AN EXPLICIT KOPPELMAN TYPE INTEGRAL FORMULA
ON ANALYTIC VARIETIES

Telemachos E. Hatziafratis

Introduction. The purpose of this paper is to prove an explicit Koppelman type
integral formula on analytic varieties, thus generalizing the Koppelman integral
formula on domains in C” as contained in @vrelid [2]. This generalization is the
content of Theorem 1. Roughly speaking, if V is an analytic variety in C" defined
by m holomorphic functions and M is domain on ¥V, then we construct explicit
kernels K, so that for every (0, g)-form u with C!-coefficients on M we have:

u= SaM u/\Kq—SM 5u/\Kq—§(SMu/\Kq_1).

The variety is assumed to have no singular point on M. We also assume that
dM, the boundary of M, is smooth. (See the next paragraph for a precise descrip-
tion of the setting and statement of the result.)

The construction of the kernels K; and the proof of the integral formula are
based on some results from [1]. These results generalized earlier results of Stout
[4]. We also follow ideas from @vrelid [2]. We will use the standard notation and
terminology for differential forms (see, e.g., Rudin [3] and Wells [5]; see also
Ovrelid [2]).

Description of the setting. Let DC C” be a bounded domain with smooth
boundary and let v;({,z), j=1,...,n, be smooth functions defined for teD,
z € D such that:

(1) ($—z,7(5,2)=2]=1(5;—2;,)v;(§,2) =0 for §=z;

(ii) v,;($,z)=¢—%; for | —z| < small constant.

Let Ay, ..., h,, be m, m < n, holomorphic functions in a domain Q with Q > D.
Let h;;({, z) be holomorphic functions (in ({, z) € 2 X Q) so that

hi($)—hi(z) = _Elhij(s“,Z)(s“j—Zj), i=1,...,m, (£,z)e X
j:

Set V=:1{zeQ: hi(z)="---=h,(z)=0} and set M =:VND and dM =:VN(dD).
Define 5 5 5
h PR AR A/
V(s ees ) ()| = )Y o Lo

Ilsji< - <jp=n a(g‘jls cees g-’m)

Our assumptions are that |V(Ay, ..., h,;,)| # 0 on M, that is, that variety V has
no singular point on M and that V meets dD transversally. Thus M is a complex
manifold of (real-) dimension 2n—2m and dM is a smooth manifold of dimen-
sion 2n—2m—1.

Received March 21, 1985.
Michigan Math. J. 33 (1986).

335



336 TELEMACHOS E. HATZIAFRATIS

We introduce now the differential forms:

'YJ'O 'y-/m
c o Ry h _ _
AL, z) = ) (—1)Jo*  +im | Tlo Uml N Gy + 8wkl
1<jo<--<jgpsn : : k#Jjos-sim
' hmjo hmjm
B($)=:
1 i eee 4§ a(hl’---’ hm)
—1)/1ttim N dis,
IV(hl,..., h’")(g-)lz ]5j1<.2<ijn( a(g'jl,---, ;j,,,) k;ﬁj],...,jm g
and
A, Z)NB(Y)
. K($,z)=:c(n,m >
( ) 2 (Er )
where
. [n—myn—m—1)1/2+1 A—m—1)!
c(n,m)=:(—1) o= m /2+1, (2wi)n—m

Then K (¢, z) can be decomposed in the following way:

n—m—1

K($,2)= X (—1)7K,(§,2),

qg=0
where K,($,z) is a (0, g)-form in z and a (n—m,n—m—qg—1)-form in {. The
above relation defines K,({,z), =0, ..., n—m—1, completely. Also define K_; =
K,;_m=0.
With the above notation and assumptions we will prove the following theorem.

THEOREM 1. Fix a q with 0 < q <n—m. Then for every u(z) € Cjo, ;)(M) (i.e.,
u(z) is a (0, q)-form with C'-coefficients in M), the following integral formula
holds for ze M:

u@={ _ u@NKLED= | SO AK(E,2) 8, [.SEM u(r)AKqJ_l(f,z)].

In order to prove Theorem 1 we need two lemmas.

LEMMA 1. d; ,K({,2)=0¢,. K($,2)=0for (¢,2) e M XM —{¢ =z}, and there-
fore 3. K,=3,K,_,. (The differential form K (%, z) is considered restricted to the
manifold M XM—{¢=2z}.)

