Since J, is compact, we conclude that N{L,: n=1}#
. Select an element (Wi, W,,...)eN{L,: n=1}. Then (W,,..., W,) e K,, for
each n=1. It follows that W,e V,, w(W,+,)=W,, and W,NV,# D for each
n=1.

Foreach n=1, let a, = B8,(W,). Then W, C f(a,(a,)) and \,(a,+1) = a,. It fol-
lows that f(«,(a,)) NV, # O for each n= 1. Hence, we can choose an x,, € o,(a,)
so that f(x,) e V,.

For each n=1, x,€ a,(a,), p-diam(a,(a,)) <1/n, and a,1(@r+1) C ax(a,),
because N\,(a,+1) = a,. Consequently {x,} is a Cauchy sequence in X. Since the
metric p is complete, it follows that {x,} converges to a point xe X. Hence,
{f(x,)} converges to f(x).

Since f(x,) and z € V;y and o-diam(V,}) < 1/n for each n =1, then { f(x,}) must
converge to z. We conclude that z= f(x). Therefore z€ Y. L
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