DENSE SUBSPACES OF ENTIRE FUNCTIONS

Sandy Grabiner

1. Introduction and terminology. Suppose that g(z) is an entire function and
that 7 is a “suitable” linear operator. We indicate below which operators are
suitable, but note for now that some suitable operators are 7(f(z))=/'(z) or
f(z+a) or f/(z+a). Let M be the linear span of {T%g}k>0. When g(z) has no
more than minimal type (that is, |g(z)| = O(eAIZI) for all. A >0) and g(z) isnot a
polynomial, we show in §2 that M is dense in the natural topology on the space
of entire functions of no more than minimal type. This implies that M is also
dense in the space of all entire functions in the weaker topology of uniform con-
vergence on compact sets. When g(z) has exponential order less than 1, we show
that M is dense in a stronger topology and that more operators are suitable. If
g(z) has no more than exponential type 7, we show in §3 by more elementary
means that M is dense in the space of functions of exponential type no more than
7, unless g(z) is a finite linear combination of functions of the form z'e%? with
|aj| =T

We say that a Frechét space topology on a vector space £ of entire functions,
or of formal power series, is natural if the coefficient projections Xg ¢,z" = ¢,
are all continuous. There may be many different countable collections of norms,
each of which defines a natural Frechét topology on E, but the resulting topology
is uniquely determined. In fact it follows easily from the closed graph theorem
that if £ < F are Frechét spaces of entire functions or of formal power series and
if F has a natural topology, then the topology on E is natural if and only if E is
continuously imbedded in F. Thus, in particular, convergence of a sequence in a
natural Frechét topology on a space of entire functions will always imply that the
sequence also converges uniformly on compact sets. For us the most important
natural Frechét spaces will be the Banach spaces cy(n!/w,) of all functions g(z) =
>0 ¢pz” with lim(c,n!/w,) =0 and norm|g(z)| =sup(|c,|n!/w,) (Where {w,]} is
some sequence of positive numbers), and the Frechét space

!
(1.1) E.= CO(E-,}-)
r>r r

which is the space of entire functions of type no more than 7 [6, Th. 4.13.1, p. 78].

We will prove the assertions given above about the space M by considering its
annihilator M* in the dual space of the space of entire functions containing M,
and showing that either M* is {0} or has finite codimension. To do this we will
represent the dual space as an algebra of formal or convergent power series in
which M+ is an ideal. This is most easily done by using the version of the Heavi-
side operational calculus given by Roman [11, pp. 6-17] as a preliminary to his
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study of the umbral calculus. In a subsequent paper we will show that the umbral
operators [11, pp. 37-42] and related operators studied by Roman are bounded
in appropriate norms, and use this fact to prove norm convergence in the expan-
sion and polynomial expansion theorems [11, p. 18].

Following Roman [11, p. 12], we define the action of the formal power series
f(t) =25 c,t” on polynomials by

(1.2) ) (p(z) = @ cnt")p(z) - % cnp"(2).

We use the same formula when p(z) is not a polynomial, provided the series con-
verges in the natural Frechét topology on C[[z]]; that is, the topology of con-
vergence for each coefficient. The duality between formal power series in ¢ and
polynomials in z is defined so that formal power series multiplication by f(¢) is
the adjoint of the action of f(¢) on polynomials [11, Th. 2.2.5, p. 13]. The ex-
plicit definition of this duality is [11, p. 6]

(1.3) (i'é Wl | 5 bnz">=§a,,bn.
0 0

n=0 n! n=

We use this formula whenever the series converges. This will occur precisely when
the sequence {a,}q is in the 8 dual [13, Def. 4.3.5, p. 62] of the set of {b,,} which
are the coefficients of the functions in the vector space under consideration. For
the spaces we consider, it will be clear that this 8 dual can be identified with the
usual dual space (cf. [13, Th. 7.2.9, p. 107]). In particular, whenever {w,} is a
sequence of positive numbers we have

(1.4) 21 (wn) =co(n!/wy)*,

where ¢(w,) is the space of formal power series f(f)=3X§ c,t" for which the
norm | f(2)| =X |c,|wp, is finite.

