ONE-SIDED CLOSED GEODESICS ON SURFACES

Joel Hass and J. H. Rubinstein

Let M2 be a closed Riemannian 2-manifold and let « be a non-trivial element
of m;(M). Among the set of all smooth loops in M which are freely homotopic to
a curve representing «, there is a shortest member f: S' —» M, which is a smooth
closed geodesic. Both f and the image of f will not be unique, in general. If « is
orientation-preserving, then it was shown in [2] that f has the least possible num-
ber of self-intersections, unless f factors through a covering. In particular, if « is
represented by an embedded loop, then f is either an embedding or a double
cover of an embedded one-sided curve.

If « is orientation-reversing, then any loop which is freely homotopic to a
curve representing « is one-sided. The features of one-sided loops differ signifi-
cantly from two-sided curves, in particular those properties associated with cov-
erings. Thus covers of one-sided shortest geodesics are not necessarily shortest,
unlike the two-sided case.

A specific example of the difficulties encountered in the one-sided situation is
seen by starting with a flat M6bius band M ? and putting a bump in it as in Fig-
ure 1.

The bump is formed by multiplying the metric by a rotationally symmetric
function on the shaded disk in Figure 1. A large enough bump will force the
shortest geodesic representing a generator o of m;(M?) to go around the bump.
It is now clear that a shortest geodesic representing «? will not double cover a
shortest loop representing «. This contrasts with Lemma 1.3 of [2]. Note that
there are at least two distinct shortest geodesics representing «, by the symmetry
of the construction. One goes above and one below the bump.

Nonetheless, we will show in this paper that shortest one-sided geodesics still
minimize the number of double points in their intersection sets.

DEFINITION. We say that a loop f:S!— M represents a e m (M, x) if f is
freely homotopic to a loop at x in the homotopy class (rel x) of «. f~ o will be
used to denote that f represents «.

DEFINITION. f:R — M is length-minimizing (or shortest) if f is shortest on
any compact arc 7 C R, in the homotopy class relative to a7 of f restricted 10 7.

DEFINITION. Two maps f: R— M and g: R —- M are homotopic by a homo-
topy with compact support if there is a homotopy H: R X I — M with H(s,0) =
f(s), H(s,1)=g(s) and if there is a K >0 such that |s| > K implies H(s,0) =
H(s,t) for all 0 =¢=1. Equivalently, the homotopy only moves a compact arc
of R.
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DEFINITION. Let f, g: S' > M be general position maps and let f (resp. g)
represent o (resp. 3) in m;(M). Define D(f, g) as the number of double points
#£(SHNg(S!). Define D(f) to be the number of double points of f, that is,
D(f)=#{xeS': £ ~1(f(x)) has 2 points}. Define D(e, 8) as inf{D(f, g): f~«
and g ~ B} and D(«) to be inf{D(f): f~ «]}.

Note that shortest loops are geodesics and so are always transverse and self-
transverse, unless they factor through coverings. A similar procedure to [2] could
have been adopted to count intersections and self-intersections of multiplicity
greater than 2, for shortest loops not in general position. However this is more
complicated in the one-sided case, due to difficulties with coverings of a Mobius
band (cf. §2). So we have restricted attention to general position maps for sim-
plicity. The general case follows readily from this one.

Analogous results about intersections and self-intersections of least area in-
compressible two-sided surfaces in 3-manifolds are obtained in [3]. In an Appen-
dix we consider the following question. Suppose M is a closed RPZ-irreducible
Riemannian 3-manifold and F is a closed surface not S? or RP2. Let f: F—> M
be a least area incompressible map which is homotopic to a one-sided embedding
g. Is fan embedding? We show by the techniques of dealing with one-sided curves
that this reduces to the case where f is a homotopy equivalence, that is, M is a
twisted line bundle over g(F). However we do not know how to complete this
case.

We would like to thank D. McCullough for suggesting a simplified proof of
Lemma 2.6, and also the referee for helpful comments.

