TAUBERIAN THEOREMS FOR PLURIHARMONIC
FUNCTIONS WHICH ARE BMO OR BLOCH

David C. Ullrich

0. Introduction. Suppose f is a bounded pluriharmonic function in the unit
ball of C”. 1t is a corollary to Theorem 3 of [5] that f has a radial limit at a given
boundary point if and only if the (a.e.) boundary values of f have a certain “de-
rivative” at that point. The main result of the present paper is an analogous result
for pluriharmonic functions satisfying a Bloch condition: see Theorem 1 below.
Note that since Bloch functions need not have radial limits a.e., the statement of
Theorem 1 involves instead certain linear functionals on the Bloch space which
reduce to the average of the boundary values over certain sets, if these boundary
values exist. Thus if f is Bloch and equals the Poisson-Szeg0 integral of a mea-
sure, the existence of a radial limit is equivalent to the existence of a “derivative”
of the boundary measure (Corollary 1). In particular, in case f is both plurihar-
monic and the Poisson-Szegd integral of a BMO function, we obtain Corollary
2. (The present Corollary 2 was the main result in the original version of this
paper. Peter Jones, in collaboration with Carl Sundberg, suggested that exactly
the same proof would yield Corollary 1, a stronger result.)

Theorem 1 will follow from Theorem 2, concerning Bloch functions in the unit
disc. The averages in Theorem 2 are taken over open subsets of the disc, so that
the non-existence of boundary values is no longer a problem. This reduction from
a subset of the boundary of the unit ball in C” to an open subset of C is available
only if n = 2; this is the reason for the hypothesis “n# =2 in Theorem 1. (The state-
ment of Theorem 1 is still true for » =1, but the proof is very much different and
will appear elsewhere. Note that the case » =1 of Corollary 2 is contained in [6].)

Theorem 2, in turn, will follow from Theorem 3, which may be regarded as
a quantitative version of results implicit in [5]; Theorem 3 is possibly of some
interest in itself.

This paper had its origin in conversations and joint work with Wade Ramey;
I wish to thank him.

1. Statement of results. Let n=2. Let B denote the unit ball of C", S=0B;
let o denote the rotation-invariant probability measure on S. Let 8@ = ®B(B) be
the Bloch space, the space of all pluriharmonic functions f: B — C such that the
quantity

1—|z|*> ! _/8f of of of
— 8,/ —2i%; —+ -
n+1 ,-,j2=1( »J z’)(az,- az,- d0z; 9%;

is bounded in B. (This is simply the square of the norm on covectors dual to the
Bergman metric, applied to the gradient of f. Various other characterizations of
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@ () for strictly pseudoconvex @ are given in [2].) Note that “Bloch” usually en-
tails “holomorphic”, but we shall find it convenient to allow pluriharmonic func-
tions to be Bloch. For fe & let

l_lzlz n _ af aj_: aj af

2 2 1

= [f(0)|*+su 0i,j —ZiZj > T A
|/ 15 =[/(0)] SUD 1 i,jE=l( »J ”f)(az,- 9z, 9z; 9%;

Then ® is a Banach space.

Let O denote the group of biholomorphic automorphisms of B; note that for
f pluriharmonic in B, fe ® if and only if { fey — f((¥(0)): ¢ € O} is uniformly
bounded on compact subsets of B.

Define a metric d on S by d({, ¢') =|1—<¢, £)|/? (see [7, p. 65]). For { €S,
§>0, let Os(5)={{'eS:d(§, ') <6}). Define BMO(S) with respect to these
“balls” Qs({) (so that this is “BMO;” in [4]). Let P denote the Poisson-Szegd
integral in B (as defined on p. 41 of [7], where it is called the “Poisson integral”).
Our seminorm on BMO is equivalent to a “Garsia norm” in terms of P:

lglBmo = sullt;P[Ig—P[g] (2)]1(z).