In §2, where we study functions of exponential order less than 1, the dual
spaces will contain series with zero radius of convergence and will be studied
by the methods of radical Banach algebras of power series (in particular from [2]
and [3]). In §3, where we study functions of exponential type, the dual spaces
are algebras of analytic functions. The functions of minimal type are a boundary
case, and the same result appears as Theorem 2.1 and as the case 7 =0 of Coral-
lary 3.3, though the proof in §2 actually shows density in a stronger topology.

The “suitable” operators mentioned at the beginning of this section are the
operators f(¢) of formula (1.2) for which ¢; # 0 and for which f(¢) satisfies a
growth condition appropriate to the space under consideration. In particular
tg(z) = g'(z) is always suitable; e g(z) = g(z + a) is suitable for all @ # 0 for func-
tions of no more than minimal type, and for sufficiently small @ for functions of
exponential type. For other examples of operators f(¢) see [11, pp. 14-15]. The
operators f(¢) are precisely the linear operators that commute with translations
[11, Cor. 2.2.9, p. 17].

2. Functions of order less than one or of minimal type. Using the terminology
described in the previous section, we can now prove the promised result about
functions of minimal type.
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THEOREM 2.1. Suppose that g(z) is an entire function of at most minimal type
but is not a polynomial. If f(t) is a power series with positive radius of conver-
gence and f'(0) %0, then M =span{ f(¢)*g(z)}x> o is dense in the natural Frechét
topology on the space Eq of functions of at most minimal type.

Proof. Since M is unchanged by replacing f(¢) by f(¢) — f(0), we assume with-
out loss of generality that f(0)=0. Let g(z)=X¢g (c,/n!)z". Since g(z) is of
minimal type, it follows, from formula (1.1) with 7 =0, that lim|c,|"/”=0. Let
d,=n|c,| so that (c,/d,)— 0 and lim d}/" = 0.

Fix an integer kK > 0. We show that there is a sequence {w,} of positive num-~
bers for which lim w}” =0 and M is a subspace of co(n!/w,) with Py, the space
of polynomials of degree k or less, in the closure of M. It is clear from formula
(1.1) that co(n!/w,) € Ey, so that the closure of M in Ey would then contain Py.
Since k is arbitrary this will show that the closure of M in Ej contains all poly-
nomials and hence that M is dense in Ej.

We now proceed to define the sequence {w,} by (wn+k)1/”—sup,>,,(d1+k) Z
for n=0 and wn d, for n<k. Then lim, e (Wi i)V =1lim, _ o (dy+x)/"=0
and {(w,+x)""}<0 is non-increasing, so {Wnii)m=0 is submultiplicative [5, Th.
7.2.4, p. 239] and thus ¢!(w,, ) is a radical Banach algebra with identity adjoined
[2, Lemma (2.4), p. 643]. We also have £'(w,, 1) ={f(t) € CL[£1]1: f(£)t* € (wp)}
(see [2, p. 645]), so that ¢!(w,) is just the sum of £'(w,)¢* plus the polynomials.
Thus ¢!(w,) is also a radical Banach algebra with identity adjoined (cf. [2, pp.
655-656]).

Since d,, = w,, it follows that g(z) and hence M is contained in ¢y (n!/w,). Now
let M* be the annihilator of M in ¢'(w,). Since multiplication by f(¢) on ¢(w,)
is the adjoint of the operator f(¢) on cy(n!/w,), it follows that f(f)M*-<M™*.
But f(¢) has positive radius of convergence, so that its compositional inverse
f(¢) also has positive radius of convergence. Hence the series obtained by sub-
stltutmg S(¢) for ¢ in the series for f(t) converges in the norm of ¢'(w,) to
fof—t (cf. [2, p. 643]). Thus tM*<M™* and hence M* is a closed ideal in
¢! (w,).