1. Preliminaries. We recall here some results established in [2] and [4].

LEMMA 1.1. Let f: S'— M be a shortest two-sided geodesic. Let p,: S' — S!
and p,: M — M be coverings and let f: S' — M be a lift of f-p,. Then f is length-
minimizing.
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Proof. If S!'is a circle, this is established in Lemma 1.4 of [2]. If §'is a line,
one can project the compact arc 7 homeomorphically into some large finite cover
of S!. This construction is carried out for the two-dimensional case in [4] and the
argument is identical here. ]

LEMMA 1.2. Let f, g be two-sided shortest maps from S' — M, where f ~ «,
g~pBand a,Bem(M). If f and g are in general position then D(f, g) = D(a, 3)
and D(f)=D(«).

NOTE. A similar result is true if f or g is a shortest arc or length-minimizing
line. For length-minimizing lines, D(«) and D(«, 8) are defined to be the infi-
mum of double points in the compactly supported homotopy classes « and «, 3
(respectively). For arcs, the homotopies are relative to their boundaries. For the
proof, see Theorems 3.2 and 3.3; see also §4 in [2].

We next state a Proposition which shows just how different the one-sided and
two-sided cases are. If oo e (M) is orientation-preserving, then we know that
a shortest loop representing «”, for n > 1, always factors through a covering (cf.
Lemma 1.4 of [2]). This happens sometimes for shortest one-sided curves (e.g.,
in the case that M has a hyperbolic metric). However, we have the following:

PROPOSITION 1.3. Let M be a Riemannian surface, M = RP?, let « € m(M) be
orientation-reversing, and assume that there are shortest geodesics fy, f>: S' - M,
both representing o with distinct images C,, C,. Then a shortest loop h represent-
ing o (n>1) never factors through a cover of a curve representing o.

Proof. Suppose h factors through an n-fold covering and has image denoted by
C. Then at least one of the two shortest geodesics representing «, say fj, Crosses
C transversely in an odd number of points (by Z, intersection theory). We can
then form a new loop A’ by traversing C; n—1 times and C once, by “cutting and
pasting” at some chosen crossing point of C; and C (cf. Figure 2). But then #’ is
homotopic to # and has length less than or equal to that of 4. Rounding the cor-
ner of A’ at the cut-and-paste point decreases length, and this contradicts /4 being
shortest.

REMARK. By passage to a k-fold covering space M of M, we can see that
h cannot factor through a cover of a loop representing o*, where 1<k <n. In
fact, since a shortest curve representing «* does not cover a loop representing o

Figure 2



158 JOEL HASS AND J. H. RUBINSTEIN

k times, it follows that there are at least two curves in M with distinct images rep-
resenting the generator «* of 7 (M ). Hence Proposition 1.3 can be applied in /7.

2. The Mobius band. Since our methods will involve covering spaces, the
Mobius band turns out to be the key space to understand. Let B denote a Mobius
band with some Riemannian metric and let o be a generator of 7 (B). We assume
the metric is chosen so that shortest loops representing powers of « always exist.
In applications, we will be considering compact Mdbius bands B with dB geo-
desic and open M0Obius bands covering closed Riemannian 2-manifolds. In both
cases such shortest curves can be found.

LEMMA 2.1. Let C be a shortest loop representing . Then C is embedded.
If C’ is another such loop then C and C’ either coincide or intersect transversely
at a single point.

Proof. Suppose C is not embedded. Then C crosses itself transversely at some
point P. (C cannot be multiply-covered since C ~ «). Perform a cut and paste at
P as in Figure 2. This yields two new loops, one of which is one-sided. Repeating,
we eventually arrive at an embedded one-sided curve with length less than that of
C. Such a loop represents « and this contradicts the shortest length property of C.

If C and C’ are distinct shortest loops, they must cross at least once, by Z,
intersection theory. If they cross in at least two points, pick an arc X\ in C with
AN C’=09A. Let u, u’ be the arcs of C’ with du=09u’=9d\. Then N\Up and AUy’
are closed curves in B, one of which is one-sided, say AU gu, and one two-sided,
say AUp’. Then C{=C’—pu’+ X and C;= C—\+pu’ are one-sided. Let /(Cy) de-
note the length of curve Cy. We see that /(C,) +/(C{) =2I(C), and each of C, C{
has a corner. By rounding the corner of, say, C; and C{, we obtain a loop CY
which is shorter than C. If C7{ is not embedded, we repeat the argument in the
first paragraph to obtain an even shorter curve which is embedded. So we get a
contradiction, since any such a curve is one-sided and so represents «. O

NOTE. This result applies also to RP2.