(Imitate pp. 224-5 of [3], using Lemma 5.4.5 of [4].) It follows from the M-
invariance of P that there exists an absolute contant ¢ such that for all g e BMO
and Y € M, |g¥|smo = c|g|smo- This shows that if ge BMO(S) and f= P[g]
happens to be pluriharmonic then fe @. This fact in turn explains why Corol-
lary 2 below is a corollary to Corollary 1.

Let e,=(1,0,...,0). We shall prove the following.

PROPOSITION 1. Let n=2. For any 6> 0 there exists a bounded linear func-
tional As on & (B) such that for any fe ®,

1
As f=1lim
o.f r-1 0(Qs) SQa(el

(In fact, if we let g(\) = f(\ey) for \=x+iy in the unit disc, then

)f(rf) do().

As f= g\ (1—|\*)""*dxdy,

PR
a(6) Jvs
where Vs ={\: |A\| <1, [1=\|"? < 8} and o(8) =, (1—|\[*)""* dx dy.)

That is, As f would be the average of the boundary values of f over Qs(e;), if
only f had boundary values. Note that the formula for A4; f is nonsense if n=1.
Our main result is the following.

THEOREM 1. Let n=2. For fe &(B) we have lim, _, - f(re;) =0 if and only
l:flima_,o+ Aaf: 0.

COROLLARY 1. Let n=2. Suppose fe ®B(B); suppose f=Pl[u] for some
measure pon S. Then lim, _, - f(re;) =0 if and only if
lim r(Qs(er)) —0
s—o0+ a(Qs(er))
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COROLLARY 2. Suppose g € BMO(S) and f= Plg] is pluriharmonic. Then
lim, - f(re;) =0 if and only if

alir& a(Qs) SQa(f‘l)
Note that the hypothesis that P[g] be pluriharmonic in Corollary 2 is essen-
tial; see Theorem 2 of [5].
Let us say a word about why Corollary 1 follows from Theorem 1. Combining
Proposition 1 above with Lemma 4.2 in [5] shows that if f= P[u] is plurihar-
monic, then

gdo=0.

_ p(Qs(er))
o(Qs(er))

(The hypothesis “u =0 was not essential in Lemma 4.2 of [5].) We have explained
above why Corollary 2 follows from Corollary 1.

Let D < C be the unit disc; let «(8) and V5 be as in Proposition 1 above. Theo-
rem 1 will follow directly from Theorem 2.

As S

THEOREM 2. Let n=2. Suppose g € &(D). Then lim, _, - g(r)y=0 if and only if

1
lim —— N1 =|N?*""2dxdy=0.
lim —{ g A~ |\ dxdy

Theorem 2 will, in turn, follow from Theorem 3: Let II* < C be the upper half
plane. For § >0, let D;" ={AeIl*: |\| <§); let

_ n—2
B(d) = SW Yy “dxdy.
Let #*°(I1" )= {bounded harmonic functions in IT* }. For g integrable on bounded
subsets of IT*, 6§ >0, let

Ls(g) = Sm g(x+iy)y"*dxdy.
6

_1
B(6)

THEOREM 3. Let n=2. There exists a constant c such that if ge h(I11) and
Sor all 6 >0 we have |Ls(g)| <-, then for all y>0

lg(iy)| = cy /D g| G/ D),

In particular, if Ls(g) =0 for all 6 >0, then g(iy) =0 for all y > 0. This fact is
implicit in the proof of Proposition 4.4 of [5]. The results in [5] followed from
Wiener’s Tauberian Theorem; the present result will follow from Proposition2 in
Section 4, which may be regarded as a quantitative version of Wiener’s Tauberian
Theorem.

2. Proof that Theorem 2 implies Theorem 1. First let us prove Proposition 1.
Suppose fe ®(B), n=2. For Ae D (i.e., AeC, |\ <] let g(N\)=f(hey). It
is immediate from the definition that ge ® (D). For 0<r <1, let f.(z) = f(rz),
g-(N\) =g(r\). Since f; is continuous on B and pluriharmonic in:B, application
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of Lemma 3.2 of [5] to the function f; xg,(,) shows that

1 —'; . 2\n—2 _ .
o(Qs) SQ.;(el)f(’"‘“)d"‘” (5)5 &N (U=|N>)""2dxdy  (A\=x+ip).