Proof. Consider the differential form
v=v({,2,8)=0({,2, E)AB(SIAB(2),
where g, - &

0(,2,8)=1(5—2,8)"" 3 (=1t Him A d,

Jo<:-<Jm : : k#Jjos--sJm
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defined for (¢, z,£) e M XM x C", sothat ({ —z, £) =27-1(§;—z;) & #0. A com-
putation shows that

(1.1) dv=d;, ;:v=0

(this computation is carried out in [1]; see Propositions 1.1 and 1.2). Now con-
sider the map

1.2) MXM>3(£,2) > (85 271(552)y s Ya($,2)) EM XM X C".

If »* is the pull-back of » via the map (1.2) then it follows from (1.1) that
(1.3) de v*=0.
But it is easy to check that
(1.4 di, . v*=cld;,. K(§,2)1AB(z)
for some non-zero constant ¢. Now (1.3) and (1.4) imply the lemma. (The local
representation of B(z), ze€ M, as given in [1, Prop. 1.1], was also used.) O

LEMMA 2. For a smooth function f({), ¢ € M (not necessarily holomorphic),
we have

im{ o TOKED=1R) (@eM).

Moreover, the convergence is uniform in z on compact sets of M. (In the above
limit, e goes to O through points so that {{eM: | —z|=¢€]} is a smooth mani-
fold; the existence of such e’s which go to 0 is guaranteed by Sard’s theorem.)

Proof. Fix a z € M and assume without loss of generality that W (z) = 0, where

a(hl‘s cees By
|24 =: .
(g-) a(g-n—m+],---’ g'n) (g')

It follows by the implicit function theorem that the equations A ()= - =
h,,(¢) =0 can be solved for ¢, — 41, ..., & lOcally at z, giving (say)

g_n—m-i—l =ﬁl(§"), ceey g-n = Em(g")

for some holomorphic functions Ay, ..., Ay, of & (&= (E1s eens Enem))-
Now consider the domain G, C C"~" defined as follows:

n—m m
G, =: {{’GC"_'": > [i‘j—zjlz-i-kz |Ek(§")"'ﬁk(3')|2<fz}
j=1 =1
and the map

Ga{' B (), v, (S efseM: [§—z|<el.
We have

@.1) SJOKG D= O Ko( ],

Slg‘eM: |£—z|=
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where 7*[ f($) Ko($, 2)] denotes the pull-back of the differential form f($) Ko (S, 2)
via the map 7.
A computation shows that

(2.2) 1S (E)Ko($, 2)] = Cn—m,0)8(S)

where
(i) &)= 1()- W17 - T(%,2);
(i) 7(s,z)= det[hi,n—m+j(§‘, z)]lsi,jsm;

w*(8) Aw({’)
(231;!]"(;.] _zj)aj)n—ln ’

n—m A _ —~ _ _ _
(iii) w*(8)=: X (—=1)76;08 A ---ANFS;A -+ N3, (here d =3;);
j=1
m

(IV) 6]' = (fj"zj)'—'?_-.kz;l (fn—m+k_zn—m+k)Tk{.s j=1, ey —Mm

(recall that v; = {; —Z; for |{ —z| < small constant);

(v) T/ is the determinant of the matrix obtained from the matrix
hl,n—m+1 <o My hlj
: by substituting its kth column by | : ; and
hm, n—m+1 °°° hmn hmj

(vi) w($)=dSIN-- ANdSp_m.

The computation which proves (2.2) is carried out in [1] (in the proof of Prop.
1.6). We point out that ¢ in the right-hand side of (2.2) means

E=G5 ), s An(S7))

and that the right-hand side of (2.2) is a differential form in C”~"" in the variable
$'=($15 -5 $n—m)- The same is true for ¢ in (i)-(v). For example, ¢, _,,+x in (iv)
means $,—m+x = ($’). Thus 6; is considered as a function of {’. We will not
need the explicit form of §; as given by (iv) but only the fact that

n—m n

A=:({"—2z,0)= _21 ($—z5)0,= .21 |¢—z;?>0 if "=z
i= i=

Now let r(e) > 0 be so that B, C G, where B, =: {{’e C"™"": |{'—z'| < r(e)}.
Let x.(¢’) be a smooth function of ¢/, 0 <, <1, with compact support in G, and
identically 1 in a neighborhood of B,. Define

8,5, 2) =t X (§)(§—2) + (1 =Xx(ENE(E,2), J=1,.c.,n—m.
We have
(¢'—z',0) =: >, (rj—zj)6}5)=Xe]g"—z’|2+(1—xe)A>O if ¢'=#2z".
ji=1

Next, applying Koppelman’s integral formula for the domain G, C C"~ " and
the function g(¢{), we obtain
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* 6 /\ ’
2.3) Comon [,y B A m S =g @)+,
where ‘
0*(0 N Aw(F)