LEMMA 2.2. Let C be a shortest geodesic representing o and let g: S' — B bea
shortest loop representing o2, with g(S') = C,. Then either C = C, or C and C,
are disjoint.

Proof. Lemma 2.1 shows C is embedded, and Theorem 2.1 of [2] establishes
that Cy is embedded and g is either an embedding or a double cover. Suppose the
latter is true. If C is distinct from C,, then Proposition 1.3 gives a contradiction
to g a covering. So C = Cy in this case.

If g is an embedding, then Cj is two-sided and bounds a Mdbius band By in B.
If CNCy# & then C crosses Cy transversely, and we can find an arc A of C with
ON=ANB. Let u, n’ be the arcs of Cy with A =09u=09p’. Then AUp and NUp’
are both embedded, two-sided loops, as they are disjoint from int By and so one
is contractible, say AU u. But then the exchange argument of Lemma 2.1 applies
and the result is proved. O

We next consider how shortest arcs intersect C, where C is a shortest loop ~«
and B is a compact Mdbius band, with B = Cy a shortest geodesic ~ «%. Note
that C lies in B.
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LEMMA 2.3. Let A: (I,31) — (B, Cy) be an arc of shortest length in its homo-
topy class rel 81. Then either A intersects C transversely in a single point or A has
image in Cy.

Proof. Suppose first that A4 is homotopic rel 37 to be an arc A’ running along
Co. A’ may run several times around Cj, but it is still shortest rel its boundary,
by Lemma 1.1. By passing to a suitable covering space B of B, we may assume
that a lift A’ of A’ is embedded. Also the covering Cy of Cy lying in B is shortest,
by Lemma 1.1, as is also the lift A of 4 with 34 =dA’. But then

I(Co)=1(Co—A+A"),

and rounding the corner of Cyo— A+ A’ gives a contradiction.

If A cannot be homotoped into Cy, then A4 transversely crosses C in at least
one point, as B— C retracts to Cy. Suppose there are two or more intersection
points. Let B denote the universal cover of B, let 4 be a lift of A to Band let C be
the line in B covering C. Then A meets C in the same number of points as A4 inter-
sects C. Therefore there is an arc in A with both endpoints on €. Let p be such
an arc with the property that the arc A of € with d\ = du is as short as possible.
If /(N\) =I(C) then we could make an exchange argument and get a contradic-
tion, since in this case both \ and p are shortest arcs (rel d), and they are homo-
topic. So we can assume /(A) > /(C).

In B let x generate the covering transformation group. Clearly A\ and x\ over-
lap as in Figure 3. Since A crosses xXAUxpu at least twice, either there is an arc in C
with ends on A which is shorter than x\ or else 4 intersects xu. The former possi-
bility is ruled out by the choice of u. Similarly, x4 must cross x and so ANxA
contains at least two points. But 4 and xA are shortest arcs and so another ex-
change argument gives a contradiction, completing the proof. ]

REMARK 2.4. The same proof applies in an open Mdbius band B to show that
a length-minimizing line intersects a shortest loop which represents a generator
of 7(B) in at most one point.

LEMMA 2.5. Let B be a Riemannian Mobius band. Let f, g: S' — B be shortest
geodesics in general position representing o*, a™ respectively, where o generates
m(B) andl1<=k<=m, k,modd. Then D(f)=k—1 and D(f, g)=k.

REMARKS. The assumption that f, g are in general position rules out the pos-
sibilities that f covers its image and that the images of f and g coincide. The
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following lemma will show that these are the least possible numbers of double
points.

Proof. To calculate D(f), we look in the k-fold cover By of B. If fis a lift of f
to By, then fis a shortest loop representing a generator of m(By) and so is em-
bedded by Lemma 2.1. Clearly D(f) is the number of intersections of all the
other lifts of f to B; with Im f. But Lemma 2.1 implies that each of these k—1
curves crosses Im f once, so that D(f) =k —1 as claimed. Note that no two of
the lifts of f can coincide, since f is in general position.