We now show that M+ < P, which is the collection of series in ¢£!(w,) of the
form X —x4+1 a,t". If this were not so, M* would contain a series of the form
h(t) =t¥(1+r(1)), where r(r) is a formal power series with O constant term. Then
1+ r(¢) belongs to ¢'(w, ), which is a radical algebra with identity adjoined, so
that (14r(¢)) ! belongs to £'(w,x) and hence #¥(1+r(¢)) ! belongs to ¢'(w,).
Thus t2* =h(t) (¥ +r(£)) ") belongs to the ideal M+ which must then con-
tain P33. Then g(z) e M+ < P,;, contradicting the hypothesis that g(z) is not a
polynomial.

Now we have M+ < P so that the closure of M in co(n!/w,), which is just
M™*, contains Pi* = P,. This completes the proof. O

For functions of exponential order less than one, it is convenient to work with
the spaces co(n!'*€) for e > 0. The space co(n!!* ) contains all functions of or-
der less than 1/(1+ ¢€) and contains only functions of order less than or equal to
1/(1+¢€) [6, Th. 4.12.1, p. 74]. After the next theorem we will indicate other pos-

sible spaces we could use.
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THEOREM 2.2. Suppose that g(z) belongs to co(n'!'*€) but is not a polyno-
mial. If f(t) is a series in £'(1/n'€) with non-zero coefficient of t, then M =
Span{f(1)*g(z)}x =0 is dense in the Banach space co(n!1+¢).

Proof. We let M* be the annihilator of M in the dual space ¢'(1/x!¢) and prove
that M* = {0}, so that M is dense. As in the previous theorem, we may assume
that f(¢) has zero constant term. This implies that f(¢) is an algebra generator
of ¢1(w,) [1; 3, pp. 41-42], so that M is a closed ideal in ¢'(1/n!¢). If M* were
not {0} it would contain some #* [2, pp. 644-645] and hence M* 2 Pj-. Thus
g(z) e M+t < Pt = Py, contradicting the hypothesis that g(z) is not a polyno-
mial. This completes the proof. O

Instead of considering cy(n!!*€), we could use co(n! /wy) for any {w,} for which
nWy 4 x /Wn is bounded for some k and ¢'(w,) is an algebra with only the standard
closed non-zero ideals Pi ([3, pp. 41-42; 2; 4; 12]). In fact, under these hypoth-
eses we could replace co(n!/w,) by £7(n!/w,) for 1 < p <o, since the results in
[2]1, [3], and [4] apply to £P(n!/w,)*=¢9(w,) and even to more general sequence
spaces.

3. Functions of exponential type. In this section we determine the closure of
S(¢)-invariant subspaces M of Frechét spaces of functions of exponential type.
We cannot use the obvious space cy(n!/7") because, although much is known
about the ideal structure of the dual space £!(7") [7, Chapter 11], the total pic-
ture is still unclear. If we consider Ez(n!/r”), its dual space £2(7") is just the
Hardy space H? of the disc D(r) of radius 7. Then M* is a closed f(¢)-invariant
subspace of H?(D(7)). When f(¢) is an algebra generator of ¢'(+") (see [9] for
sufficient conditions for this), then AM* is ¢z-invariant. Hence M is all multiples of
some inner function ¢(7) and M is the null-space of ¢(¢), acting according to for-
mula (1.4). Though this is a complete description of the closed f(#)-invariant sub-
spaces of £%(n! /7"™), the description seems too abstract to be useful. For instance,
for a fixed g(z) it is hard to see how one could determine whether {tkg(z)}kzo
has dense span. Instead we need to concentrate on Frechét spaces of entire func-
tions of exponential type whose dual spaces are algebras of analytic functions
with simple ideal structure. The best choice seems to be the spaces E, of entire
functions of type no more than 7 =0 (see formula (1.1) above). The dual space
of E, is easily shown to be the space H(D(7)) of functions analytic on a neigh-
borhood of the closed disc D(7) of radius 7 (just combine formula (1.3) above
with [8, Prop. (6.5), p. 46}). For completeness we sketch a proof of the following
simple lemma describing the ideals of H(D(7)) (cf. [8, pp. 109-110]).