Since ge B (D), g blows up at most logarithmically at the boundary of D, so
ge LY(D). Thus g, » g in L(D) as r — 1, so that

1 _ 1 _ 2\n—2
lim— = { S0 do@) = g A=N)" 2 axay,

giving Proposition 1. (If one keeps track of the sizes of things here, one sees that
|[As f| =cs]f|w-)
With Proposition 1 proved, it is evident that Theorem 2 implies Theorem 1.

3. Proof that Theorem 3 implies Theorem 2.
LEMMA 1. Suppose ¢ € L'((0, ©)) and, for some integer m =0,

S: #(0) (sin 0)" d6 = 0.
. T 7r : m
§0¢(5+t(0—3))(51n 0)" db

(0) ={ (sin )", 0e(0, ),

Then
=c|o|(1—1)

Jor 0<t=1.
Proof. Let

0, 6 & (0, 7).
Then x is Lipschitz and has compact support, so that if

wn=a(510-5)

then |x —x/| <c(1—¢) for 0 <¢=<1. Since | ¢x =0, the lemma follows:

x T T ) ——
SO qb(—z- +t(0—3>)(sm 0)" do =

Let B(II*T) denote the space of functions g harmonic in IT* for which
|Veg(x+iy)|=c/y; let

foxi| =[x —x|=clslia-n. O

lglam+)=|g(i)| +sup{y|Ve(x+iy)|: x+iyell*}.
LEMMA 2. Suppose ge &(I11), 6 >0; suppose n=2. There exists c indepen-
dent of 6 such that:
(i) f0<y=34, x| <6, then |g(id)—g(x—iy)| =c|v|a(1+10g(5/»));
(i) (1/B(3)) Sy |(id)—g(x+iy)|y" *dxdy =<c|g|a; and
(iii) |g(i8)—Ls(g)|=c|g|w-

The proof of (i) is an exercise; (i) implies (ii) and (ii) implies (iii).
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Now suppose Theorem 3 is known. As a first step towards proving Theorem 2
we prove the following.

THEOREM 1.9. Suppose ge ®(I11). Then g(id) =0 for all 6> 0 if and only if
Ls(g)=0 for all 6> 0.

Proof. Suppose g(i6)=0. The Schwarz reflection principle implies that
gx+iy)+g(—x+iy)=0, so that Ls(g)=0.

Suppose, on the other hand, that L;(g)=0. Lemma 2(iii) implies that g is
bounded on the imaginary axis: |g(i8)| =c|g|g for all §>0. For zeIl* and
0 <t <1define g,(z) = g(i(z/i)"). (Here z/i lies in the right half-plane; the prin-
cipal branch of (z/i)’is intended.) Lemma 2(i) shows that g, € A~°(IT1*) and that,
in fact, |g/] =<cl]g]|a(1+|log(1—1¢)|). Our hypothesis implies that for almost
every r > 0 (hence for every r > 0) we have {7 g(re’?)(sin 0)"~% df = 0. Hence an
integration in polar coordinates shows that for any 6 >0, |Ls;(g,)| =c|g|a(1-1),
by Lemma 1. Now Theorem 3 shows that

lg(iv)| = clgla(1— )21+ [log(1— )|y "+ D/ +2),
Let ¢ approach 1: we obtain g(iy)=0. J

A normal families argument which we omit (see, e.g., [6] for analogous argu-
ments) leads from Theorem 1.9 to the following Theorem 1.99.

THEOREM 1.99. Let n=2. Suppose ge ®(1"). Then lims_ o+ g(id) =0 if
and only if limgs_, ¢+ Ls(g) =0.

Now the Cayley transform, with a bit of care, transfers Theorem 1.99 from
II* to D, where it becomes Theorem 2. (Note that if ®:II"— D is the Cayley
transform, then fo® e B(I1") if and only if fe B(D).)