We next check that D(f,g)=1if k=1. A disk (shaded in Figure 4), which
misses f(S') and meets g(S!) in a small embedded arc, can be removed from B
to form a new Mobius band B’. Then g(S')NB’ is a shortest arc, rel 9, and we
can apply Lemma 2.3 (with minor changes to the proof, since dB’ is no longer a
shortest geodesic) to conclude that g(S') and £(S') intersect at most once. Hence
D(f, g) =1 as desired.

Let C be a shortest curve representing « and consider now D(f, g) for fshort-
est ~a® and g shortest ~a', where k, m> 1. It follows that f(S') and g(S!)
intersect C at one point each, by the previous case. Note that f(S') = C is ruled
out since f is in general position, and similarly for g.

We now look in By,,, the km-fold cover of B. Pick lifts f and g of the m-fold
and k-fold covers of f and g (respectively) to By,,, and let C be a km-fold cover
of C in By,,. Note that f and g are embeddings, since they cover shortest loops
f:S'> By and g: S'— B,, which are embeddings by Lemma 2.1 (f is a lift of f
to the k-fold cover of B and g is defined analogously).

In Figure 5, the loops £, g and C are depicted in By,, for the case where k =3,
m=>3.

Note that Im f intersects € in m points and Im g and C cross in k points, since
f(SHNC and g(S!'YN C both contain one point. Since m > 1, an arc ~ of Im f
can be chosen with ends on € and interior disjoint from €. As v is homotopic
into C, there is a disk in By, with boundary consisting of vy and an arc of €.
By an innermost disk argument, we can then find a disk D in By,, which satisfies
dD = XUy, where \ is an arc of Im £, p is an arc of €, and int D is disjoint from
Im fand €. Suppose that Im g crosses x. Then Im g must intersect \ as g meets p
in at most one point, since the points of Im g N C are spaced at distance n-/(C)
along C, a distance =k -/(C), which is the distance between the endpoints of ..

On the other hand, suppose there is an arc » of Im ¢ N D with dv C A. Clearly v
lies between two successive intersections of Im g and €. But g is shortest between
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such points, and so » is shortest rel endpoints. Similarly, if 7 is the subarc of A
with dr = d», then 7 is shortest rel ends also. An exchange argument between »
and 7 then gives a contradiction.

We conclude that Im g crosses D in at most one arc, which must have one
endpoint on each of X\, u. Let x generate the covering transformation group for
Bim — B. Applying the same argument using the disks x**D, forl=i=m-—1, we
find that D(C, g) =D(f, 8) = k. Notice that C=Uj<;<m—1 x*p and so all the
intersections of Im g and € occur in the disks x**D. There are k lifts of an m-fold
cover of f in the total pre-image of f in By,,, and m lifts of a k-fold cover of g to
By, in the full pre-image of g. The entire number of crossings of all the lifts of f
with the total pre-image of g is thus k2m. Dividing by km, we see that f and g
intersect in k points as claimed. I:I

We now show these values are the best possible.

LEMMA 2.6. Let B be a Mobius band and let o be a generator of m(B). Then
D(a*y=k—1and D(o*, a™) =k, if 1 <k <m are odd.

Proof. 1t is clear, from the proof of Lemma 2.5, that D(a*)=k—1 and that
D(a*, a™) < k. We will show that D(a*, a™) = k, completing the argument.

Let f, g be general position curves representing a*, o’ respectively. Choose an
arc from 9B to a point on either Im f or Im g, but meeting Im fUIm g only at
this endpoint. Let B’=cl(B— D), where D is a small regular neighborhood of
this arc. Then one of f or g produces a proper arc f’ or g’ in B’.