LEMMA 3.1. The ideals in H(D(7)) are all principal ideals generated by poiy-
nomials all of whose zeroes lie in the closed disc D(t).

Proof. Let I be a non-zero ideal in H(D(7)). Since a non-zero analytic func-
tion can have only a finite number of zeroes on the closed disc D(7), the set of
common zeroes of 7, counting multiplicity, is a finite set. In other words, there
is a polynomial p(¢), with all of its zeroes in the closed disc, which is the greatest
common divisor of the functions in 7. To complete the proof, we must show that
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p(¢) belongs to I. The functions f(¢)/p(t) have no common zeroes for f(¢)in 7,
so a simple compactness argument (cf. [8, p. 110]) shows that there is a finite set
of functions fi(¢), f2(¢), ..., fn(¢) in I for which the functions f;(¢)/p(t) have
no common zeroes. Thus p(¢) is the greatest common divisor of the f;(f), and an
obvious variant of Helmer’s Theorem [8, Th. (13.6), p. 109], with essentially the
same proof, shows that there are functions A;(¢), h2(¢), ..., h,(t) in H(D(7)) for
which p(¢) = fi(t) () + () ha () + --- + f,(2) h,,(¢). Hence p(¢) belongs to 1,
and the proof is complete. 0

We can now describe the f(¢)-invariant subspaces of E,.

THEOREM 3.2. Suppose that E, is the space of all entire functions of at most
exponential order T = 0 and that f(t) is analytic and univalent on a neighborhood
of the closed disc D(7). If M is a non-zero linear subspace of E, with f({)M <
M, then either M is dense in the natural Frechét topology on E,, or there is a
finite set of points ay, a,, ..., ax in D(r) and a finite set of non-negative integers
n(1), n(2), ..., n(k) for which M is the linear span of the functions z'e“* for j =
1,2,...,kand 0 <i=<n(j).

Proof. Suppose we knew that M~ was an ideal in H(D(7)). If M+ ={0}, then
M would be dense. If M* # {0} but M* were an ideal, there would be (by Lemma
3.1) a polynomial p(¢) with its zeroes in D(7) for which M* was the image of
H(D(7)) under multiplication by p(#). In that case M would be the solution space
of the differential equation p(7)¥(z) =0, and hence M would have the form indi-
cated in the theorem.

To show that M is an ideal we choose g(¢) in H(D(7)) and A(¢) in M* and
show that g(¢) #(¢) belongs to M*. Choose a number r > 7 for which f(¢), g(¢),
and A(¢) are all analytic on a neighborhood of D(r) and for which f(¢) is univa-
lent on this neighborhood. Then f(¢), g(¢), and A(¢) all belong to ¢'(r"), and
f(¢) is a generator of this algebra [9]. Since M N ¢(r") is a closed f(¢)-invariant
subspace of ¢!(r™), it must then be an ideal in ¢'(+"). Hence

g(t)yh(t)yeM* Nel(r"yes M.
This completes the proof. J

The following corollary essentially restates the above theorem in the terms
used in §1 and §2.

COROLLARY 3.3. Suppose that g(z) is an entire function of at most type 1=0
and that f(t) is analytic and univalent on a neighborhood of the closed disc D(7).
Then either g(z) is a finite linear combination of functions of the form z'e%?
with |a;| <1, or M= Span{ f(¢)*g(z)}x=o is dense in the natural Frechét topol-
ogy on the space of functions of exponential type at most 7.
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