4. A version of Wiener’s Tauberian Theorem. The present section is devoted
to the proof of the following proposition, which may be regarded as a quantita-
tive version of Wiener’s Tauberian Theorem (albeit with extra hypotheses).

PROPOSITION 2. Suppose K € L'(R) and the Fourier transform K has no zero
on R. Suppose K is continuously differentiable; let = (K) ™" and let

R 1/2
N(R)=|¢(O)|+RI/2(S_RI',b’lz) :
Suppose ue L*(R) and |K * u| <8. Then if Fe L'(R) is absolutely continuous
(i.e., F’e LI(R)) we have
| F*u)e SCinf(;(E"F'"ll|u||oo+5"F||1N(l/ﬁ))-
€e>
Note that this shows F'* u =0 if K * u =0, which is Wiener’s theorem. The con-

tent of Proposition 2 is that F* u is “small” if K * u is “small”. We begin with a
few lemmas.

LEMMA 3. Suppose Y € C(R). Let
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R 1/2
N(R)=|¢(0)|+R'/2(S_R|¢'|2) :

Given R >0, there exists ¢ € CL(R) such that
¢li—rr1=V¥l-rr and |]i”|¢’|3> =cN(R).

Proof. By a dilation, we may assume R =1. Note that

[" welax=2p@)+ [ a—lxhlyelde=ena),

so that
: 1/3 , 1/3
(I w1) (I, w) =enan,
Similarly |¢(x1)| =cN(1); thus ¥ | (—;,1; may be extended to a ¢ having support
in [—2, 2], having the required properties. ]

LEMMA 4. For ¢ € CA(R), || =c|o|V3|¢’|3>. -

Proof. Splitting the integral into two pieces Slxls r and SI x|>r> standard esti-
mates show that

|dli=c(R|o1+R™?[¢']2)
for any R>0. Let R=|¢| 73| ¢’ |7>. (]
Lemmas 3 and 4 immediately imply the following.

LEMMA 5. Suppose ¢ € C'(R); let

R 1/2
N(R)=|¢(0)|+R‘/2(S_R|¢'|2) .

Given R >0, there exists g € L'(R) such that
gli-r,r1=V¥|(-r,r1 and |g|i=cN(R).
For ¢ € L'(R) and e > 0 define ¢, (x) = (1/€) d(x/€).

LEMMA 6. Suppose K € L'(R), K has no zero on R, K € C'(R). Define N(R)
as in Proposition 2 above. Suppose ¢ € L'(R) and the support of ¢ is contained
in [—1,1). Then for any Fe L'(R) and ¢ >0 there exists g € L'(R) such that

Fx¢p.=gxK and |gl=c|F|i|é[iN(1/e).

Proof. By Lemma 5 we may find h e L'(R) such that A | j—y/c /e =¥ | =1/e, 1/e]
and |A&|; =cN(1/e). (Here Yv=(K)7, as above) Let g=F%*¢.*h. Then |g|;=<
1F 1] Delr ||h||1<c|[F|| ||¢>i| N(1/€). Note that ¢, is supported on [—1/¢,1/¢], on
which interval A= (K)~!. Thus gK = F¢$ AR = Fé,, so that g*x K = F* ¢,. ]

LEMMA 7. Suppose Fe L'(R) is absolutely continuous; suppose ¢ € L'(R),
fo=1, and = |x||p(x)|dx < oo. Then for any e >0,

|F—Fxgi=<elF' | |x]|o00)]dx.
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Proof. By Fubini’s theorem,
[1Fo—Foe—pax=|y[1F 1.
Since { ¢ =1, we see that

Fx)=Fx¢(¥) = | (F) = F(x =) $(») dy,
so that

\F—Fgcli= [ IF0) = Fox =) |6e(3)| dx dy
<1F' i { 17|16 dy
=elF1 | 1116 dy. 0

Proof of Proposition 2. Suppose K, F, and u are as in the statement of Propo-
sition 2. Pick ¢ € L(R) such that ¢ is supported in [—1, 1], fo=1, and