Let B’ be the universal cover of B’. The arc f’ or g’ lifts to a proper arc f~
or g’ in B’ which has one endpoint on each component of dB’. (Otherwise f~
or g’ is homotopic rel ends into 9B’ and this projects to a similar homotopy for
S’ or g’, contradicting &, m odd.) Also the loop f or g in B’ lifts to a total of &
or m lines in B’. Hence we see that f” or §’ establishes the desired conclusion that
D(a*, a™)=k. |

3. The general case. We first prove an embedding result for shortest loops.

THEOREM 3.1. Let M? be a closed Riemannian 2-manifold and let o« € w (M)
be represented by an embedded one-sided loop. Then any shortest curve f: S' - M
representing o is an embedding. Any two such shortest loops intersect in a single
point or have identical images.
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Proof. Let g: S' - M be a shortest loop which represents «'. It follows from
Theorem 2.1 of [2] that Cy, the image of g, is embedded, and that g is an embed-
ding or a double covering of Cy. In the latter case, the argument in Lemma 2.2
shows that f must have image Cy and the theorem is proved. ]

So we can assume that Cy is an embedded two-sided loop in M and hence
bounds a Mobius band By, by classical surface theory. Let M, be the covering
of M corresponding to the subgroup of w;(M) generated by «. Then M, is a
Mébius band. Let By be a component of the pre-image of By in M, which pro-
jects homeomorphically onto By. Note that 3B, = C, is a lift of Cy and so is a
shortest loop representing 2. By Lemmas 2.1 and 2.2, f lifts to an embedding
f:8'5 M, which is a shortest loop representing « and has image disjoint from
C,. But Im £ is contained in the smaller Mobius band B, in M, and B, projects
one-to-one onto By. It now follows that f is an embedding in M with image in
By. The second part of the theorem follows by Lemma 2.1. ]

We next look at intersections of shortest one-sided loops with shortest two-
sided curves.

THEOREM 3.2, Let f, g be shortest loops representing o, 3 respectively in a
closed Riemannian 2-manifold M. If f is one-sided, g is two-sided and f, g are in
general position, then D(f, g) =D(«, 3).

Proof. Let M, be the cover corresponding to the subgroup of =; (M) generated
by «. A lift f of fto M, is an embedding which is shortest ~« in the M6bius
band M. The pre-image of g in M, is a collection of length-minimizing lines and
(possibly) shortest two-sided loops, by Lemma 1.1. As in [2], we refer to these
lines and loops as components of the pre-image of g. A line component meets
Im f at most once by Remark 2.4. A loop component either is disjoint from Im f
or coincides with Im £, by Lemma 2.2 above and Lemma 1.4 of [2].

Any homotopy of f or g lifts to a proper homotopy in M, and so cannot de-
crease the number of intersection points of Im fwith the pre-image of g, which is
equal to D(f, g). Thus D(f, g) = D(«, 3) and the theorem is proved. ]

We now show that a pair of shortest one-sided loops minimizes intersection.
This includes the case of self-intersections of a single one-sided curve.

THEOREM 3.3. Let M be a closed Riemannian 2-manifold. Let «, 3 be distinct
orientation-reversing elements of mi(M). Let f, g be shortest loops in general po-
sition representing o, 3 respectively. Then D(f)= D(«) and D(f, g)=D(«a, B).

Proof. If M is a projective plane then D(f) = D(«) follows by Lemma 2.1.
Assume that M is not a Klein bottle. We first show that D(f) = D(x).

Let fo: S'— M be a shortest loop ~«? and let M, be the cover of M corre-
sponding to the subgroup of 7; (M) generated by «. Let U be the universal cover
of M. If f: S'—> M, is a lift of £, then £ is an embedding with image denoted by
C, by I.cmma 2.1. Hence the pre-image of f in U is a collection of embedded
lines (which we will call the components of the pre-image of f). Let fo: S! — M,
be a lift of f,. By Lemma 2.2, the image of fp is an embedded curve Cy and either
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Co= C or Cy bounds a Mobius band By containing C. If C = Cj,, both parts of
the theorem follow by Theorem 3.2, so we can suppose that CoNC = Q.

In U, the pre-image of fj is a collection of embedded length-minimizing lines
(by Lemma 1.1) and the pre-image B, of By is bounded by two of these lines, say
/; and /,. Clearly B, contains exactly one component, say /, of the pre-image of f.
We call By a strip and will now consider how (M), acting as covering transfor-
mations on U, moves such a strip.