I.=c Sr'er (0 8N (¢'—z, 9©@)yn—m

for some constant c. (Recall that the integrands in the integrals of (2.3) are con-
sidered differential forms in {’.) But

2.4 g(z)=f(z)
(since W(z) =T(z,z); see [1, Prop. 1.5]). We claim that
(2.5) lim 7, = 0.

e—0

This follows from the following estimate,

S |$'—2'|dV(5) =S |$'—2’| dV (")
G, (g-’_z”g(e))n——m G, [Xflg-:_zrlz_'_(I_XG)A]H—M:

<<

+|
Scfmxe>1/31 G.N{l—x,.>1/3)

1§/ =z dV ()
G, |§-r_zr|2n—2m ’

52-3"—'"5

together with the fact that |{'—z’ |2’”+'“2" is locally integrable (dV is the Lebesgue
measure in C" ™),

Now (2.1)-(2.5) imply the lemma in the case z is fixed. Finally, an inspection
of the proof shows that the convergence is uniform on compact sets of M. This
completes the proof of Lemma 2. O

Now we turn to the proof of Theorem 1. This proof is analogous to the proof
of Koppelman’s integral formula given by @vrelid [2] and we will give only the
necessary modifications.

Proof of Theorem 1. Exactly as in @Dvrelid [2], the problem is reduced to show-
ing that

(3.1) lim

e—0 Si(s“,z)eMxM: l$—z|=¢] u(SINK(S,z)Nv(z) = SZGMU(Z)/\U(Z)

for every v(z) € (Co (M) (n—m,n—m—qy- (In this reduction Lemma 1 is to be used
too.) Let us recall also that v;({, z) = {; —Z, for | —z| < small constant. Follow-
ing @Pvrelid, to prove (3.1) we consider the map

T:C"xC"->C"xC"
(z2,w)->T(z,w)=:({,2)=:(z+Ww,2).
7 ! maps the set E=:{({,z)e M XM: |¢ —z| =€} onto
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T YE)={(z,w)eC"XC":zeM, z+weM, |w|=¢}.
We have

| unkEarv@={

o1y T HEOAK(E, 2) Ao (z)]

(3.2) ~ *
- SZEM (S‘W:Z'FWEM, |w|=e] T [u(f)AK(g"Z)AU(Z)]>.

Now we compute:
T*u(OINK(E, 2)Av(R)]=u(z+WINK(z+w,2)Av(z).

Suppose u($) =27~ 4 ur($) dy, where the summation ¥, _, is extended over
all ordered multindices /={l1<i<:-- <i,=n}, u/($) is a function, and d¢; =
dg—',-lA e /\df,-q. Then

(3.3) u(s“)/\K(s“,z)/\v(z)=12 ur($) dSinK($,z) Av(z).

~q
For degree reasons (z € M) we have:

dEINAS, ZIAB(INAV(2) =dEINA(S, 2)
i j a 9 cccy it
A[ > (=phrtim Wi oo Bmd ey A ‘ [d(rk—zk)l]/\v(z).

1< <dm I(Sjys oo $5) kst ipeerim

Therefore, setting _ _
Wio " Wi,
N Job iy | Prio e By, .
&z, W)= I (=1) . : A dw
j0<"'<_]m M . k#jo ..... J’m
hmjo ot hmjm

(here h;; = h;j(z+w, z)) and

1
Bz, wy=: |V (h1yeens Bm) (W 2))?

i A a(hla--’ahm)
X (=1)/1+ " Hm (z+w) A dwg,
jl<"2'<jm a(g‘j]s-"’ rjm) K& jlssdm “

we have
T*[dEINAE ZDIABIA V()] =d(z+w)A&(z, w)AB(Z, w)Avu(z)

and consequently, for a fixed z € M, we obtain

T*[| & —z)*" 2 "uy (£) dEIANA(E, ) AB(E) Av(2)]

S{w:z+weM, |wi=¢€}

(3.4 1

e2n—2m S[w:z+weM, |w|=¢)

ur(z+w)dzina(z, wyNB(z, w)Av(z).

Now let e » 0 in (3.4). By Lemma 2 we obtain
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3.5) lim

| _ Tl dEIAK($, 2) Av(@)] = ur(2) dZ A 2).
en0 VIWiz+weM, |w| =¢}

Moreover, the convergence is uniform in z on compact sets of M. Now (3.2),
(3.3) and (3.5) prove (3.1) and complete the proof of Theorem 1. ]
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