™ Ixllg]dx <.
Let € > 0. By Lemma 6 there exists g € L' (R) with |g|, =cN(1/e)|F|; and g% K =
F*¢.. Now Lemma 7 implies |F—g* K| =|F—F*¢.|;<ce|F’|,. Thus
|[F*ulo=<[(F—g*K)*u|o+|g*(K*u)|ew
=|F—g*K|i|u|o+]gli|K*u]w
=c(e|F'|1|u]+S[|F|1 N(1/e)). ]
5. Proof of Theorem 3. Our application of Proposition 2 requires a bit of pre-
liminary set-up.
DEFINITION. For m=0,1,... and £eR, I,,(£) = [3(sin 0)"e %’ dé.
LEMMA 8. For m=0,1, ... there exists c,, >0 such that

14+e "¢
(1+lgl)m+l

IIN(E) Z Cm
Sfor all £ eR.

Proof. By induction on m. First
J— e_WE

1
Iy(8) = T (£#0);

integration by parts a few times shows that

1+e™ "¢ (m+1)(m+2)1,,(&)
ML d =
14 EZ an Im+2(£) ( I 2)2+EZ

PROPOSITION 3. Let n=2. There exist K, Fe L'(R) such that if ge h™I1")
and u(t) =g(e’)+g(—e'), then

O

I(§) =
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(i) g(iy)=u*F(logy) (y>0) and
(ii) Ls(g)=uxK(logd) (6>0).
Further: F is absolutely continuous, K has no zero on R, R e C'(R), and if
N(R) is as in Proposition 2 then N(R) <c(1+R)"*! (R>0).

Proof. Let s =log y. The Poisson formula for IT* shows that

N B _ y
gin=— | @+ 5T d
1 pe 1
= S_oo u(x) eX—Sqes—x dx
=u*F(s)

if F(x)=[w(e*+e™*)]~\. This gives (i) and shows that F is absolutely continuous.
Similarly the Poisson formula shows that (ii) holds for some K € L'(R). Asin
[5]1, we may use (ii) to calculate K(&) as follows.
Fix £eR and let g(z) =[14+e "] !e/t1°82 (here “log” denotes the principal
branch). Then ge A1) (in fact, ge H*II")) and u(?) =g(e’)+g(—e’)=
e’*!, Thus (ii) and an integration in polar coordinates show that

R(£)= S: K(t)e " dt

=K*xu(0)=K*u(logl)=L,(g)
_ 1 1 L,
a(l) 1+e i n+ig n=2(8)

This shows K has no (real) zeros and K € C'(R). Lemma 8 shows that |K(£)|=
c¢/(1+|£])". A bit of calculus shows that

d%le(s) =c|R (&),
so that if ¢ = (X) ™! then
: KYE) |__ € qaieny
= = = —= = -+ .
VOI= R |= 8@ =TI
This shows that N(R) <c(1+R)"+1, O

We can now prove Theorem 3. Suppose ge ~”(I1") and |Ls(g)| < for all
6> 0. Pick K, F and define u as in Proposition 3. The fact that |[Ls(\)| <+ forall
6 means |u* K| =<+. So Propositions 2 and 3 show that for any y > 0,

le(y)]| = |u*Fle
<c inf(e|u|+yN(1/€))

e>0

<cinf(e|gfo+v(1+1/e)"t)
e>0

< C,Yl/(n+2)||g||£g+l)/(f1+2).
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(Let e= (/g +?.) O

Added in Proof: Lemma 1 above is not true in the case 72 = 0. (In this case the
function x appearing in the proof of Lemma 1 is not even continuous, much less
Lipschitz.) One may revise this lemma by adding the hypothesis that ¢ blows up
at most logarithmically at 0 and #; one then sees that

T [T T . m
SO ¢<—2— +t(0—— —i—))(sm 0)" do

This is sufficient for the application in the proof of Theorem 1.9.

=clo|i(1—¢)(1+ |[log(1—1¢)]).
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