By Lemma 3.1 of [2], two components of the pre-image of fy can meet in at
most one point. If /3 is such a component, then /5 projects to a (length-minimizing)
line or loop in M., which meets Cy in an even number of points, since Cy= 9B,.
Lifting back to U, we conclude that /3 meets /; if and only if it meets /,. There-
fore a non-trivial intersection of B, with some distinct translate 7B, can only be
as in Figure 6. Note also that since / projects to C and 7/; maps to a two-sided
shortest line or loop in M_, by Remark 2.4 and Theorem 3.2, /N 7/, is a single
point as shown in Figure 6. What is not apparent is the nature of the intersection
between / and 7/. We will see that these two lines intersect in exactly one point.

The strip B, is stabilized by « and «2. «? is an orientation-preserving map
which translates points a distance /(Cp) along /, /; and also /,. Suppose B, is a
strip crossing By, where o can be assumed to be orientation-preserving. Then we
claim that o268, is disjoint from By, as in Figure 7. For if this is not true, then
each pair of /;, o/;, and a?a/, will intersect non-trivially.

However if M has a hyperbolic metric, this cannot happen as «? is simply a
hyperbolic isometry translating points along the unique geodesic in U which is
invariant under o2 (and «). The picture is shown in Figure 8, in the hyperbolic
case. We denote M equipped with a hyperbolic metric by AM’, and the correspond-
ing geodesics by f’, f4§, !’, I{, and /5. Now however f’ and f§ coincide, as do their
lifts /7, I{, and /5. There is a homotopy of f to f§in M’, which moves any point on
Im f, a distance smaller than K, where K is some constant and distance is mea-



164 JOEL HASS AND J. H. RUBINSTEIN

oL oot

Figure 7

unique geodesic
/ invariant under
2

>
&

Figure 8

sured in the hyperbolic metric of M’. This homotopy lifts to U’, the universal
cover, giving a homotopy of /; to /{ moving no point more than distance K, and
similarly moving each translate of /; to the corresponding translate of /{. Suppose
that o/, and «?0/, intersect, but that ¢/{ and «%¢/{ do not. Outside a large com-
pact disk in U’, which is just hyperbolic space, the geodesics o/{ and «?al{ are
never within distance 2K from one another. Thus it follows that there is a homo-
topy supported in this disk which makes o/, and «?/; disjoint. Since these lines
are length-minimizing and thus minimize the number of intersections in their
compactly supported homotopy class, as in Lemma 3.1 of [2], this implies that
o/, and %0l are disjoint. More generally, a?"c By is disjoint from 0By by the
same method.

Consider now the intersection of the strips By and 7B, in U, as in Figure 6. We
will show that / and 7/ intersect at exactly one point, the minimal number pos-
sible in their proper homotopy class. v

Suppose /N 7/ has 3 points. Let A =/N78y and let E =7/N By, so that 4 and
E are arcs crossing 3 times. By the previous argument, since 78, is disjoint from
a?7By and «? translates points along / by a distance /(Co) = 2/(C), it follows that
[(A) < 2/(C) and similarly /(E) < 2/(C). Clearly there are subarcs of 4 with end-
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Figure 9

points on E which give rise to 2-gons in U.. Among all 2-gons in U between trans-
lates of /, we can pick one which is innermost (i.e., contains no smaller such 2-
gon), and without loss of generality we can assume it is bounded by arcs \; and
p1 contained in A and E respectively. The situation is as in Figure 9. Note that
translates of / may cross this 2-gon.

If I(N\) <I(C) and /(u,) < /(C) then an exchange between projections of A\; and
p1 gives a contradiction, and similarly for \,, u, in place of A\, ;. So we can as-
sume /(A1) >I(C), I(pn) <I(C), I(N\) <I(C), and I(p,) > I(C) without loss of
generality, since /(N\)+/(\2) =1(A) <2I(C), and similarly for uy, u,.

We now translate / and 7/ by applying «, as in Figure 9, and suppose points
move to the left along / by a distance /(C), without loss of generality. (Otherwise
replace « by o 1) Since I(\;) < I(C) and (M) > 1(C), it follows that aX, C ).
Let D denote the disk bounded by \{Uu,. au, cannot lie in D, as D is an inner-
most 2-gon, but au, certainly lies on the same side of / as does D, because « is
orientation-reversing. Thus the picture is as in Figure 10. As 6 C u;, we have /(§) <
[(C). Thus /() >I(C) or else we can do an exchange and get a contradiction.
Thus we must have that /(p) </(C), since /(p) +I(v) = (xE) <2I(C). Butl(n)<
I(C) also, as I(9) +{(n2) = I(E) <2/(C). Thus there is an exchange between pro-
jections of p and %, giving a contradiction. A similar argument shows that there
cannot be more than 3 points of intersection between / and 7/.

We will compute D(f) by looking in the cover M. Clearly D(f) is the number
of transverse intersection points of C with all the components of the pre-image
of fin M, excepting C itself. We will show that each component intersects C in
at most one point. This will imply that any proper homotopy in M, cannot de-
crease D(f), and so D(f) =D(x).

Let C’ be a component of the pre-image of f in M. If C’is a line which meets
C in at least two points, then there is an arc in C’ with endpoints on C which is
homotopic into Crel ends (M, retracts to C). So thereis a lift /’ of C’ to U which
crosses / in two points or more, contrary to the preceding argument. Thus C'NC
has at most one point.



166 JOEL HASS AND J. H. RUBINSTEIN

]
u
2
E i
, ~
- { B
a \ l’ 0
/
\
/ "\ ar, ! A
L i 2
/ | ! A
/ ! 2
/ A )
[ aE \ /
' Y,
{
H
o8,
TR
Figure 10

If C’ is a loop, then C’ is homotopic to some multiple C” of the loop in Cin
M, . We claim that » =1 (with correct orientations). Let p: M, — M be the cover-
ing projection and let py, p,: S!' - S! be m- and n-fold coverings respectively.
Assume that C’ is the image of f’: S' —» M, which is a lift of f-p, to M,,. I we
apply p to the homotopy between f” and f- p,, a homotopy in M is obtained be-
tween f-p; and f-p,. This gives an equation y ~'ay = «a” in m; (M), since f ~ .
As M is not a Klein bottle, any 2-generator subgroup of =;(M) is free. Hence v
commutes with o and m = n. Let /, I’ be the line in U over C, C’. Then /’=~y/and
so /, !’ are both stabilized by the cyclic subgroup generated by «, because ay =ya.
We conclude that m =n=1and C’ is homotopic to C. (Note that if, e.g., o = 'y3,
then there are at least 3 loops in the pre-image of f in M, since f is in general
position.) But then C’ is also shortest ~«, and so CNC’ has just one point, by
Lemma 2.1. This completes the proof that D(f) = D(x). ‘

To show that D(f, g) =D(«, 8), we first note that any line component in the
pre-image of g in U intersects / in at most one point, by essentially the same argu-
ment as used for translates 7/ meeting /. Also D(f, g) is the number of crossings
of C with the full pre-image of g in M. Exactly as above, it follows that any line
component of the pre-image of g intersects C in at most one point.

If C’ is a loop component, we need to show that the number of intersections
of C’ and C cannot be reduced by any homotopy of both fand gin M. As previ-
ously, the homotopy between C’ and some multiple C” of C projects to an equa-
tion v 7!8"y =" in 7 (M). Hence v !By =67 and oo = 6" for some 6 € m (M),
since v '8y and « must belong to a cyclic subgroup of (M ). Note that mq = nr.

If M denotes the covering of M corresponding to the subgroup generated by 9§,
then there is an r-fold covering p: M, - Mjs. Let §: S' > M, be the lift of g- p, to
M, with image C’, where p,: S! - S!is an m-fold cover. Also let £, g: S' - M; be
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the lifts of f, g with images C, C’ respectively, where C = p(C) and C’'=p(C").
Since f~ 6" and g ~ 89, it follows that f and g are shortest geodesics which inter-
sect in min{q, r} points, by Lemma 2.5. Let M,, denote the gr-fold covering of
M; and let C, C’ be components of the pre-images of C, C’ (respectively) in M,,.
Then €N’ also contains min{g, r} points, by the proof of Lemma 2.5. Pro-
jecting to M,,, C is a g-fold cover of C and C’ is a (g, r)-fold cover of C’, where
(g, r) is the g.c.d. of {q, r}. Hence C intersects C’ in minf{q, r}/(q, r) points. So
if #CN C’ is decreased by some homotopy in M of fand g, we see that #CNC' is
also reduced, contrary to the argument in Lemma 2.6. This finishes the proof
that D(f, g) = D(a, B).

Assume finally that M is a Klein bottle. Then m(M)={(x,y |x 'yx=y". An
arbitrary element of 7 (M) can be expressed as x””y” and is orientation-reversing
if and only if mis odd. In this case, x™y" is conjugate to either x"" or (xy)"". So a
shortest one-sided geodesic represents either x” or (xy)™.

A shortest loop Cy in M which represents x2 = (xy)? is embedded by Theorem
2.1 of [2], as there is a two-sided simple loop representing x2, or Cy is a double
cover of an embedded one-sided loop Cj. In the former case Cy separates M into
2 Mobius bands which have center-lines representing x and xy. So by Theorem
3.2, any one-sided length-minimizing geodesic in M is disjoint from Cy, since it
is homotopic to a multiple of one of these center-lines. To analyze self-intersec-
tions and intersections of one-sided shortest loops, it now suffices to work in a
Mobius band, and so Lemmas 2.5 and 2.6 complete the argument. In the case
that Cy covers C§, M — C}{ is a single Mobius band and this case follows from

Lemmas 2.5 and 2.6 also. O

Appendix. Let M3 be a closed RP?irreducible Riemannian 3-manifold, that is,
there are no two-sided embeddings of RP? in M and any embedded S? bounds a
3-ball. Let F be a closed surface different from S2 and RP2. Suppose f: F— M is
a least area incompressible map which is homotopic to a one-sided embedding 1,
that is, fi: m (F) —» m;(M) is one-to-one and f has smallest area in its homotaopy
class. It is reasonable to expect that f is an embedding, by analogy with the two-
sided case (cf. Theorem 5.1 of [3]).

Let g: Fy — M be a two-sided embedding onto the boundary of a regular neigh-
borhood of f’(F), where p: Fy — F'is the double covering with the property that
a loop C in F lifts to Fy whenever a curve homotopic to f’(C) has odd intersec-
tion number with f’(F), and g is homotopic to f’p. By Theorem 5.1 of [3], since
Jp is homotopic to the two-sided embedding g, a least area map g* represent-
ing fp is an embedding or a two-to-one map. In the latter case, g*= f*p, where
S*: F— M is an embedding. Also fp: Fy— M is least area in its homotopy class,
since Area(fp) =2 Area(f) <2 Area(f*)= Area(g*). By Theorem 5.1 of [3], we
conclude that f must be an embedding in this case and so it suffices to assume that
g* is an embedding.

By Theorem VII.9 of [5], the covering M of M corresponding to the subgroup
S+ (i (F)) of w1 (M) is an open twisted line bundle over a non-orientable surface
homeomorphic to F. The maps f and g* lift to maps f and g* from F and F, re-
spectively to M. Clearly fand g* are both least area and f is a homotopy equiva-
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lence. Suppose one could show, in the special case that a one-sided least area
map is a homotopy equivalence, then f is an embedding.

If f(F) met §*(Fp), then exactly as in Lemma 4.1 of [3] there would be a prod-
uct region between these embedded surfaces. So an exchange argument would re-
duce the area of one of the surfaces, which gives a contradiction. We conclude
that f and g* have disjoint images and so clearly f(F) lies in the compact region
of M bounded by §*(Fp). In fact since g* is homotopic to g, g*(Fp) bounds a
twisted line bundle in M which lifts to the compact region with boundary g*(Fy)
in M (for suitable choice of §*). Hence f projects one-to-one to the embedding
J, and it follows that a least area incompressible map which is homotopic to a
one-sided embedding must be an embedding.
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